
Tracking Systems for Multiple Smart Home

Residents

Aaron S. Crandall
acrandal@wsu.edu

Diane J. Cook
cook@eecs.wsu.edu

March 29, 2011

Abstract

Once a smart home system moves to a multi-resident situation, it be-
comes significantly more important that individuals are tracked in some
manner. By tracking individuals the events received from the sensor plat-
form can then be separated into different streams and acted on inde-
pendently by other tools within the smart home system. This process
improves activity detection, history building and personalized interaction
with the intelligent space.

Historically, tracking has been primarily approached through a car-
ried wireless device or an imaging system, such as video cameras. These
are complicated approaches and still do not always effectively address the
problem. Additionally, both of these solutions pose social problems to im-
plement in private homes over long periods of time. This paper introduces
and explores a Bayesian Updating method of tracking individuals through
the space that leverages the Center for Advanced Studies in Adaptive Sys-
tems (CASAS) technology platform of pervasive and passive sensors. This
approach does not require the residents to maintain a wireless device, nor
does it incorporate rich sensors with the social privacy issues.

1



1 Introduction

Smart homes are providing an ever more important suite of tools for home care.
From simple assistive tools to complex contextually aware interactive personas,
smart home technology has penetrated many parts of the medical community.
These tools rely on various sensors, artificial intelligence algorithms and human
intelligence to operate. Most often the tools are geared towards recognizing
the activities of daily living (ADLs), with the purpose of providing historical
and instantaneous feedback about the residents’ behavior. Any improvements
to these tools in recognizing ADLs is welcomed by care practitioners and the
residents themselves because it gives them a more accurate day to day picture
of the residents’ situation [1].

Currently, the latest in smart home technology has trouble operating with
low profile, privacy aware sensor platforms. These sensor platforms are designed
to minimize effort on the part of the resident while maximizing privacy at the
cost of sensor granularity. The goal of research in this area is to make use of this
reduced sensor information to still build systems capable of providing quality
assistive technologies.

As an added hurdle, the smart homes are often deployed where there is more
than one resident dwelling in the space. Even visitors and care providers make
it difficult for the smart home system to determine which person currently in
the space caused a given event and attribute it appropriately. Without that
ability, ADLs become much more difficult to detect through the noise in the
data and individual histories are impossible to obtain.

The tools used to follow an individual through the space are commonly
called tracking systems. A tracking system’s goal is to determine the current
number and location of individuals, as well as their identity if possible. This
information is invaluable when dealing with multi-resident situations to provide
the computer a method of attributing events to individuals. There are three
main strategies for tracking people in smart homes:

1. Carried Devices or Tags

2. Video biometrics

3. Entity detection via dividing events spatially and temporally

Carried devices or tags are commonly done via RFID [2, 3, 4] or a wireless
device carried on ones person [5, 6, 7, 8]. The device or a base station of
some sort reports the current location of the device to the central system. This
has been accomplished using PDAs, cell phones, actigraphs, custom built RF
devices, et al. While these kinds of systems work, it does require that every
individual in the space keep and maintain their personal device at all times. It
is easy for the residents to forget their device, have the batteries run down or not
even want to have it. Additionally, guests need to be issued a device whenever
they are in the space to ensure they are accounted for. In many environments
this is a feasible solution, given the manpower to maintain it. For example,

2



hospitals and full time care facilities are often able to make use of such systems.
In private homes or understaffed situations, it becomes a less feasible solution.

For video biometrics one or more cameras are placed around the monitored
space. These cameras capture the current residents for tracking and process-
ing [9, 10]. The goal is to interpret the video data to identify individuals, detect
ADLs and give more context to item interaction. While these tools are often
very good at meeting these goals, they bear the overhead of expensive cameras
and the privacy concerns of the residents. Asking individuals to have 24 hour
video monitoring in the homes can be difficult. While some may be willing to
accept such an intrusion, many others will not [11, 12].

The last solution, doing Entity Detection by interpreting the sensor network
data directly, strives to remove the effort of carried devices and the privacy
concerns of cameras in exchange for more complexity in the tracking algo-
rithm [13, 14]. Many smart homes are very sensor rich. By exploiting the
physical locality of the sensors with the timing and general behavior of the res-
idents, tools can be developed to determine how many residents there are and
attribute events accordingly. This approach is a much more classical artificial
intelligence one, and one that will likely get a probabilistic result. Whether or
not it is good enough to support the other tools, such as ADL detection, is the
question.

The researchers at Washington State University’s Center for Advanced Stud-
ies in Adaptive Systems (CASAS) have built a set of smart home testbeds to
support research into assistive care technologies. After working with the sys-
tems and the residents it was hypothesized that an algorithm could be devised
to take the full event stream from anonymous residents and exploit the spatial
and temporal features to make a tracking system without a carried device or
rich sensors such as cameras. This approach was chosen from the outset because
of known privacy and acceptance issues with smart home monitoring systems.
People are often wary of having a monitoring system in their home, especially
older adults who are still living independently. By working with a system that
does not require cameras, microphones or a carried wireless device, more people
are accepting of having such a system in their home.

This work introduces two algorithms that would be considered entity detec-
tion and tracking tools. They are used to divide the events generated by the
sensor system into different sets. Each set represents a person currently in the
space, and the events they caused on the sensor network. These sets can then
be used to identify individuals, detect ADLs and give a much better sense of
the behaviors occurring within the smart home. The result is a tracking system
that uses passive and unobtrusive sensors to track people as they go about their
day within the smart home space.

2 Sensor Platform and Data

The Center for Advanced Studies in Artificial Systems has constructed a number
of smart home testbeds. These testbeds are used to record sensor information

3



from the activities of the residents, both in scripted and unscripted situations.
The testbeds were designed to support the detection of resident activities and
track individuals in a passive manner. Unto these ends, a number of sensor
types have been introduced:

1. Passive Infra-Red (PIR) motion detectors

2. Temperature sensors

3. Power meters

4. Door open/close sensors

5. Item presence platforms

6. Light switch monitors

7. Water flow meters

8. Phone use

The primary role of these sensors is to aid in ADL detection. Out of these
sensors only the PIR motion detectors are used in this work for tracking and
localization of residents. The rest of the sensors have been found to have a
marginal benefit for this purpose. The PIR sensors are commodity off the shelf
home security sensors that have been modified with a custom built communi-
cations daughter board dubbed the Lentil Board. This daughter board senses
a change in the sensor relay state, i.e.: ON vs. OFF, and transmits the change
to a Dallas 1-wire bus to be logged by a host computer.

These PIR sensors come in two configuration. The first is an area sensor that
is placed in a fairly common home security position. These sensors have a field
of view that covers most of an entire room and are used to measure occupancy
of the space. The second, and more common type, is a downward facing unit
that had had its view occluded to only be able to see about 4’ x 4’ of the floor
below it. These second PIR sensors give a much better sense of the location of
motion within the space.

These kinds of PIR sensors are used quite often for smart home implemen-
tations. They’re inexpensive, robust and accepted by most residents. During
the initial design phases of the CASAS project, it was determined that high
fidelity sensors, such as cameras, raise significant privacy concerns. When using
these low fidelity platforms and more intelligent algorithms, the residents have
been very accepting of being monitored by such systems. During several of
the in-home deployments of CASAS testbeds the residents expressed significant
concerns over having such a system watching them full time. By showing them
the very simple form of the data gathered and the simple visualizations that
can be created their initial concerns have been assuaged.

For the purposes of the algorithms used in this work only the downward
facing sensors are used for the tracking of individuals. The area sensors give a
much too general sense of a resident’s location for any kind of precise locality.

4



Normally a PIR security sensor is only used to say someone is in the room, which
is enough for intrusion detection. These smart home systems need a much finer-
grained tool where an event means someone is within this small area. The more
information that can be derived about locality the better.

The events created by the CASAS testbed are very simple. They come in
the form of a four tuple:

1. Date

2. Time

3. Location

4. Message

The date and time are the time the event occurred, locally to the testbed.
The location value is a named physical spot within the testbed, not an abso-
lute coordinate. By abstracting the serial number of a device from the physical
location individual devices may be changed out in the face of hardware failure
without impacting the running algorithms. Lastly, the message field is an ar-
bitrary string. For most devices, such as PIR sensors, it is a binary state with
either “ON” or “OFF”. Other more complicated sensors, such as temperature,
power meters and water flow sensors, put a number value or a description of
their state in this field.

By leveraging a platform that generates simple and discrete events, the total
size of the data sets created are smaller than approaches that use more complex
sensor sources such as video or wearable sensors. There is also significantly less
pre-processing to do to interpret the data for later classification. For example,
to determine resident location using a camera a number of image processing
techniques have to be applied first. These techniques can take a noticeable
amount of computational resources and induce additional noise that later algo-
rithms need to account for. The CASAS sensor platform and event model make
for very clean data to be used by artificial intelligence algorithms.

3 CASAS Testbeds

In this work two different CASAS testbeds were used. In both locations people
live, work, and perform daily activities without external guidance or scripting.
The Tokyo testbed shown in Figure 1, is located in a WSU Electrical Engineering
and Computer Science (EECS) department lab. The room is 12.2m x 10.9m,
and is used by the CASAS graduate students as their main work area. Within
the room there are a number of separate spaces containing desks, cubicle walls, a
conference area, a sitting area and an inner room with engineering work tables.
Anywhere from zero to 9+ people will be in the space at any given time, at
nearly any hour of the day. The testbed is outfitted with PIR sensors on the
ceiling, a front door open/close sensor and power switch sensors. The testbed
has now been operational for nearly three years.

5



Figure 1: Floor plan for WSU CASAS office testbed, named Tokyo.

Tokyo has 44 motion detectors1. They are all placed on the ceiling pointing
down at roughly 1.2m intervals. The ceiling is a dropped t-bar ceiling with a
nearly uniform height of 3.0m and the sensors are attached to the t-bar surface.
An example of this implementation at the Tokyo testbed can be seen in Figure 2.

The Kyoto testbed is a three bedroom campus apartment provided by WSU
Housing. The facility has 52 motion detectors along with many other types of
sensors. This testbed has been in operation for just over two years, normally
with two full time undergraduate residents. In addition to day to day living, the
space is also used for a number of smart home studies. These studies will have
one or more people moving about the space in scripted or unscripted behaviors
during the day.

A map with the Kyoto sensor placement is shown in Figure 3. The sensors
that begin with ‘M’ are the motion detectors used for determining the rough
location of motion with the space. The rest of the sensors monitor doors, water
flow, lights and items.

The third bedroom of this apartment is unoccupied by a permanent resident.

1There is no motion detector number 35 due to a numbering error at installation time.

6



Figure 2: Sample of PIR motion detectors, as installed in the Tokyo testbed.

Instead, the room is utilized as a control room by experimenters who run short
controlled experiments in the Kyoto testbed. To keep the noise in the data set
down, this room has a bare minimum of sensors.

4 Approaches

This work introduces two algorithms to track individuals in the smart home
space. They both attempt to exploit the physical and temporal features of
the events generated by the residents on the CASAS sensor network. The goal
is to incrementally build a model of what is likely transpiring, i.e. who is
moving where when, and attribute the events accordingly. Because the tools
will eventually need to operate in real time, they take events in order and
should be able to classify them quickly. This classification would then be used
by other tools, such as ADL detectors, to more accurately describe the current
activities.

In both tools it was determined that some terminology had to be defined.
The researchers use the term ’entity’ within the models to represent an individ-
ual. This is because not every entity in the model represents a person. Most
often they are people, but the studies have included smart home installations
with cats, dogs and even robots that cause events. By using the term entity, it
allows for a wider understanding of how complex living spaces can be.

The two algorithms are similar in many ways, as the evaluation of one led

7



Figure 3: Floor plan for WSU CASAS student apartment testbed, named Kyoto.
The various sensors are labeled with their location name (M = motion, L = light,
I = item, D = door, T = temperature) and number.

to the creation of the other. The first algorithm is a rule-based tool. It uses a
set of simple rules combined with a graph of all possible routes between sensor
locations to track individuals. This tool is dubbed ’GR/ED’, which stands for
Graph and Rule based Entity Detector. The initial results for the GR/ED were
promising, but the tool fell down in more complex social situations as well as in
poor sensor network environments. The GR/ED is introduced and explored in
more depth in section 4.2.

As a means to exploit the available data and create a better tool, a second
tool based on Bayesian Updating was created. By using a corpus of training data
annotated with the number of residents, a probabilistic transition matrix is built
and used to update the world model. This tool is dubbed the ’BUG/ED’, which
stands for the Bayesian Updating Graph based Entity Detector. By leveraging
a probabilistic model, the system is able to handle significantly more issues with
the sensor network and perform marginally better in the face of more complex
resident behaviors. With these additional successes, the BUG/ED was also
tested for its efficacy at improving the performance of a Bayesian Classifier for
doing ADL detection. The BUG/ED is discussed in more detail in section 4.3.

8



4.1 Annotated Data

To use both algorithms two corpora of data were created. A subset of the
stored events for both the Tokyo and Kyoto testbeds were taken and annotated
by humans. The humans were taught to watch the events as they were replayed
using a visualization tool and log the current number of residents in the testbed.
This value representing the current occupancy could then be used to determine
how accurate the tracking tools were, and in the case of the BUG/ED it was
also used to train the transition probability matrix.

The Tokyo data set represents sensor events that were generated while fac-
ulty, students, and staff performed daily working routines in the lab over a course
of 59 days. To train the algorithm, the data was manually inspected by a person
and every event annotated with the current number of residents in the space. In
total this made for 209,966 motion sensor events, with a mean of 86.84 events
and a standard deviation of 201.11 events per resident instance. The resident
count ranged from zero to more than nine during this data gathering window.

Once the testbed had more than six to seven people in it, the annotators
noted that there was little available information to identify what was happen-
ing in the space. This was anecdotal evidence for the limited resolution of the
testbed. Adding more sensors should increase this maximum detectable occu-
pancy.

The Kyoto data was taken from 21 days of the Kyoto testbed. This made
for 231,044 motion sensor events, with a mean of 603.67 events and a standard
deviation of 843.17 events per resident instance. Again, the sample data was
inspected by a person and annotated with the number of people currently in
the space. In this set, the number of residents ranged from zero to five and
the annotators noted a marked decrease in their ability to interpret individuals’
movements as the occupancy reached about four residents.

4.2 GR/ED - Graph and Rule Based Algorithm

The GR/ED algorithm was designed to use the order of events to incrementally
track individuals in the CASAS testbed. The core idea is that entities will
most likely trip sensors as they cross from one location to another, and multiple
entities will often be separated by one or more sensors as they go about their
day.

The “graph” part of the tool is based around the physical locations of the
sensors within the testbed. The two CASAS testbeds used in this work are
shown in Figures 4 and 52. These graphs are made up of only the downward
facing PIR motion detectors, which are laid out to cover most of the floor
space. Since the sensors are placed to cover the space fairly well, people walking
around have an obvious and complete chain of events from one place to another.
The graph that represents a given space has vertexes representing the sensors

2The edge cutting across the Kyoto graph from M026 to M027 is connecting the sensor at
the bottom of the stairs with the one at the top leading to the second story.

9



Figure 4: Graph of sensor locations for the Tokyo testbed.

themselves and edges that represent the possible connections between those
vertexes.

The rule based part of GR/ED is a simple set of logical rules for creating,
destroying and moving entities within the model based on the evidence given
by the event series. The first rule is for creating a new entity. With this rule,
if an “ON” event occurs at a location with no adjacent entities, a new entity
is created. This theoretically means that this event was caused by a heretofore
unseen entity. They could have either entered the space, or have been shadowing
another one of the residents and only just then been separated enough to have
noticed as a separate entity.

The second rule is for destroying entities. An entity is destroyed from the
model under two circumstances. First is when they have been determined to
leave the sensor network. In the case of the CASAS system, this is when an
entity moves to the sensor most adjacent to the exit. Since there is no hardware
available to easily determine whether someone has moved through the doorways,
it can be assumed that moving next to the door is an exit.

The second way an entity can be destroyed is when they fail to generate new
events for a period of time. If the model has an entity that does not actually
exist, then it must have a means to recover. Since the PIR sensors do not provide

10



Figure 5: Graph of sensor locations for the Kyoto testbed.

data if an entity does not move, then it becomes difficult to determine if they are
still in a given location, or if they have moved away without triggering events.
This kind of movement can either occur due to a flaw in the sensor network, or
if two entities move to the same location followed by moving together across the
space. Since the sensors do not provide a magnitude of the size of an entity, it is
easy for multiple people to move as a group and leave old entities in the model
that no longer exist. To remedy this, a timeout on entities has been imposed.
After trying a wide range of values with the Tokyo data set, it was determined
that a timeout of 300 to 600 seconds is the best range, and 300 was used for
this work.

The final rules for the GR/ED tool have to do with movement. The first
rule for movement is that when an “ON” event occurs and an entity is at a
neighbor in the graph, then that entity moves to the location that generated
the event. Only one entity can have that event attributed to them, so if more
than one entity is adjacent to the new event, then the one that moved most
recently takes it. This most recent mover continues rule allows the system to
deal with entities moving together in tighter areas.

As the system operated, it was noticed that people could easily fool the
GR/ED by walking back and forth. The PIR sensors chosen are from a com-
modity home security product line. Because the home security hardware is slow,

11



Figure 6: Example of movement that breaks the simple GR/ED algorithm.

the sensors stay in the “ON” state for anywhere from one to five seconds before
turning back off once movement stops. Due to this very long time frame, people
could walk in the pattern shown in Figure 6, which would move their virtual
entity to the node on the left, but the sensor in the middle would stay on long
enough that they would then move to the sensor on the right without causing
an “ON” event on the middle sensor. This would leave their old virtual entity
on the left, and create a new one from the new “ON” event from the right most
sensor. At this point the system was out of sync with the space and the false
entity left behind would have to time out before the GR/ED would be correct
again. To remedy this failing, the Open List of sensors was proposed.

With the Open List, an entity has a set of locations that define their present
location instead of only a single one. For every ON event sent by the sensors,
there is always an OFF to match it. When an entity is attributed an ON event,
that sensor location is placed in their Open List. Once that sensor finally sends
an OFF event, the location is removed from their Open List. Now that this list
is available, an entity’s location is not merely their current vertex in the graph,
but the whole of the Open List. If an ON event occurs that is adjacent to any
location in this list, it will be attributed to the entity. This technique remedied
most problem instances of people walking back and forth. In the previous
example, the entity’s Open List would be both the center and left sensors. So
when they next trip the right sensor they are still considered “adjacent,” due to
the middle sensor being in their Open List, and would properly be attributed
that new event from the right sensor.

Each entity in the model has a list of locations that it has visited in the
past. The ordered list of these locations may be used to build a tracklet for the
resident. Alternatively, the current number of entities in the GR/ED model is
the estimated occupancy of the space.

12



The resulting system was efficient and operated in near real time, making
it feasible for real-world smart home implementations. As an added advantage
it takes no training data to operate, only the graph of possible routes between
sensor locations. This would allow the GR/ED to be deployed and started
once the layout of the sensors is known without having to wait for any kind of
annotated training data to be made available.

4.2.1 Testing the GR/ED

The GR/ED tool was tested for accuracy at counting the current number of
residents using both the Tokyo and Kyoto data sets. The tool was evaluated
using 10-fold cross validation, divided by days. This validation was run 30 times
to provide variance for significance values. Once the data sets were run through
the tool, the resultant guesses were compared to the human annotated ground
truth. The results could then be inspected for total number of event correct, as
well as total length of time correct.

For a form of baseline comparison, a weighted random classifier was trained
and tested on the same data. The weighted random algorithm was also run 30
times to provide variance.

4.2.2 Results for GR/ED

GR/ED was accurate with one resident as expected, but rapidly fell to a lower
rate as the number of residents increased. In Figure 7, the accuracy by number of
events on the Tokyo data set is shown. Note that as the resident count increased
the accuracy declined, though the GR/ED algorithm was always significantly
better than a weighted random guess.

Since the GR/ED tool cannot tell the difference between a single or multiple
residents at a given location, while the annotators can, it is often too low in its
estimations. Additionally, it can be too high if an entity is a false positive until
it times out. Overall, the GR/ED algorithm achieved an overall accuracy of
72.2% with a standard deviation of 25.21% by counting events and an accuracy
of 88.9% with a standard deviation of 12.8% for the total time represented by
the data set.

The Kyoto data set truly showed the flaws in the GR/ED algorithm. This
testbed has significantly more sensor error. People are able to move past sensors
in many more places without tripping intermediate sensors. This quickly leads
to many false entities being created in the model and a marked reduction in
accuracy. Overall, the GR/ED had an accuracy of 16% measured by number of
correctly-labeled events and 45% for total correctly-labeled time on the Kyoto
data set. These low accuracies placed it well within range of a weighted random
guess, so further evaluation on the Kyoto data set was abandoned.

The GR/ED tool has the advantage of not requiring any training data, only
the graph itself. If the sensor locations can be determined at installation time,
or automatically through some means, then this tool can be used with a new

13



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9

A
cc

u
ra

cy

Resident Occupancy

Accuracy of GR/ED vs. Weighted Random
by Occupancy on the Tokyo Data Set

GR/ED Weighted Random

Figure 7: Accuracy by occupancy count for the GR/ED tool on the Tokyo data
set. The error bars show three standard deviations.

smart home installation quickly. Depending upon the needs of the other tools
within the system, it may be sufficient for the smart home application.

Because the graph used by the GR/ED is so rigid, it was determined that
a more probabilistic model might be a better solution. Instead of relying on
a human-created set of equal and fixed connections between locations, perhaps
a graph of likely connection as derived from the annotated data might serve
better. This lead to the application of Bayesian Updating and the creation of
the BUG/ED tool.

4.3 BUG/ED - Bayesian Updating Graph

After looking through various algorithms, it was determined that a Bayesian
Updating algorithm might be a good choice for a successor to the GR/ED tool.
Bayesian Updating is a probabilistic strategy where new evidence provided is
used to update the guess at the model of the world. The Bayesian Updating
Graph Entity Detector (BUG/ED) proposed here takes the current model of the
smart home space, with respect to the current resident locations, and combines
it with the new evidence in the form of a sensor event to build the most likely
world model for the latest state. The behavior is similar in many ways to the
GR/ED, but instead of a simple and uniform graph it has a transition matrix of
probabilities. The matrix can also be augmented with other sources of evidence,
though the algorithm here was only provided sensor location to sensor location

14



transition likelihoods.
The biggest advantage of the BUG/ED over the GR/ED is handling failures

of the sensor network. Often a person will bypass a sensor in the graph, which
caused an immediate problem for the GR/ED tool. It would end up creating
a new entity in the model, and abandon the old one improperly. With the
BUG/ED, the transition matrix will normally have a likelihood of transition
between those two more distant sensors and will often properly move its entity,
even if the person it represents skips sensors occasionally. This ability alone
increased the robustness of the system in day to day operation.

4.3.1 Training the BUG/ED probability matrix

With Bayesian Updating, there must be some corpus of information for the
algorithm to use in estimating the conditional and joint probabilities. Obtain-
ing or generating that corpus is up to the implementation and domain. The
data annotated by humans for the Tokyo and Kyoto testbeds specifying the
number of current residents was used to train the BUG/ED transition matrix.
This training process is done before operation of the BUG/ED can begin and
resembles the GR/ED algorithm with a very important addition.

Since the annotated data has the true count of residents, the training algo-
rithm can make use of that key data for determining when residents entered and
left the space . The training algorithm takes the events from the training data
one at a time and incrementally builds a model of the residents’ locations and
transitions between sensor locations, much like the GR/ED. The key difference
is that it uses the resident count from the training data to decide when to create,
destroy or move entities.

The training algorithm also makes use of the same graph utilized by the
GR/ED tool, but only for counting hop count between sensor locations. This
graph has one addition for the BUG/ED algorithm, a virtual sensor location
called “OUTSIDE.” This OUTSIDE location represents all of the universe not
monitored by the smart home sensors. It is directly connected via an edge in
the graph to any sensor at an exit to the smart home, such as sensors next to
the front and back doors. Entities are also moved from OUTSIDE when they
are created, and to OUTSIDE when removed. The graph is used in determining
which entity is closest to the OUTSIDE location, or which entity is closest to
an event that just occurred.

The training algorithm will either create, destroy or move entities by looking
at whether the resident count went up, down or stayed the same between events.
If the count goes up, a new entity is created at that location by moving them
from the virtual location OUTSIDE to the location of the event. If the count
goes down, the entity closest to the exit is immediately moved to the virtual
location OUTSIDE. If the count stays the same, the closest entity to the event
on the graph is moved there.

Every time an entity is created, destroyed or moved, that transition from one
location to another is added to a matrix. The matrix represents the number of
times entities transitioned between locations, and is the source of probabilities

15



during the operation of the BUG/ED algorithm on new data. The length of time
an entity resides at a given sensor location is also kept. This set of time lengths
is used to determine dynamic timeouts for entities, which will be discussed in
greater depth later.

4.3.2 Noise reduction in the BUG/ED matrix

The training algorithm for the BUG/ED matrix is not perfect. Inspection of the
results shows several instances where the model of the testbed got into a state
where taking the closest entity was inappropriate. For example, when the two
residents were both in the living-room of the Kyoto testbed and moved upstairs
together, one of the virtual entities would be moved with them while the other
was left behind. As long as the residents remained together upstairs, the single
virtual entity with them would bounce back and forth between their locations.
This situation would increase the likelihood of transition between two unrelated
locations, but by having a large enough training set this would not normally
impact the overall performance of the BUG/ED too greatly.

In some of the training data the human annotators were also incorrect in
their resident count. Since that value is very important to the training phase,
these bad training files would also impact the overall accuracy of the system.

To overcome these aberrant transitions between sensor locations, a flooring
filter was applied to the transition probability matrix. Any transition likelihood
below the threshold would be changed to the lowest probability. Setting a
flooring value was seen to have a profound effect on the behavior of the system.
If too many bad connections were left in, by setting it too low, then the BUG/ED
would have too little evidence to create new entities as people entered the space.
Alternatively, if it was set too high then too many entities would end up being
created. For each data set, the value to floor with was experimentally derived.
In future work, a proper outlier detection algorithm for each sensor location will
replace this fixed number.

An additional noise reduction tool was implemented to remove training data
that was too complex for good use. This was a maximum occupancy limit
on the training data. As the number of residents increases within a space, it
becomes more and more difficult to determine how many are truly there. This
limit is a factor of the sensor density and how mobile the residents are. It
was noted by the annotators that once more than five or six people were in the
Tokyo testbed, it was nearly impossible to keep their locations perfectly tracked.
At that juncture, the annotators watched the entrance for people entering and
leaving more than individual events anywhere in the space. Since the training
algorithm to build the BUG/ED transition matrix is a simple one, a ceiling
value on the number of occupants in the space was implemented. If the training
data exceeded that number, it was thrown out. Between removing very unlikely
connections and not using training data with too many residents, the BUG/ED
tool started to perform much better in day to day use, and the overall accuracy
of the system improved.

16



4.3.3 Dynamic Timeouts in the BUG/ED

In the GR/ED tool, a flat timeout for entities was enforced. This was set at 300
seconds, a figure experimentally derived by running the GR/ED tool on the data
repeatedly with different timeout values. The overall accuracy at determining
the number of residents was compared for each timeout. The best value of
300 seconds was taken for future work with the tool. This flat timeout of 300
seconds is the default used by the BUG/ED as well, though it is supplanted by
the dynamic timeout algorithm described below.

It was noted by the residents that the GR/ED would timeout most often
when people sat and worked in a location for a period without moving enough to
cause sensor events . Because the training algorithm for the BUG/ED is stateful
and remembers an entity’s location indefinitely until they move, it could be used
to find a more appropriate timeout for every sensor location. It was hypothesized
that by making a dynamic timeout system that utilizes the training data, the
BUG/ED would be improved when handling situations where entities remain
still for long periods of time.

As the BUG/ED transition probability matrix is being trained, the length of
total time an entity spends on a given sensor is kept. Once the data has all been
used for training, these lists of times are used to calculate a customized timeout
value for each sensor location. The mean plus three standard deviations (to
capture 99% of all occurrences) of the time lengths in a sensor’s list was used
for the timeout value at every given location.

Manual inspection of the customized timeouts largely conformed to the ex-
pected pattern. Areas such as hallways and kitchens had shorter timeout values,
while desks, beds and couches ended up with longer timeouts. This was not al-
ways true, but the flaws in the timeout calculations were results of flaws in the
simple training rules used to build the transition probability matrix, and not
the timeout calculation algorithm.

4.3.4 BUG/ED Bayesian Updating

During operation of the BUG/ED a model of the current entity locations is
maintained. This model is modified by motion events with an “ON” message
arriving. The only two things that may occur are either an existing entity is
moved to the location of the event, or a new entity is created.

The likelihood that an entity e of all existing entities E has moved to the
sensor location sk of the sensor that fired from the entity’s old location esk−1

is
calculated using Bayes’ Rule in equation 1.

arg maxe∈E P (e|sk) =
P (sk|esk−1

) P (e)

P (sk)
(1)

The value of P (sk|esk−1
) is taken from the probability transition matrix.

This is the likelihood that the entity transitions from their current location
to where the latest sensor event is located based upon the historical training
data. If the transition never occurred in the training data, then it was given a

17



very small minimum value based on the smalled existing value in the transition
matrix.

The factor P (e) is considered the same for all entities, as they all have an
equal likelihood of moving at any given time. This value could be modified with
information about the likely direction, speed or likelihood of movement based
on training information and become a serious factor in future versions of the
BUG/ED.

The last value in the denominator of P (sk) is the same for all entities as
it is the probability that the given sensor fired. Since this is a constant for all
entities being compared, it is only a scaling factor.

Of the existing entities, the one with the highest likelihood (Pmove) of making
the transition to the sensor that fired is chosen to move in the model. This
likelihood is compared to a threshold of the probability to create a new entity
in the model instead of moving an existing one (Pcreate). If (Pmove < Pcreate),
then a new entity is initialized at sk and the number of active entities in the
model increases by one. Otherwise, the most likely entity to move has its tracklet
of events increased by adding the most recent event and its location is updated
to sk.

At this juncture the BUG/ED has an updated model from the old model
with the new evidence from the latest event. These updates reflect the most
likely series of events based on the historical training data.

4.3.5 Testing the BUG/ED

The BUG/ED was tested using the same two data sets as the GR/ED tool.
Because the BUG/ED requires training data, a 3-fold cross validation system
was implemented. In this case, 2/3 of the available days were used to train the
transition matrix, and the last 1/3 was for testing. The days were randomly
selected and the model was reset with each new day when testing.

The overall accuracy value was calculated by counting the number of events
where the BUG/ED was correct in the current number of residents. The differ-
ence between the true value and the current guess by the tool was also calculated
to give a sense of how far off the model was from the ground truth. Since this
is a probabilistic model, some error is to be expected. Depending upon the
final use of the tools, having a roughly accurate guess might be sufficient for the
smart home system’s needs.

4.3.6 Results of the BUG/ED

The BUG/ED performed better than the GR/ED tool on these data sets. It
was noted by researchers watching the BUG/ED operate in real time that it
felt more ‘stable’. Indeed, the BUG/ED failed less often in the face of skipping
sensors and timed out less often when people stayed in one place for a period
of time. These results were quantified by higher accuracy rates and measurable
benefits to the ADL detection tools.

18



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8 9

A
cc

u
ra

cy

Resident Occupancy

Accuracy of BUG/ED, GR/ED and Weighted Random
by Occupancy on the Tokyo Data Set

BUG/ED
GR/ED

Weighted Random

Figure 8: Accuracy by occupancy count for the tools on the Tokyo data set.
The error bars show two standard deviations from the mean.

As a baseline comparison, the BUG/ED and GR/ED tools were also com-
pared against a Weighted Random classifier. This classifier was weighted by
the occupancy counts and used to guess the current occupancy at every event.
The tool was run 30 times for each data set and its variation used to determine
significance.

The BUG/ED tool’s overall accuracy improved over that of the GR/ED on
both data sets. It was a significant improvement on the Kyoto data, mostly
due to its ability to handle missed sensors as people moved about. Overall, the
BUG/ED classifies 44% of the events correctly, which accounts for 85% of the
total time on the Tokyo data set. Where it improves over the GR/ED tool is
when there are more people occupying the space. In Figure 8, the accuracies
for 2, 3 and 4 residents are noticeably higher than in Figure 7, which showed
the GR/ED results for the same data. This new robustness in the face of more
residents attests to the efficacy of the BUG/ED approach.

Where the BUG/ED truly performed much better was on the Kyoto data
set. While the GR/ED tool routinely failed as people traversed the space, the
BUG/ED would much more often track them correctly. In Figure 9, it shows
that in the most common state of two residents, the tool performs perfectly
accurately just over 60% of the time. Overall, the BUG/ED classified 59% of
the events and 67% of the total time for the Kyoto data set correct. This was
significantly better than the GR/ED tool on this data set.

19



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5

A
cc

u
ra

cy

Resident Occupancy

Accuracy of BUG/ED, GR/ED and Weighted Random
by Occupancy on the Kyoto Data Set

BUG/ED
GR/ED

Weighted Random

Figure 9: Accuracy by occupancy count for the tools on the Kyoto data set.
The error bars show two standard deviations from the mean.

These improvements in behavior and accuracy attest to using a probabilistic
model for decision making in this kind of tracking system. There are too many
uncertainties with sensor placement, resident behavior and system configuration
to have a purely rule based system operate well.

4.3.7 Application of BUG/ED to Activity Recognition

Many of the applications of smart environments that have been explored, such
as health monitoring, health assistance, context-aware services, and automa-
tion, rely upon identifying the activities that residents are performing. Activity
recognition is not an untapped area of research and the number of algorithms
that have been used to learn activity models varies almost as greatly as the
types of sensor data that have been employed for this task. Some of the most
commonly-used approaches are näıve Bayes classifiers, decision trees, Markov
models, and conditional random fields [15, 16, 17].

While activity recognition accuracy has become more reliable in recent years,
most existing approaches are applied to situations in which a single resident is
in the space performing activities. Recognition accuracy significantly degrades
when multiple residents are in the same space. We hypothesize that this accu-
racy can be improved if the data is separated into multiple streams, one for each
resident, or if each event is labeled with the corresponding resident identifier.

To validate this hypothesis, we apply the BUG/ED algorithm to data col-

20



Set Name #Months #Residents #Activities
Set 1 2 2 12
Set 2 2 2 13
Set 3 5 2 25

Table 1: Attributes of the three tested Kyoto data sets.

Set Name Without BUG/ED With BUG/ED
Set 1 42% 40%
Set 2 63% 88%
Set 3 54% 63%
Overall 56% 67%

Table 2: Before and after ADL detection accuracies when adding BUG/ED
tracking information to Kyoto data.

lected in the Kyoto apartment while two residents lived there and performed
normal daily routines. The data used for this experiment actually represents
different time frames, different residents, and different activities than were used
to train the BUG/ED graph. Attributes that describe these three data sets are
shown in Table 1. The activities included in this data set include, but were
not limited to, sleeping, eating, cleaning, watching TV, toileting, cooking and
showering. None of the activity was scripted and the annotation was done with
the help of the residents themselves for accuracy.

Table 2 summarizes the performance of the activity recognition algorithm
for each data set with and without entity labeling using BUG/ED. As is shown
in this table, the accuracy of activity recognition generally improves when entity
detection and tracking are employed.

To demonstrate that the BUG/ED strategy is useful in further smart home
tools, it was used to annotate three new sets of Kyoto data. That data was then
used to train a näıve Bayesian ADL detector. The results with and without the
BUG/ED tracking information were compared and summarized in Table 2.

These three data sets are annotated for 11 different ADLs in an unscripted
environment. There are two residents, though one or even more than two might
be present at any given time. The data sets cover nearly a full calendar year
in total and run all day every day. The overall improvement to complex ADL
detection was just over 10%.

5 Conclusion

In this work two different, though similar, tracking tools were introduced and
evaluated. The first uses a graph of the sensor network in a smart home en-
vironment and a set of rules to determine the current location and history for
individuals. The second uses a history of resident occupancy information to

21



build a set of probabilities to be used by a Bayesian Updating tool for tracking
residents. Both tools have benefits and negatives, though overall the prob-
abilistic model provided by the BUG/ED performed better, especially in an
environment with poor sensor layout.

There will be places for all kinds of tracking systems in smart home tech-
nologies. Choosing the right one for the needs of residents will be important for
the continued success of smart homes in multi-resident situations. Continued
research into passive tracking systems should improve upon these kinds of tools,
allowing smart homes to handle ever more complex behaviors and numbers of
residents.

6 Future Work

Both of the tools presented here offer chances for improvement. The BUG/ED
especially has opportunities for continued success. First would be a better
method of garnering the transition matrix. Changing the algorithm for training
the matrix, or even finding ways to reduce the amount of data needed to make
a successful set of probabilities would be very beneficial. Second would be
incorporating better methods of detecting an entrance or exit of individuals.
This could be accomplished by taking door sensor information into account, as
well as a more specific kind of sensor at the doorway to report someone entering
or leaving. Finally would be an evaluation of the impact of the sensor layout
itself. The current CASAS sensors are focused on detecting ADLs, but perhaps
some sensors could be placed in key locations to improve the tracking ability of
the system.

Acknowledgments

This work is supported by NSF grant IIS-0121297.

References

[1] M. Skubic, G. Alexander, M. Popescu, M. Rantz, and J. Keller, “A smart
home application to eldercare: Current status and lessons learned,” in
Technology and Health Care, vol. 17, no. 3. Amsterdam, The Netherlands,
The Netherlands: IOS Press, 2009, pp. 183–201.

[2] D. J. Cook and S. K. Das, “How smart are our environments? An updated
look at the state of the art,” Journal of Pervasive and Mobile Computing,
vol. 3, pp. 53–73, 2007.

[3] U. Naeem and J. Bigham, “Activity recognition in the home using a hier-
archal framework with object usage data,” Journal of Ambient Intelligence
and Smart Environments, pp. 335–350, 2009.

22



[4] J. S. Choi, H. Lee, R. Elmasri, and D. W. Engels, “Localization systems
using passive UHF RFID,” in The International Joint Conference on INC,
IMS and IDC, ser. NCM ’09. Los Alamitos, CA, USA: IEEE Computer
Society, August 2009, pp. 1727–1732.

[5] J. Hightower and G. Borriello, “Location systems for ubiquitous comput-
ing,” Computer, vol. 34, no. 8, pp. 57–66, August 2001.

[6] R. C. Luo and O. Chen, “Indoor human dynamic localization and tracking
based on sensory data fusion techniques,” in The IEEE/RSJ International
Conference on Intelligent Robots and Systems, ser. IROS ’09, October 2009,
pp. 860–865.

[7] E. Navarro-Alvarez and M. Siller, “A node localization scheme for ZigBee-
based sensor networks,” in The IEEE International Conference on Systems,
Man and Cybernetics, ser. SMC ’09, October 2009, pp. 728–733.

[8] J. J. M. Diaz, R. d. A. Maués, R. B. Soares, E. F. Nakamura, and C. M. S.
Figueiredo, “Bluepass: An indoor Bluetooth-based localization system for
mobile applications,” in IEEE Symposium on Computers and Communica-
tions, ser. ISCC ’10, June 2010, pp. 778–783.

[9] V. Libal, B. Ramabhadran, N. Mana, F. Pianesi, P. Chippendale, O. Lanz,
and G. Potamianos, “Multimodal classification of activities of daily liv-
ing inside smart homes,” in Distributed Computing, Artificial Intelligence,
Bioinformatics, Soft Computing, and Ambient Assisted Living, ser. Lecture
Notes in Computer Science, S. Omatu, M. Rocha, J. Bravo, F. Fernández,
E. Corchado, A. Bustillo, and J. Corchado, Eds. Springer Berlin / Hei-
delberg, 2009, vol. 5518, pp. 687–694.

[10] V. Menon, B. Jayaraman, and V. Govindaraju, “Biometrics driven smart
environments: Abstract framework and evaluation,” in Ubiquitous Intelli-
gence and Computing, ser. Lecture Notes in Computer Science, F. Sandnes,
Y. Zhang, C. Rong, L. Yang, and J. Ma, Eds., vol. 5061. Springer Berlin
/ Heidelberg, 2010, pp. 75–89.

[11] G. Demiris, B. K. Hensel, M. Skubic, and M. Rantz, “Senior residents’
perceived need of and preferences for smart home sensor technologies,” in
International Journal of Technology Assessment in Health Care, vol. 24.
Cambridge University Press, 2008, pp. 120–124.

[12] P. Klasnja, S. Consolvo, T. Choudhury, R. Beckwith, and J. Hightower,
“Exploring privacy concerns about personal sensing,” in Proceedings of
the International Conference on Pervasive Computing, ser. PerCom ’09.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 176–183.

[13] O. Woodman and R. Harle, “Pedestrian localisation for indoor environ-
ments,” in Proceedings of the International Conference on Ubiquitous Com-
puting, ser. UbiComp ’08. New York, NY, USA: ACM, 2008, pp. 114–123.

23



[14] V. Srinivasan, J. Stankovic, and K. Whitehouse, “Using height sensors for
biometric identification in multi-resident homes,” in Pervasive Comput-
ing, ser. Lecture Notes in Computer Science, P. Floréen, A. Krüger, and
M. Spasojevic, Eds., vol. 6030. Springer Berlin / Heidelberg, 2010, pp.
337–354.

[15] D. Cook and M. Schmitter-Edgecombe, “Assessing the quality of activities
in a smart environment,” Methods of Information in Medicine, vol. 48,
no. 5, pp. 480–485, 2009.

[16] U. Naeem and J. Bigham, “Recognising activities of daily life through the
usage of everyday objects around the home,” in International Conference
on Pervasive Computing Technologies for Healthcare, ser. PervasiveHealth,
April 2009, pp. 1–4.

[17] G. Singla, D. J. Cook, and M. Schmitter-Edgecombe, “Recognizing in-
dependent and joint activities among multiple residents in smart environ-
ments,” Journal of Ambient Intelligence and Humanized Computing, vol. 1,
no. 1, pp. 57–63, 2010.

24


