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Abstract

Intelligent environment research has resulted in many use-
ful tools such as activity recognition, prediction, and au-
tomation. However, most of these techniques have been
applied in the context of a single resident. A current loom-
ing issue for intelligent environment systems is performing
these same techniques when multiple residents are present
in the environment. In this paper we investigate the prob-
lem of attributing sensor events to individuals in a multi-
resident intelligent environment. Specifically, we use a
naı̈ve Bayesian classifier to identify the resident responsi-
ble for a unique sensor event. We present results of experi-
mental validation in a real intelligent workplace testbed and
discuss the unique issues that arise in addressing this chal-
lenging problem.

1 Introduction

With the introduction of more complex intelligent environ-
ment systems, the possibilities for customizing system be-
havior have increased dramatically. Significant headway
has been made in tracking individuals through spaces using
wireless devices [1][12][17] and in recognizing activities
within the space base on video data [4][6][14], motion sen-
sor data [8][16], or other sources of information [10][11].
However, much of the theory and most of the algorithms
are designed to handle one individual in the space at a time.
Passive tracking, activity recognition, event prediction, and
behavior automation becomes significantly more difficult
when there are multiple residents in the environment.
The goal of this research project is to model and auto-
mate resident activity in multiple-resident intelligent en-
vironments. There are simplifications that would ease the
complexity of this task. For example, we could ask res-
idents to wear devices that enable tracking them through
the space [5][17]. This particular solution is impractical for
situations in which individuals do not want to wear the de-
vice, forget to wear the device, or enter and leave the envi-
ronment frequently. Similarly, capturing resident behavior
with video cameras aids in understanding resident behav-
ior even in group settings [3]. However, surveys with tar-
get populations have revealed that many individuals are ad-
verse to embedding cameras in their personal environments

[6]. As a result, our aim is to identify the individuals and
their activities in an intelligent environment using passive
sensors.
To achieve this overall goal, our first step is to design an
algorithm that maps sensor events to the resident that is re-
sponsible for triggering a sensor event. This information
will allow our algorithms to learn profiles of resident be-
haviors, identify the individuals currently in the environ-
ment, monitor their well-being, and automate their interac-
tions with the environment. Some previous works have fo-
cused on passive multi-resident systems [2], and give some
indication of techniques that have succeeded on real-world
data sets for activity recognition [9].
To date, the focus has often been on looking at global be-
haviors and preferences with the goal of keeping a group
of inhabitants satisfied [13]. In contrast, our research is fo-
cused on identifying an individual and logging their pref-
erences and behaviors in the context of the multi-resident
spaces.
The solutions used in this work revolve around using very
simple passive sensors, such as motion, contact, door sen-
sors, appliance interaction and light switches to give a pic-
ture of what is transpiring in the space. These information
sources offer the benefits of being fixed, unobtrusive and
robust devices. Examples of the motion detectors and light
switches we use in our testbed are shown in Figure 3.
Smart homes are often targeted towards recognizing and as-
sisting with the Activities of Daily Living (ADL’s) that the
medical community uses to categorize levels of healthy be-
havior in the home. The ability of smart homes to help dis-
abled and elderly individuals to continue to operate in the
familiar and safe environment is one of the greatest reasons
for their continued development. So far, most smart home
research has focused on monitoring and assisting a single
individual in a single space. Since homes often have more
than a single occupant, building solutions for handling mul-
tiple individuals is vital. Dealing with multiple inhabitants
has rarely been the central focus of research so far, as their
have been numerous other challenges to overcome before
the technology can effectively handle multiple residents in
a single space.
Since smart home research has the ultimate goal of being
deployable in real-world environments, seeking solutions
that are as robust as possible is always a factor in the sys-
tems we engineered. With that in mind, building an entirely
passive solution gives the advantage of keeping the technol-



ogy separate from the inhabitants while they go about per-
forming their daily routines. This lets the smart home feel
as ”normal” as possible to the residents and their guests.
By reducing the profile of the new devices as much as pos-
sible, people should be less effected by the technology that
surrounds them.
In this paper we present a solution to part of the problem
described above. Specifically, apply a supervised machine
learning algorithm to the task of mapping sensor events to
the resident responsible for the event.
The solution proposed in this work offers the advantage
of using previous behavioral data collected from the set of
known residents without requiring significant additional ac-
tions to be performed by the residents. This historical be-
havior is used to train the learning algorithm for use in fu-
ture real-time classification of the individuals and can be
updated over time as new data arrives.
Here we present the results of using a naı̈ve Bayesian clas-
sifier to learn resident identities based on observed sensor
data. Because this machine learning algorithm is proba-
bilistic, likelihood values are generated for each resident
that can be used to appropriately modify the behavior of the
intelligent environment. Because the algorithm is efficient
and robust, we hypothesize that it will be able to accurately
handle the problem of learning resident identities and be us-
able in a real-time intelligent environment. We validate our
hypothesis using data collected in a real smart workplace
environment with volunteer participants.

2 Data Gathering Environment

The smart home testbed environments at Washington State
University consist of a lab space on campus and a town
home off campus. These testbeds are part of WSUs CASAS
smart environments project. For our study, we used the lab
space on campus, as there are multiple faculty, staff, and
students who regularly enter the space and a number of dif-
ferent kinds of activity take place throughout the rooms.
The space is designed to capture temporal and spatial infor-
mation via motion, door, temperature and light control sen-
sors. For this project we focus on events collected from mo-
tion sensors and resident interaction with lighting devices.
Part of the testbed layout for both sensors and furniture is
shown in Figures 1 and 2. The rest of the space is very sim-
ilar with desks, tables and cubicles being the predominate
features.
Throughout this space, motion detectors are placed on the
ceilings and pointed straight down, as shown in Figure 3.
Their lenses are occluded to a smaller rectangular window
giving them roughly a 3’x3’ coverage area of the corre-
sponding floor space. By placing them roughly every four
feet, they overlap (between a few inches, up to a foot) and
allow tracking of an individual moving across the space.
The motion sensor units are able to sense when a motion
as small as reaching from the keyboard to a mouse. With
this level of sensitivity, sensors around workspaces trip even
when people sit quietly in a private space to work at a com-
puter.
To provide control and sensing over the lighting,

Figure 1: Inner office space sensor layout.

InsteonTMbrand switches are used to control all of the ceil-
ing and desk lights in the room. These switches commu-
nicate with a computer and all interactions with them are
logged. See Figure 3 for images of both the motion and
light switch sensors.
The entire lab space, including the portion shown in Fig-
ure 2, has two doors with simple magnetic open/closed sen-
sors affixed to them. These record door openings and clos-
ings via the same bus as the motion detectors.
By being able to log any major movement through out the
space, as well as device interactions, this system captures
basic temporal and spatial behaviors that can be used to
identify individuals based on behavior. Residents in this
lab have unique work spaces, as well as unique time frames
within which they operate. The tools used in this project
are designed to exploit both the spatial and temporal differ-
ences between individuals to accurate classify a given in-
dividual. These are features of most kinds of living spaces
and can be used by software algorithms to accurately iden-
tify the current inhabitant.

3 Data Representation

The data gathered by CASAS for this study is represented
by a quintuple:

1. Date

2. Time

3. Serial Number

4. Event Message

5. Annotated Class (Resident ID)



Figure 2: 2D view of inner office furniture.

Date Time Serial Message ID
2007-12-21 16:41:41 07.70.eb:1 ON abe
2007-12-21 16:44:36 07.70.eb:1 OFF abe
2007-12-24 08:13:50 e9.63.a7:5 ON john
2007-12-24 14:31:30 e9.63.a7:5 OFF john

Table 1: Example of data used for classifier training.

The first four fields are generated automatically by the
CASAS data collection infrastructure. The annotated class
field is the target field for this problem and represents the
resident ID, to which the sensor event can be mapped.

Training data was gathered during several weeks in the lab
space by asking individuals working in the lab to log their
presence by pushing a unique button on a pinpad when
they entered and left the space. During post processing,
the database was filtered to only use sensor events during
the time windows when there was a single resident in the
space. The corresponding data for the given time frame was
then annotated and supplied as training data to our machine
learning algorithm. The total time frame for data collection
was three weeks, and over 6000 unique events were cap-
tured and annotated as training data. For an example of the
resulting quintuples, see Table 1.

Figure 3: CASAS sensors: motion detector and Insteon
light switch.

Building more complex parsings of the data was done with
a number of strategies that were designed to capture the dif-
ferences in behavior between individuals. Primarily, these
strategies revolved around using the data and time infor-
mation to give the classifier additional information in the
form of ”feature types”, as shown in Table 2. The times
that different people work, especially in a student lab, are
very helpful in discriminating the likely resident that is cur-
rently in the space. In our lab, one of the three participants
worked late a number of times, while another of the par-
ticipants was the only one to ever arrive before 10am. By
incorporating temporal information into the features, this
kind of behavior can improve the accuracy of the classifier.
Given an automatic training system, picking the best fea-
ture type(s) to use can be based on a combination of the
resulting accuracy and false positive rates.

4 Classifier

The classifier used for this research is a naı̈ve Bayes. These
kinds of classifiers have been used with great effect in other
smart home research projects [15] with great success. Ap-
plying the same kind of tool to individual identification
from the same kind of data set is a logical extension.
In this case, a simple naı̈ve Bayes classifier was trained,
where the features were built from the event information,
with the given class as the individual to whom the event
is associated with. This required it be distilled to only a
single feature paired to a given class. The class is set by
the annotation, but the feature chosen can be built from a
number of the fields.
For the simplest interpretation, only the serial number cou-
pled with event message was used, see Table 2, row 1.
This simple feature set provides a good baseline to com-
pare more complex parsings with. The more complex pars-
ings, such as ”Part-of-Week” (ie WEEKDAY or WEEK-
END) capture more information about the given behavior,
and can give the classifier more information for correct fu-



# Feature Type Example
1 Simple 07.70.eb:1#ON
2 Hour of Day 07.70.eb:1#ON#16
3 Day of Week 07.70.eb:1#ON#FRI
4 Part of Week 07.70.eb:1#ON#WEEKDAY
5 Part of Day 07.70.eb:1#ON#AFTERNOON

Table 2: Feature types used for classifier training

ture classifications. Depending on the facets of the data set,
different kinds of feature types can give the classifier better
or worse results.
The data set was randomly split into training and testing
sets, with 10% of each class set aside for testing. The clas-
sifier was trained on the 90% and run against the testing set.
Each class was given an accuracy rate and a false positive
rate. This process was repeated for each of our feature types
for comparison of accuracy and false positive rates.
Training the classifier followed a simple naı̈ve Bayes algo-
rithm, as shown in Equation 1.

Likelyhood(Personn) = P (Personn) ∗ P (Eventi|Personn)
(1)

In this case, the Eventi is defined by what kind of feature
type is being used (See Table 2 for the ones used in this
study). So, the likelyhood that a given event belongs to a
person is the probability of that person in the total data set,
times the probability of the event given that person.
The different feature choices available (ie Simple vs Hour
of Day, etc.) split the data up in different ways. Each way
captures the behaviors or the residents with varying degrees
of accuracy, depending on the feature types chosen and the
behavior of the individuals in the data set. The purely sta-
tistical nature of a naı̈ve Bayes classifier has the benefit of
being fast for use in prediction engines, but lacks the ability
to handle context in the event stream that could be advanta-
geous in discerning different behaviors.

5 Results

Figure 4 shows the classification accuracy of our naı̈ve
Bayesian classifier for the three residents we tested in our
lab space. In order to keep actual participant names anony-
mous, we label the three residents John, Abe, and Charlie.
In Figure 4 we graph not only the classification accuracy
for each target value, but also the false positive rate.
Note that the classification accuracy is quite high for the
John values, but so is the false positive rate. This is because
our John participant was responsible for most (roughly
62%) of the sensor events in the training data. As a re-
sult, the apriori probability that any sensor event should be
mapped to John is quite high and the naı̈ve Bayesian clas-
sifier incorrectly attributes Abe and Charlie events to John
as well. On the other hand, while Charlie has a much lower
correct classification rate, he also has a lower false positive
rate. If the intelligent environment can take likelihood val-
ues into account, this information about false positives can
be leveraged accordingly.
In order to address this classification errors, we added more

Figure 4: Simple classification with all events.

descriptive features to our data set. In particular, we added
the date and time of each sensor event, as shown in Table 2.
The classifier can now use time of day or day of week infor-
mation to differentiate between the behaviors of the various
individuals For example, John always arrived early in the
day, while Abe was often in the space late into the evening.
Finding the correct features to use for this kind of capturing
of the behavior can be done by balancing the overall correct
rate and false positive rate against one another.
The choice of feature descriptors to use is quite important
and has a dramatic effect on the classification accuracy re-
sults. Looking at the accuracy rate as effected by the fea-
ture type chosen, Figure 5, it shows that using hour-of-day
increases the average identification significantly. Addition-
ally, by using hour-of-day, the false positive rate drops dra-
matically, as shown in Figure 6. When the right features
are selected from the data set, the classifier is able to make
better overall classifications.

Figure 5: Average accuracy rates by feature type.



Figure 6: Average false positive rates by feature type.

To demonstrate the effects of picking the best time based
identification features for our learning problem on an indi-
vidual’s accuracy, refer to Figure 7. The first column repre-
sents the simplest feature set (Table 2, row 1), but compar-
ing it against using the hour-of-day (Table 2, row 2) shows
readily that if the classifier is given this extra information
John’s accuracy percentage barely moves, while his false
positive rate drastically drops, as shown in Figure 8. The
false positive rate actually drops from 34% to 9%, which is
a marked improvement.

Figure 7: John’s rate of correct classification across feature
types.

Use of the other time based features results in some im-
provements to John’s classification, but none of the others
is others as useful as adding the hour-of-day feature.
As an example that has accuracy improvements, but has
tradeoffs, Charlie’s behavior responds differently to the
choice of feature type. To demonstrate the improvements
in accuracy rate, refer to Figure 9. Charlie’s initial 31% ac-

Figure 8: John’s rate of false positives across feature types.

curacy with simple features was shown to jump to 87% by
again using the hour-of-day feature type.

Figure 9: Charlie’s rate of correct classification across fea-
ture types.

This is again likely due to the times of day when Charlie’s
activities do not overlap as much with Abe or John. The
cost in this example is that Charlie’s rate of false positives
goes up from 3% to 6%, as shown in Figure 10. This kind
of trade off needs to be taken into account by any system of
deciding which features to use for the current classifier.
Choosing the best feature type to pick means balancing the
accuracy against the false positive rate. A visual way of
showing this kind of balancing is shown in Figure 11. By
choosing time-of-day the benefits to the accuracy rate will
probably outweigh the increase in false positive rate. In
this case, a 2.5x increase in accuracy balances against a
2x increase in false positives. Unless the final application
is highly dependent on the certainty of the predictions, it
should be a simple algorithm to determine which feature



Figure 10: Charlie’s rate of false positives across feature
types.

type is most advantageous..

Figure 11: Overall classification rates for all features for
Charlie.

For this data set, the other features, day of week, part-of-day
and part-of-week have little improvement over the simple
feature strategy.
With a correctness of over 93% and a false positive rate be-
low 7%, a prediction engine relying on this classifier can
have a high degree of confidence that it is correctly choos-
ing the proper preferences for a given individual.

5.1 Time Delta Enhanced Classification

Adding more features to our data set did improve the resi-
dent classification accuracy. However, the results were still
not as good as we anticipated. We hypothesize that one
reason for the remaining inaccuracies is the type of sensor
events we are classifying. Many motion sensor events oc-
cur when individuals are moving through the space to get

to a destination, and do not differentiate well between resi-
dents in the space. On the other hand, when a resident is in
a single location for a significant amount of time, that loca-
tion is a type of destination for the resident. They are likely
performing an activity of interest in that location, and as a
result the corresponding motion sensor data should be used
for resident classification.
To validate our hypothesis, the data set was culled of all ex-
tra sensor events where the same sensor generated multiple
readings in a row and only the first event in the series was
kept. The multiple readings were likely due to small move-
ments occurring repeatedly within the one small area of the
lab. Replacing the set of readings with one representative
motion sensor event allowed the sensor event to represent
the entire activity taking place at that location.
With this reduced set of events, the time deltas, or time
elapsed between the remaining events, were calculated.
The chart shown in Figure 12 gives a count of how long
an individual spent at any one motion sensor location be-
fore moving to a new location. The average time spent on
any sensor was 35 seconds, with a standard deviation of 10
seconds. With a graph of this shape, the initial hypothesis
of being able to garner additional information for training
was borne out.

Figure 12: Count of lengths an individual spends on any
sensor.

Next, we removed from our data set any motion sensor
events whose durations, or time elapsed between events,
fell below two standard deviations from the mean, leav-
ing the longest deltas. With an even more reduced set in
hand, the data splitting, training and testing were all done
the same way as before with the full data set.
The resulting classifier only used a handful of the available
sensors throughout the living space, but the accuracy and
false positive rates improved dramatically. This is attributed
to the fact that motion sensors in shared spaces or walk-
ways will mostly have very small time deltas associated
with them. Since these sensors are also the ones with the
most false positive rates in the full set classifier, removing
these sensor events will improve the overall performance



Figure 13: Delta filtered classification accuracy results.

Figure 14: Delta filtered classification false positive results.

of the classifier. Note that with this filtered-data approach,
sensor events with short durations will not be assigned a
mapping to a specific resident. However, by combining this
tool with one that tracks inhabitants through the space[7],
only a handful of sensor events need to be classified as long
as they have a high accuracy.
This new classifier saw correct classification rates over 98%
with false positives as low as 1%. Again, there was some
difference in performance with different feature choices, as
shown in Figures 13 & 14. Once again, the hour-of-day
performed the best, as it seems to give the naı̈ve Bayesian
classifier information that could be used to differentiate be-
tween resident behaviors within this data set.

6 Conclusions

In the interest of being able to identify a unique individual
in a smart home, an approach leveraging a naı̈ve Bayesian
classifier was proposed. It was felt that a classifier of this

type would be able to accurately and quickly differentiate
between residents in a smart home environment.
Using a real-world testbed with real-world activity, a clas-
sifier was built and tested for accuracy. The results shown
in this work are encouraging. With simple, raw smart home
sensor data the classifier was showing an average accuracy
over 90% for some feature selections. After applying some
filtration to the data set to exaggerate the behavior of the in-
habitants, accuracy rates over 95% and false positive rates
under 2% were possible.
Choosing the best time-based features can strongly influ-
ence the performance of any temporally-dependent envi-
ronment, and this is no exception. Whether the final appli-
cation needs a very high level of certainty for one or more
of the residents or can trade that certainty off for higher
accuracy across all individuals is up to the needs of the fi-
nal smart home application. Fortunately, developing an al-
gorithmic way of determining the proper features to use is
easily done.
This tool also lends itself to being coupled with tracking
systems to identify people across a series of events by tak-
ing into account the likelyhoods at every stage of a per-
son’s behavior. Continued work combining simple tools
like these are leading to very strong identification strate-
gies.

7 Future Work

To continue to grow the capabilities of these kinds of clas-
sifiers, a number of things can help. Additional data with
more individuals will show how robust of a solution this
is. Differentiating between two people with very similar
schedules might be very difficult for this kind of tool. Com-
paring this tool as a baseline solution with Hidden Markov
or Bayesian Network based solutions will allow the con-
tinued research to show how much contextual information
assists with the classification of individuals.
Applying this classifier to a larger preference and decision
engine is a must. Adding this tool to a passive tracking
solution will give significantly more information to any in-
dividual’s history for future learning and prediction systems
that are deployed in the CASAS testbed. Comparing it to
a system without this kind of identification process, or one
based on device tracking, will be a significant step for smart
home research.
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