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Abstract. Most commonly-used techniques in smart environments such as ADL
recognition are designed and tested for a specific space and a specific person; there-
fore learning in each environmental situation is treated as a separate context. In this
paper, we try to develop a method for recognizing and transferring learned knowl-
edge of activities between different residents. Our method is able to map activities
despite intra-subject variability and inter-subject variability, by using a discontin-
uous mining method and a similarity measurement method. At the end, we will
provide the results of our experiments on real data obtained from a smart apartment.
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Introduction

Smart environments provide many benefits such as comfort, security, energy efficiency,
and health monitoring of elderly or people with disabilities [13], by using machine learn-
ing techniques to process data from various sensors in order to predict upcoming events
[6], recognize activities [9], and automate interactions with the environment [5].

Activity recognition can be used to monitor the well being of the residents and also
to respond in a context-aware way to their needs. For example, if people with memory
deficits are provided with appropriate activity cues, they will be able to complete the
Activities of Daily Living (ADL) [13] more easily, and as a result to live independently.
There have been a number of methods for recognizing activities, such as Naïve Bayes [2],
decision trees [12], Markov models, dynamic Bayes networks, and conditional random
fields [7,16]. None of these approaches address the issue of transferring learned knowl-
edge to new contexts to make the systems more scalable. All of the approaches make the
assumption that a sufficient amount of data is available, and as supervised models they
assume that the activity is predefined in a consistent manner without missing steps. A
challenge that researchers face in modeling resident activities in real world is the variabil-
ity that occurs from one individual to another (inter-subject variability) as well as across
multiple executions of an activity by the same individual (intra-subject variability) [22].
We anticipate that different individuals might perform an activity in such vastly different
ways that one model cannot perform well for many different users. In this paper, we in-
troduce an unsupervised method to recognize and transfer learned activities across differ-
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ent residents. We have developed a discontinuous misplaced sequential mining method
(DMSM) to discover interesting patterns in data in order to capture intra-subject vari-
ability. More importantly, we also have developed an activity mapping method (AMM)
to map activities from a source space to a target space to address inter-subject variability
and to provide a degree of similarity between two sets of activities.

As a recent preliminary work, Kasteren et. al [21] describe a simple transfer learning
method to recognize activities across different physical spaces, by simply transferring
the transitional probabilities for two different Markov models. It does not address how
activities in a target context can be found using knowledge from the source space. In
addition, many important features of activities are ignored, except for transitional prob-
abilities; such as mapping of the states, duration of the states, or order of the states. Our
model is able to find relevant activities using our DMSM mining method by detecting
variations of interesting patterns that might even be discontinuous or misplaced. In addi-
tion, we consider each state of the activity to have arbitrary attributes, such as duration or
frequency which contribute to finding an appropriate mapping. Also, we do not require
target activities to have the same structure as the source activities, e.g. equal number of
states. Considering such general aspects, we will define a flexible method to map and
measure similarity between source and target activities. In addition to reducing the re-
quired amount of data, finding a mapping between activities allows us to exploit gained
knowledge in the source context, for example if we have discovered that certain types of
cue detail and cue timing work best for a specific source activity, that can be used for the
mapped target activity too, depending on the similarity degree.

In following sections, we first explain the general model, and then we describe each
of the components in more detail. Finally we will present the results of our experiments.

1. Model Description

In our model, we hypothesize that the data collected for one resident in the source space
Φs can be used to recognize activities for that resident, and more importantly can be
transferred to a target space Φt to learn activities for a different resident. The obtained
mapping and similarity measure will allow us to transfer source activity’s related knowl-
edge later, such as cues, details of cues and timings, etc. In current work, as a first step,
we consider transferring between different residents, however a similar method can be
used for transferring knowledge between different physical spaces, or between spaces
with different sets of sensors. In our model, the input consists of activities A from Φ s

(which we assume have already been discovered using DMSM), and a small dataset D
from Φt. Using DMSM, we first identify interesting patterns P as sensor sequences that
usually appear together in D. Next, we cluster P into |A| clusters where |A| is the num-
ber of activities in A. By comparing each cluster k’s representative, ck, to each activity
in A, and finding a similarity measure between them, we are able to generate a mapping
from Φs to Φt (see Figure. 1). Note that an activity can be mapped to another activity
with more or less states, and with different state attributes. In addition, during a mapping
the order of states need not be preserved.

In the following sections, we will describe each one of the mining, clustering, and
similarity measurement components in more detail.



Figure 1. System’s architecture and its main components.

2. Finding Interesting Patterns in Data

Many methods have been proposed for mining sequential data, such as frequent itemset
mining [1], frequent pattern mining using regular expressions [4], constraint based min-
ing [15], and simultaneous frequent-periodic pattern mining [17]. Those approach do not
discover discontinuous misplaced patterns, which can appear in the daily activity data
due to the erratic nature of human activities. For example, in meal preparation activity
the steps do not always follow the same strict sequence; rather their order is changed
and is interleaved with random actions. In smart environments it’s important to be able
to discover such discontinuous misplaced patterns to deal with intra-subject variability.
Ruotsalainen et al. [11] introduce GAIS for detecting interleaved patterns using genetic
algorithms, but it is a supervised solution that looks for matches of specified patterns.
Other works proposed for mining discontinuous patterns cannot find certain continuous
patterns [14,23], and the work by Chen et al. [3] to mine hybrid patterns is not able to find
misplaced patterns such as 〈a, b, c〉 as a variation of for example 〈b, a, c〉. We propose a
model to find a general hybrid pattern from discontinuous misplaced instances, e.g. the
general pattern 〈a, b〉 from instances {b, x, c, a}, {a, b, q}, and {a, u, b}. Our approach
is different from frequent itemsets mining, as we are taking into account the order of
events, and for each general pattern we report a prevalent pattern and a number of vari-
ations that differ in the order of their events. We denote the i th individual variation of a
general pattern a as variation ai, and the most frequent variation as a prevalent variation.

First we identify all symbols in D with a frequency above the minimum frequency
fmin, and place them in a reduced dataset Dr. We should keep fmin small, as an activity
might not appear very frequently in a small dataset. Next we find increasing length pat-
terns by sliding a window across Dr. The window size initially is set to 2, and increased
in each iteration. While sliding window across Dr, all patterns that can be permutated
into one another, are saved as variations of the same general pattern in a hash-table. For
general pattern a, we define its frequency fa as the sum of its variations’ frequencies
(the variations with frequency below a certain fraction of f a are eliminated). We iden-
tify interesting general patterns as patterns satisfying Eq. 1, where C is the compression
threshold according to minimum description length principle [18], L represents the input
data length, and Γg(a) represents continuity of general pattern a.

|a| ∗ fa ∗ Γg(a)
L

> C (1)

To understand what the continuity factor means, consider general pattern 〈a, b, c〉 in
Figure. 2, and instance "abgeqydc" with irrelevant events "geqyd" separating ab from c.



Though we will still might consider this instance as a variation of the general pattern
〈a, b, c〉, at the same time we should take into account the continuity between ab and c.

a b c h d a d c b o p b c g e q y d a r h a b x ca b g e q y d c

Figure 2. A small dataset containing prevalent pattern 〈a, b, c〉.

The general pattern’s continuity, Γg , is defined as the weighted average continuity
of its variations. The continuity of a variation, Γv, is then defined as the average conti-
nuity of its instances; and the instance continuity Γ i shows how continuous its compo-
nent events are. The continuity between component events, Γ s, is defined for each two
consecutive symbols in an instance. For each frequent symbol x, we record how far apart
(sx) it is from a preceding frequent symbol in terms of number of symbols separating
them in D (in above example, sx = 5). Then Γs(x), the symbol continuity for x is de-
fined as 1

sx
; the more the separation between two frequent symbols, the less will be the

symbol continuity. If sx is zero, we define Γs(x) = 1 (perfect continuity). Based on
this, Γi(a

j
i ), for an instance j of a variation ai will be defined as in Eq. 2 where |aj

i |
shows the length of aj

i . Γv(ai) is defined as in Eq. .3, where nai shows the total number
of instances for variation ai. Γg is defined according to Eq. 4, where the continuity for
each ai is weighted by its frequency fai and na shows the total number of variations for
general pattern a. If continuity happens to be less than a minimum threshold γ min, we
discard that instance (or variation or general pattern).
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(4)

After calculating Γg , we can decide which general patterns are interesting according
to Eq. 1. We find patterns of increasing length by increasing the sliding window’s size
at each iteration. We will stop increasing the window size until a certain number of
user defined iterations has been reached, or if no more interesting patterns are found.
A postprocessing step records attributes such as durations of events, and prunes non-
maximal patterns, i.e. those patterns that are totally contained in another larger pattern.

3. Activity Mapping Method (AMM)

Next, we will cluster discovered patterns P into |A| clusters, the number of activities
in Φs. Clustering P into |A| clusters allows us to find a 1-1 mapping between source
and target activities better, as we will compare each cluster’s representative c with each



activity a ∈ A, instead of comparing every p ∈ P with each a ∈ A. The clustering
method we are using is a standard k-means clustering [10], however we need a method
for defining representatives and comparing activities in order to form clusters.

Two methods for comparing similarity of sequences are “edit distance” [8] and
“LCS” [20] for simple sequence of symbols. Saneifar et al. [19] have proposed a sim-
ilarity measure for more complex itemset sequences based on the number of common
items. Those methods do satisfy our complex definition of an activity as a sequence of
events with arbitrary state attributes, and do not deal with general aspects of sequences
such as temporal information, order of states, etc. Besides, in our model it’s possible to
map combination of two states to one state, e.g. if two states’ total duration in the source
context is close to duration of a single state in the target context.

To calculate similarity between two activities a and b, we need to determine similar-
ity between their set of states Sa and Sb, in addition to the order similarity. It’s possible
to combine several states during mapping, in case one state immediately follows another
state with a sensor of the same type that provides the same functionality. To find possible
combinations of states, we define Ext(S), the extension of a state set S, by considering
possible combinations between consecutive states with sensors of the same type to form
a new state. For example, for three consecutive sensors of the same type (a, b, c), it’s pos-
sible to consider three new extended states, a ′ = {a, b}, b′ = {b, c} and c′ = {a, b, c}.
Note that additive attributes such as duration will be added together. We denote the union
of actual and extended states for an activity a as Πa = {Sa ∪ Ext(Sa)}.

We also need to define order similarity, to see if activities a and b have the same
relative order. We define the order similarity, so(i, j), between state i ∈ Sa and state
j ∈ Sb as in Eq. 5 where pos(s) shows position of state s in its corresponding activity
(for extended states, total number of states will not be equal to |S|, therefore it is replaced
by corresponding new size).

so(i, j) = 1 − |pos(i)
|Sa| − pos(j)

|Sb| | (5)

To measure similarity between two activities a and b, we need to find the best possi-
ble mappings between their states. We start with an initial mapping and then will resolve
any possible conflicts, e.g. if two separate actual or extended states are mapped to the
same state. For each state i ∈ Πa, we find the best possible mapping state j ∈ Πb. The
state similarity, ss(i, j), between two states i and j is defined as in Eq. 6. Here attribute k
found in both states i and j is denoted by k i and kj ; wk is a weight applied to attribute k
to indicate the importance of k in calculating similarity (e.g. we might consider duration
more important than frequency); and m denotes the total number of attributes. In our
model, we only map sensors of the same type (e.g. motion sensors to motion sensors).

ss(i, j) = 1 − (
m∑

k=1

wk ∗ (
ki

max(ki)
− kj

max(kj)
) ∗ so(i, j)) (6)

Then, the best possible mapping for state i ∈ Πa is defined as in Eq. 7.

map(i) = argmaxj∈Πb
{ss(i, j)} (7)

The cumulative similarity, sc(a, b) between a and b is defined as in Eq. 8, note that
the subset of states selected from Πa and Πb for mapping will be denoted by Υa and Υb.



sc(a, b) =
1

Υa

|Υa|∑

i=1

ss(i, map(i)) (8)

To resolve any conflicts between a subset of states Sc ⊂ Πa that map to a single
state c, we will find a new mapping for each of the states s ∈ Sc. The new mappings will
be selected from Πb −{c ∪ Υb}. The state with the least new similarity will be mapped
to c, as such an assignment will cause the least amount of decrease in the cumulative
similarity. The rest of the states will be assigned according to new mappings. If still there
is any conflict, it will be resolved in an iterative manner. If no mappings can be found for
a state, it will be mapped to a null state.

The cluster representative ck for cluster k is defined as following: the number of
states for ck will be equal to the average number of states in k, the attributes for each
state will equal the average values for that state in k, also each state’s sensor type will
be the most common type sensor type in k for that state. After clustering is finished, we
will compare each a ∈ A to each ck, and by finding argmaxk{sc(ck, a)}, we are able to
provide a mapping between activities in Φs and Φt. This mapping and similarity measure
can act as a guideline for transferring activity’s related knowledge.

4. Experiments

The testbed is a 3-bedroom smart apartment (Figure. 3), located on Washington State
University campus. Sensor data was collected from 59 sensors inclusing motion, temper-
ature, water, burner, phone usage, and the presence of key items.
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(a) Smart apartment’s layout. (b) Participant performing “hand washing”.

Figure 3. Smart apartment testbed.

We brought 23 participants into the smart apartment, one at a time. Each participant
was asked to perform a script of five I/ADL, typically found in clinical questionnaires
assessing everyday functional activities [13]; including (1) telephone usage, (2) hand
washing, (3) meal preparation, (4) medication use, and (5) household cleaning. Our data
sets consisted of sensor event data for the series of 5 ADLs, each repeated for about 3
times with random events injected between activities up to 50%.

Using a 10-fold cross validation approach, we assessed the ability of our algorithm
to accurately recognize activities for new target participants based on models learned



from a source participant. DMSM was able to find correct patterns for each participant,
despite discontinuous misplaced steps with intra-subject variability of up to 20%. In these
experiments, we set C = 0.3, fmin = 2, and γmin = 0.5.
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Figure 4. Similarity measure results.

Our model was also able to map and measure similarity between activities correctly,
despite the fact that the activities were performed in vastly different ways, with different
sensor reading’s order, different durations and different activities’ length (see Figure. 4).
It was interesting to note that longer patterns usually had a lower similarity measure.

In another experiment, we randomly changed the order of events in two sets of
datasets similar to the above datasets to simulate the effect of misplaced steps, one dataset
containing shorter patterns of 1 to 14 events, and the other containing longer patterns of
14 to 47 events. Though for longer patterns the misplacement can generate much diverse
patterns and therefore making it more difficult to detect patterns, still our algorithm was
able to find patterns (see Fig. 5).
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The above results confirm our hypothesis that our method is able to find patterns in
data despite intra-subject variability, and to map activities despite inter-subject variabil-
ity. The small datasets used for those experiments (each dataset containing an activity
repeated three times with 50% random activities in between) also show how our method
can use knowledge from source space to effectively recognize activities in target space.

5. Conclusion

In this paper, we introduced a model for transferring and measuring similarities between
activities performed by different residents. Our DMSM method captures intra-subject



variability, and AMM method provides mappings despite inter-subject variability. In the
future, we intend to transfer activities for different spaces and different sensor types. We
also want to relate similarity measurement with activity’s cues, to see how similarity can
be used as a guideline for transferring various aspects of cues, such as timing, detail, etc.
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