
gRegress: Extracting Features from Graph Transactions for Regression

Abstract
In this work we propose, gRegress, a new algo-
rithm which given set of graph transactions and a
real value associated with each graph transaction
extracts the complete set of subgraphs such that a)
each subgraph in this set has correlation with the
real value above a user-specified threshold and b)
each subgraph in this set has correlation with any
other subgraph in the set below a user-specified
threshold. gRegress incorporates novel pruning
mechanisms based on correlation of a subgraph fea-
ture with the output and correlation with other sub-
graph features. These pruning mechanisms lead to
significant speedup.
Experimental results indicate that in terms of run-
time, gRegress substantially outperforms gSpan,
often by an order of magnitude while the regression
models produced by both approaches have compa-
rable accuracy.

1 Motivation
Regression models are the trusted workhorse for predictive
modeling in a variety of application domains. The problem
of mining subgraph features from a database of graph trans-
actions for building regression models is critical when an
attribute-valued representation is insufficient to capture the
domain of study. An example of such a scenario would be
the case where we are trying to build a regression model for
the toxicity of chemical compounds which is a real value col-
lected from in-vivo experiments. The chemical compounds
are represented as graph transactions and the real value of in-
terest associated with each transaction is the toxicity. Is such
a scenario, how do we extract relevant features for building
a regression model? Currently the state of the art in this re-
gard is the large body of work on the problem of frequent
subgraph mining (relevant literature on this topic is reviewed
later in the paper). A typical frequent subgraph mining al-
gorithm will mine the complete set of subgraphs with a user
defined frequency threshold and these subgraphs can be used
as features to build a regression model. Such an approach in-
volving feature extraction using a frequent subgraph mining
algorithm has been studied in the context of the graph clas-
sification problem and has been applied to the task of clas-
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Figure 1: Results of the Case Study: The Q2 score for the
model, the number of subgraphs discovered, the runtimes of
gSpan and the absolute pairwise correlations between sub-
graph features (threshold 10%) for those subgraphs whose
absolute correlation with the output is at least 0.20 (out of
the total 1100 subgraph features). Pairwise correlation lower
than 0.20 is denoted in red while pairwise correlation greater
than 0.20 is denoted in blue.

sifying chemical compounds [Deshpande et al., 2005] and
proteins [Huan et al., 2004] with promising results. How-
ever, this approach is plagued with a number of problems
which we now illustrate by describing a small case study.
The objective of this case study is to motivate our approach
and set the stage for the rest of the paper. The case study
involves building regression models for predicting the melt-
ing point of a set of chemical compounds (details on the data
set can be found later in the paper) based solely on subgraph
features extracted by the frequent subgraph mining system
gSpan using support vector regression. We ran gSpan [Yan
and Han, 2002] on the dataset at thresholds ranging from 20%
to 5% in 1% decrements with a maximum size of 10. Regres-
sion models were built using the feature vectors based on the
presence/absence of subgraph features using SVR (Support
Vector Regression) [Smola and Schölkopf, 2004], [Cristian-
ini and Shawe-Taylor, 2000] (the particular implementation
used was SVMlite [Joachims, 1999]) and were evaluated us-



ing the Q2 (details on the Q2 metric are found later in the pa-
per) score on a 5-fold cross validation. The Q2 score for the
model, the number of subgraphs discovered and the runtimes
of gSpan for each threshold setting are illustrated in Figure 1.
We can observe the following.

1. The predictive accuracy of the regression model im-
proves as the threshold frequency reduces. This is an ex-
pected result [Deshpande et al., 2005] and has been ob-
served earlier. It can be explained by the fact that addi-
tional relevant subgraph features are available on which
the model can be based.

2. The number of frequent subgraphs and the runtime also
increases as the threshold decreases (as expected and ob-
served earlier [Deshpande et al., 2005]) which in the
worst case is expected to grow exponentially.

These observations raise the question on how many of the
newly considered subgraph features actually contribute to in-
creased predictive accuracy of the regression model. To an-
swer this question we analyzed the frequent subgraphs gen-
erated at the threshold of 10%. Figure 1 shows the abso-
lute pairwise correlations between subgraph features for those
subgraphs whose absolute correlation with the output is at
least 0.20. Pairwise correlation lower than 0.20 is denoted in
blue while pairwise correlation greater than 0.20 is denoted in
red. The subgraphs in blue are the ones that contribute most
to the predictive accuracy of the regression model based on
these thresholds on correlation with the output and the pair-
wise correlations. While these thresholds are somewhat arbi-
trary, they do give a certain measure of the redundancy of the
subgraphs generated. Typically, feature selection for building
regression models considers the trade off between how much
a feature correlates with the output and how much the fea-
ture correlates with the features already selected. Our claim
is that mining features based on their frequency produces use-
ful features but also produces additional redundant features at
an added cost. Of course, redundant features could be elim-
inated by a simple post processing step but this is computa-
tionally expensive as the redundant subgraphs are still gen-
erated in the first place. We should prefer to mine for a set
of subgraphs such that each member of this set has high cor-
relation with the output value and that the members of this
set have low correlation with each other. Mining a complete
set of subgraphs based on two thresholds, correlation with the
output and correlation with other features, is an intuitive ap-
proach for building regression models and, as this work will
show, is also computationally efficient. This brings us to key
contributions of this work:

1. For a given subgraph feature, we prove an upper bound
on the correlation with the output that can be achieved
by any supergraph for this subgraph feature.

2. For a given subgraph feature, we prove an lower bound
on the correlation that can be achieved by any super-
graph for this subgraph feature with any other subgraph
feature.

3. Using these two bounds we design a new algorithm
called gRegress, which extracts the complete set of sub-
graphs such that a) each subgraph in this set has correla-

tion with the real value above a user-specified threshold
and b) each subgraph has correlation with any other sub-
graph in the set below a user-specified threshold.

4. We conduct an experimental validation on a number of
real-world datasets showing that in terms of runtime,
gRegress substantially outperforms gSpan, often by an
order of magnitude while the regression models pro-
duced by both approaches have comparable accuracy.

2 Problem Formulation
Our graphs are defined as G = (V,E, L,L), where V is the
set of vertices, E ⊆ V × V is a set of edges, L is the set of
labels and L is the labelling function L : V ∪ E → L. The
notions of subgraph (denoted by G ⊆ G′), supergraph, graph
isomorphism (denoted G = G′) and subgraph isomorphism
in the case of labelled graphs are intuitively similar to the
notions of simple graphs with the additional condition that the
labels on the vertexes and edges should match. Our examples
consist of pairs,

E = {< x1, y1 >,< x2, y2 >, ..., < xn, yn >}

where xi is a labelled graph and yi ∈ R and is assumed to be
centered, that is,

∑
i yi = 0. We define the set S to contain

contains every distinct subgraph of every graph in E. For any
subgraph feature g ⊆ x we define,

hg(x) =
{

1, if g ⊆ x

−1, otherwise

We define the the indicator function I(x) = y.The absolute
correlation of a subgraph feature gi with the output is given
by,

ρgi,I =

∣∣∣∣∣ hgi · I
‖hgi
‖ ‖I‖

∣∣∣∣∣
The absolute correlation of a a subgraph feature gi with an-
other subgraph feature gj is given by,

ρgi,gj =

∣∣∣∣∣ hgi · hgj

‖hgi‖
∥∥hgj

∥∥
∣∣∣∣∣

We can now define the problem as follows.

Given:
1. A set of examples E,

2. A threshold on the correlation with the output α ∈ R,
0 ≤ α ≤ 1

3. A threshold on the correlation between subgraph fea-
tures β ∈ R, 0 ≤ α ≤ 1

Find: A maximal set H = {g1, g2, ..., gk} such that,

1. For each gi ∈ H ,

ρgi,I =

∣∣∣∣∣ hgi · I
‖hgi
‖ ‖I‖

∣∣∣∣∣ ≥ α



2. For any gi, gj ∈ H ,

ρgi,gj =

∣∣∣∣∣ hgi · hgj

‖hgi‖
∥∥hgj

∥∥
∣∣∣∣∣ ≤ β

We now discuss why it makes intuitive sense to mine for
the set H . First, note that the formulation is in terms of abso-
lute correlations. This is simply because we are interested in
mining subgraph features with high correlations either posi-
tive or negative. Negative correlation, implying that the ab-
sence of a subgraph correlates with the output is equivalent to
positive correlation as the regression model will simply learn
negative weights for such a feature. Next, note that the set H
is the maximal or the largest possible set of subgraphs such
that a) each subgraph in this set has correlation with the real
value above a user-specified threshold α and b) each subgraph
has correlation with any other subgraph in the set below a
user-specified threshold β. Feature selection for building re-
gression models considers the trade off between how much a
feature correlates with the output and how much the feature
correlates with the features already selected. The problem
definition intuitively captures this trade off.

3 Proposed Algorithm: gRegress
Given the formulation of the problem in the previous section
a naive solution would be an algorithm that searches the com-
plete space of subgraph features (of the graph transitions)
checking for each each subgraph feature conditions (1) and
(2) retaining only those subgraph features that satisfy all of
them. Of course, one of the many canonical labeling schemes
introduced in frequent subgraph mining systems could be in-
corporated to prevent the generation of duplicate subgraph
features (relevant literature on this topic is reviewed later in
the paper).

The critical problem here is determining pruning condi-
tions corresponding to the frequency antimonotone pruning
condition used by all frequent subgraph mining systems. The
frequency antimonotone pruning condition is a simple obser-
vation that if a subgraph feature has frequency that the user
specified threshold, no supergraph of this subgraph can be
frequent given this threshold. This simple observation allows
for massive pruning of the search space in the case of frequent
subgraph mining.

Thus the key problem is to answer the following two ques-
tions.

1. Given a subgraph feature, what is the highest possible
correlation any supergraph of this subgraph feature can
achieve with the output?

2. Given a subgraph feature what is the lowest possible
correlation any supergraph of this subgraph feature can
achieve with some other subgraph feature?

It must be noted that once we have a quantitative mea-
sure for questions (1) and (2) it becomes very easy to adapt
any frequent subgraph mining system to solve the problem at
hand. Quantitative measures for (1) and (2) in a sense cor-
respond the frequency antimonotone condition in the case of
frequent subgraph mining.

For a graph g we define

mg(x) =
{
−1, if I(x) ≤ 0
hg(x), if I(x) > 0

We have the following upper bound on the correlation any
supergraph of a subgraph feature can achieve with the output.

For some subgraph features gi and gj if gj ⊆ gi, then,

ρgj ,I =

∣∣∣∣∣ hgj · I∥∥hgj

∥∥ ‖I‖
∣∣∣∣∣ ≤

∣∣∣∣∣ mgi · I
‖mgi

‖ ‖I‖

∣∣∣∣∣
Proof. It is easy to see that for any subgraph feature say gi if
hgi(x) = −1 then for no subgraph feature gi ⊆ gj , hgj (x) =
1. That is, all those x such that hgi(x) = −1, for any gj ⊆ gj

hgj (x) = −1. Furthermore, only for those x where hgi(x) =
1 can hgj (x) = −1 for some gi ⊆ gj . The highest possible
ρgj ,I can occur in the case where for all x such that I(x) ≤ 0
hgj (x) = −1. The result follows.

For a graph g we define

ng(x) =
{
−1, if hg(x) > 0
hg, if hg(x) ≤ 0

We have the following lower bound on the correlation any
supergraph of a subgraph feature can achieve with some other
subgraph feature.

For some subgraph features gi, gj and gk, if gj ⊆ gi, then,

ρgj ,gk
=

∣∣∣∣∣ hgj · hgk∥∥hgj

∥∥ ‖hgk
‖

∣∣∣∣∣ ≥
∣∣∣∣∣ ngi · hgk

‖ngi‖ ‖hgk
‖

∣∣∣∣∣
Proof. As before is easy to see that for any subgraph feature
say gi if hgi(x) = −1 then for no subgraph feature gi ⊆ gk,
hgk

(x) = 1. That is, all those x such that hgi(x) = −1, for
any gi ⊆ gk hgk

(x) = −1. Furthermore, only for those x
where hgi(x) = 1 can hgk

(x) = −1 for some gi ⊆ gk. The
lowest possible ρgj ,gk

can occur in the case where for all x
such that hgi(x) > 0 hgk

(x) = −1. The result follows.

Using these bounds it is now possible to adapt any sub-
graph enumeration scheme to the task defined earlier. In par-
ticular, we adopt the DFS search and DFS canonical labelling
used by gSpan. The key steps of our algorithm, which we
refer to as gRegress, are summarized in Algorithm 3.1 and
Procedure 3.2.

Algorithm 3.1 gRegress(E,α,β,S)
1: H ← ∅
2: P ← DFS codes of 1-vertex subgraphs in E
3: for all gi such that gi ∈ P do:
4: Extend(E, α, β, S, H, gi)
5: return H



Procedure 3.2 Extend(E, α, β, S, H, gi)
1: if g not minimum DFS code :
2: return

3: if

∣∣∣∣∣ hgi
·I

‖hgi‖‖I‖

∣∣∣∣∣ ≤ α :

4: return
5: for all gj such that gj ∈ H:

6: if

∣∣∣∣∣ hgi
·hgj

‖hgi‖‖hgj‖

∣∣∣∣∣ ≥ β :

7: return
8: H ← H ∪ gi

9: P ← DFS codes of rightmost extensions of gi

10: for all gk such that gk ∈ P :

11: if

∣∣∣∣∣ mgi
·I

‖mgi‖‖I‖

∣∣∣∣∣ ≥ α:

12: for every gj ∈ H if

∣∣∣∣∣ ngj
·hgk

‖ngj‖‖hgk‖

∣∣∣∣∣ ≤ β :

13: Extend(E, α, β, S, H, gk)

4 Experimental Evaluation
Our experimental evaluation of the proposed gRegress algo-
rithm seeks to answer the following questions.

1. How do the subgraph features extracted by gRegress
compare with frequent subgraph mining algorithms with
respect to predictive accuracy of the regression model
developed based on these features?

2. How does the gRegress algorithm compare with fre-
quent subgraph mining algorithms in terms of runtime
when applied to the task of feature extraction for build-
ing regression models?

3. How does the runtime gRegress algorithm vary for vari-
ous choices of α and β parameters?

4.1 Selecting Data Sets and Choice of
Representation

In order to answer these questions we collected a number
of data sets, the general properties of which are presented
in Table ??. All the data sets are publicly available and are
from the domain of computational chemistry. They consist of
chemical compounds with a specific property of interest as-
sociated with each compound. In every case we use a simple
graph representation for the chemical compounds with ele-
ment symbols as vertex labels and bond types as edge labels.
The value for which the regression model was to be built was
centered to have a mean of zero. No information other than
the subgraph features are used to build the regression models
for any experiments reported in the paper.

The Karthikeyan [Karthikeyan et al., 2005] data set, was
originally collected to build a regression model for the pre-
diction of melting points of chemical compounds. The
Bergstrom [Bergstrom et al., 2003] data set was originally
collected to develop a model for the melting point of solid
drugs. The Huuskonen [Huuskonen, 2000] data set was orig-
inally collected to develop a model for the aqueous solubility

of chemical compounds. The Delaney [Delaney, 2004] data
set was originally collected to develop a model for the aque-
ous solubility of compounds with low molecular weights.
The ERBD (Estrogen Receptor Binding Dataset) [Tong et al.,
2002] was originally collected for developing predictive mod-
els of the estrogen receptor binding activity. The ARBD (An-
drogen Receptor Binding Data) [Blair et al., 2000], [Branham
et al., 2002] was originally collected for developing predic-
tive models of the androgen receptor binding activity.

4.2 Selecting a Frequent Subgraph Mining System
Among the various frequent subgraph mining systems to
compare gRegress with, we chose gSpan. While it is un-
clear whether gSpan is the best frequent subgraph mining
[Worlein et al., 2005], [Nijssen and Kok, ] (relevant litera-
ture on this topic is reviewed later in the paper) it can def-
initely be considered to be among the state of the art as far
as the frequent subgraph mining problem is concerned. In
order to ensure that our results generalize to frequent sub-
graph mining algorithms in general, we compare the number
of subgraphs considered by both gRegress and gSpan. This
is simply a count of all minimal DFS codes considered by
each of the systems. The difference between the number
of minimal DFS codes considered by gSpan and gRegress
gives us a measure of how gRegress compares with any other
frequent subgraph mining system. This is because different
frequent subgraph mining systems may use other forms of
canonical labelling and search mechanisms will prevent the
generation of duplicate subgraph features better than gSpan
and gRegress but every subgraph feature (the minimal code
in the case of gSpan and gRegress) will have to be consid-
ered at least once. If gRegress considers significantly fewer
subgraphs, the speedup in terms of runtime would most likely
apply to other frequent subgraph mining systems also.

4.3 Selecting a Regression Algorithm
Among the various approaches to regression we chose SVR
(Support Vector Regression) [Smola and Schölkopf, 2004],
[Cristianini and Shawe-Taylor, 2000] which can be can be
considered among the state of the art as far as the regres-
sion problem is concerned. In particular, we use the SVM-
Lite [Joachims, 1999] package. While it is possible that in
certain situations other regression algorithms might outper-
form SVR, we find it unlikely to get opposite results while
comparing the quality of the regression models based on the
subgraph features produced by gSpan and gRegress with any
regression algorithm. But in future work we will consider
other regression methods.

4.4 The Q2 score
We use the Q2 score to evaluate the predictive accuracy of the
regression models. The Q2 score for a regression function f
is defined as follows.

Q2 =
∑n

i=1(yi − f(xi))2∑n
i=1(yi − 1

n

∑n
i=1 yi)2

Note that the Q2 score is a real number between 0 and 1 and
its interpretation is similar to the Pearson correlation coeffi-
cient. The closer it is to 1, the better the regression function
fits the testing data.
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Figure 2: Results of the Experiments: Q2 scores, number
of subgraphs considered, running times and contour plots
for number of subgraphs considered and running times for
gRegress on the Karthikeyan data set for varying α and β pa-
rameters

4.5 Experiments

In order to answer question (1) and (2) we conducted exper-
iments on gSpan and gRegress on the six data sets described
above. The subgraph features produced by each algorithm
were used to build a regression model using SVR. The pre-
dictive accuracy of the models was evaluated based on the Q2

score using a 5-fold cross validation. Additionally the run-
times and the number of subgraphs considered by each algo-
rithm was also recorded. In the case of gRegress the selection
function chose the subgraph feature with the higher correla-
tion. The maximum subgraph size for each system was set
to ten. The parameters of each system (threshold frequency
in the case of gSpan and the α and β parameters in the case
of gRegress) were systematically varied. While comparing
results on the various runs of the algorithms, we select the
significantly highest Q2 scores achieved by each system and
then compare the lowest possible runtimes and the subgraphs
considered for this Q2 score. The intuition behind this to
compare the lowest computational cost for the best possible
predictive accuracy. The results of these experiments are re-
ported in Figure 2.

In order to answer question (3) we ran gRegress on the
Karthikeyan data set (we chose this data set as this was the
largest data set in terms of transactions) with α and β pa-
rameters systematically varied in small increments of 0.05.
Figure 2 illustrates these results with contour plots.

4.6 Observations
We can observe the following from the experimental results.

1. The predictive accuracy of the regression models based
on the features generated by gSpan and gRegress is com-
parable.

2. gRegress substantially outperforms gSpan in terms of
runtime and the number of subgraphs explored.

3. The runtime and the number of subgraphs explored by
gRegress increases for small values of α and large values
of β.

5 Related Work
The field of graph mining or the discovery of interesting pat-
terns from structured data represented as graphs has been
extensively researched and good surveys can be found in
[Washio and Motoda, 2003] and [Cook and Holder, 2006].
Here, due to space limitations, we only present a concise
overview.

The problem of developing regression models from graph
transactions is relatively new as compared to the related prob-
lem of graph classification. Graph classification was first
studied in [Gonzalez et al., 2000]. A variety of approaches
to the task have been proposed since. This includes, using
a frequent subgraph mining system to extract subgraph fea-
tures and using these features to train a classifier based on
support vector machines [Deshpande et al., 2005] [Huan et
al., 2004], graph kernels [Gartner et al., 2003] [Kashima et
al., 2003] and application of boosting [Kudo et al., 2005] to
graph classification. The boosting based approach has also
been recently extended to perform regression [Saigo et al.,
2008]. In this work the authors also propose an approach
based on partial least square regression. Work related to the
task of developing regression models from graph transactions
also includes [Ke et al., 2007] in which the authors investi-
gate the search from subgraphs with high correlation from a
database of graph transactions.

6 Conclusions and Future Work
The findings of this work are as follows.

1. Mining features from graph transactions for building re-
gression models based on their frequency produces use-
ful features but also produces additional redundant fea-
tures at an added cost.

2. Features can be mined based on two thresholds, correla-
tion with the output and correlation with other features,
at a significantly lower cost without sacrificing the pre-
dictive accuracy of the regression model.

The work raises the following questions which we plan to
investigate as a part of our future work.

1. How can the relation between the α and β parameters
and the predictive accuracy of the regression model be
characterized?

2. How to systematically select the α and β parameters to
get the best regression model?

3. How does the choice of the selection function affect the
regression model?
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