
User-Guided Reinforcement Learning of Robot Assistive Tasks
for an Intelligent Environment

Y. Wang, M. Huber, V. N. Papudesi, and D. J. Cook

Department of Computer Science and Engineering

University of Texas at Arlington
Arlington, TX 76019

Abstract

Autonomous robots hold the possibility of performing a variety
of assistive tasks in intelligent environments. However,
widespread use of robot assistants in these environments
requires ease of use by individuals who are generally not skilled
robot operators. In this paper we present a method of training
robots that bridges the gap between user programming of a robot
and autonomous learning of a robot task. With our approach to
variable autonomy, we integrate user commands at varying
levels of abstraction into a reinforcement learner to permit faster
policy acquisition. We illustrate the ideas using a robot assistant
task, that of retrieving medicine for an inhabitant of a smart
home.

1 Introduction

The application of robot technologies in complex,
semi-structured environments and in the service of
general end-users promises many benefits. In particular,
such robots can perform repetitive and potentially
dangerous tasks, as well as assist in operations that are
physically challenging for the user. In the context of
intelligent environments, assistive robots have a variety of
functions to offer. They can move through the
environment making sure that the contents and inhabitants
are secure. They can also perform simple tasks such as
cleaning and retrieving needed objects.

Moving robot systems from factory settings into more
general environments, particularly environments requiring
interaction with humans, poses large challenges for their
control system and for the interface to the human user.
The robot system must be able to operate based on direct
user guidance or increasingly autonomously as the
environment, robot experience, and task complexity
dictates. Furthermore, it must do so in a safe and efficient
manner without requiring constant, detailed user input
which can lead to rapid user fatigue (Wettergreen et al.,
1995).

For personal robot applications, such as robot assistive
tasks in intelligent environments, this requirement is
further amplified by the fact that the user is generally not
a skilled engineer and can therefore not be expected to be

able or willing to provide constant, detailed instructions.
An inhabitant of a smart home, for example, would like to
request that needed medicine be retrieved without giving
detailed instructions of how to accomplish the task. For
the user interface and the integration of human input into
an autonomous control system, this implies that a robot
system must facilitate the incorporation of user
commands at different levels of abstraction and at
different bandwidths. This, in turn, requires operation at
varying levels of autonomy (Dorais et al., 1998; Hexmore
et al., 1999) depending on the available user feedback.

An additional challenge arises because efficient task-
performing strategies that conform with the preferences of
the user are often not available a priori. As a result, the
system has to be able to acquire them on-line while
ensuring that autonomous operation and user-provided
commands do not lead to catastrophic failures.

In recent years, a number of researchers have
investigated the issues of learning and user interfaces
(Clouse & Utgoff, 1992; Smart & Kaelbling, 2000;
Kawamura et al., 2001). However, this work was
conducted largely in the context of mission-level
interaction with the robot systems using skilled operators.
In contrast, the approach presented here is aimed at the
integration of potentially unreliable user instructions into
an adaptive and flexible control framework in order to
adjust control policies on-line. The learned policies
should more closely reflect the preferences and
requirements of the particular end-user. To achieve this,
user commands at different levels of abstraction are
integrated into an autonomous learning component. Their
influence speeds learning of the control policy, but is
limited to not prevent ultimate task achievement. As a
result, the robot can seamlessly switch between fully
autonomous operation and the integration of high and/or
low-level user commands.

In the remainder of this paper, our approach to
variable autonomy is presented. In particular, fully
autonomous policy acquisition, the integration of high-
level user commands in the form of subgoals and the user
of intermittent low-level instructions using direct
teleoperation are introduced. Their use is demonstrated in
the context of an intelligent environment task using a

walking robot, that of retrieving an object as requested by
the environment inhabitant.

2 Combining User Input and Autonomous
Learning for Variable Autonomy

The approach presented here introduces a method of

achieving variable autonomy by integrating user input and
autonomous control policies in a Semi-Markov Decision
Process (SMDP) model that is built on a hybrid control
architecture. Overall behavior is derived from a set of
reactive behavioral elements that address local
perturbations autonomously. These elements are
endowed with formal characteristics that permit the
hybrid systems framework to impose a priori safety
constraints that limit the overall behavior of the system
(Huber & Grupen, 1999; Ramadge and Wonham, 1989).
These constraints are enforced during autonomous
operation as well as during phases with extensive user
input. In the latter case, they overwrite user commands
that are inconsistent with the specified safety limitations
and could thus endanger the system. The goal here is to
provide the robot with the ability to avoid dangerous
situations while facilitating flexible task performance.

On top of this control substrate, task-specific control
policies are represented as solutions to an SMDP,
permitting new tasks to be specified by means of a reward
structure rT that provides numeric feedback according to
the task requirements. The advantage here is that
specifying intermittent performance feedback is generally
much simpler than determining a corresponding control
policy. Using this reward structure, reinforcement
learning (Barto et al., 1993; Kaelbling et al., 1996) is used
to permit the robot to learn and optimize appropriate
control policies from its interaction with the environment.
When no user input is available, this forms a completely
autonomous mode of task acquisition and execution.

User input at various levels of abstraction is integrated
into the same SMDP model. User commands temporarily
guide the operation of the overall system and serve as
training input to the reinforcement learning component.
Use of such training input can dramatically improve the
speed of policy acquisition by focusing the learning
system on relevant parts of the behavioral space (Clouse
& Utgoff, 1992). In addition, user commands provide
additional information about user preferences and are
used here to modify the way in which the robot performs
a task. This integration of user commands with the help
of, and as a jumpstart for, reinforcement learning
facilitates a seamless transition between user operation of
the robot and fully autonomous execution, based on the
availability of user input. Furthermore, it permits user
commands to alter the performance of autonomous
control strategies without the user needing to provide a

complete specification of the control policy. Figure 1
shows a high-level overview of the components of the
control system.

Figure 1. Overview of the control system.

In the work presented here, user commands at a high

level of abstraction are presented to the SMDP model in
the form of temporary subgoals to be achieved or
suggested specific actions to execute. This input is used,
as long as it conforms with the a priori safety constraints,
to temporarily drive the robot. At the same time, user
commands play the role of training input to the learning
component, which optimizes the autonomous control
policy for the current task. Here, Q-learning (Watkins,
1989) is used to estimate the utility function, Q(s,a), by
updating its value when action a is executed from state s
according to the formula

where r represents the obtained reward.
Low-level user commands in the form of intermittent

continuous input from devices such as a joystick are
included in the same fashion into the learning component,
serving as temporary guidance and training information.

3 User Commands as Reward Modifiers

To address the preferences of the user beyond a single
execution of the action and to permit user commands to
have long-term influence on the robot’s performance of a
task, we employ user commands to modify the task-
specific reward structure to more closely resemble the
actions indicated by the user. This is achieved by means
of a separate user reward function, ru, that represents the
history of commands provided by the user. User input is

)),,()','(max(),(),(
'

asQasQrasQasQ
a

−++← γα

captured by means of a bias function, bias(s,a), which is
updated each time a user gives a command to the robot
according to the function

ru(s,a) = f(bias(s,a)),

where action a in state s is part of the user command and
there are n possible actions in state s. The total reward
used by the Q-learning algorithm throughout robot
operation is then

r = rt + ru,

leading to a change in the way a task is performed even
when operating fully autonomously.

Incorporating user commands into the reward
structure rather than directly into the policy permits the
autonomous system to ignore actions that have previously
been specified by the user if they were contradictory, if
their cost is prohibitively high, or if they prevent the
achievement of the overall task objective as specified by
the task reward function, rt. This is particularly important
in personal robot systems such as assistive robots in
intelligent environments, where the user is often untrained
and might not have a full understanding of the robot
mechanism. For example, a user could specify a different,
random action every time the robot enters a particular
situation (e.g., a different fetch operation from a different
location). Under these extreme circumstances, the user
rewards introduced above would cancel out and no longer
influence the learned policy. Similarly, the user might
give a sequence of commands which, when followed,
form a loop (e.g., perform sentry duty over the entire
house, returning to start location) and thus prevent the
achievement of the task objective. To avoid this, the user
reward function has to be limited to ensure that it does not
lead to the formation of spurious loops. In the approach
presented here, the following formal lower and upper
bounds for the user reward, ru, applied to action a in state
s, have been established and implemented. Details on the
derivation of the bounds are reported elsewhere (Papudesi,
2002).

These bounds ensure that the additional user reward

structure does not create any loops, even if explicitly
command by the user. As a result, the system can
successfully achieve the overall task objective provided
by the task reward, rT.

4 Experiments

To demonstrate the power and applicability of the
model of variable autonomy introduced here, a number of
experiments in simulation and on mobile and walking
robot tasks have been performed. These experiments
demonstrate that the approach presented here provides an
effective interface between robot and human as well as a
valuable robot training mechanism.

4.1 High-Level User Commands

Our first experiment demonstrates the integration of

user commands and autonomous learning. The goal of
the robot navigation task is to learn to optimally navigate
the environment and reach a specific target. The
environment itself consists of a set, V, of via points
superimposed on a collection of maps consisting of a
50x50 grid of square cells. These via points represent
user-guided bias and thus affect the problem reward.

Actions are specified as instances of geometric motion
controllers that permit the robot to move safely between
subsets of the via points. These actions directly handle
the continuous geometric space by computing collision-
free paths to the selected via point, if such a path exists.
Targets represented by via points are directly reachable by
at least one controller. However, controllers are only
applicable from a limited number of states, making it
necessary to construct navigation strategies as a sequence
of via points that lead to the target location. Here,
harmonic path control (Connolly & Grupen, 1993), a
potential-field path planner is used to generate continuous
robot trajectories while ensuring that the robot does not
collide with an object. By abstracting the environment
into a set of via points, the agent is capable of a
combination of geometric and topological path planning.
At the lower level, each harmonic controller generates
velocity vectors that describe the path geometrically. At
the higher level, the D-EDS Supervisor produces
topological plans in the form of sequences of via points.

To illustrate the guidance of the robot using high-level
user commands in the form of subgoals, two experiments
were performed on the Pioneer 2 mobile robot. These
experiments demonstrate the ability of high-level user
input to accelerate learning and modify autonomous
behavior while avoiding unreliable user commands.

First, we demonstrate the capability of the approach to
use sparse user input to modify the learned control policy.
This forces the learned policy to more closely reflect the
preferences of the user. We demonstrate this capability
on a navigation task, which is first learned without user
input and then modified by incorporating a single user
command in the form of an intermediate subgoal.
Because the subgoal is outside the chosen path, the





−
=−+

←
otherwise1),(
if)1(),(

),(
bsbias

abnbsbias
bsbias

TuAa
rasQrrasQ −−<<−−

∈
)1)(,(),(max γ

learned path is modified based on user input, as shown in
Figure 3. Here, the end location is marked with an X and
the learned paths are highlighted. Figure 3 shows the
corresponding changes in the Q-value and user reward
functions for the previously best action (black line) and
the new best action (grey line). These graphs illustrate
the effect of the command on the reward function for the
task and, as a result, on the value function and policy.
Figure 4 shows the robot performing the navigation task.

Figure 2. Change in control policy by user command.

Figure 3. Change in the Q-value function due to the

input user command.

Figure 4. Pioneer robot executing navigation task.

Second, we illustrate the capability of the presented

approach to overwrite inconsistent user commands that
would invalidate the overall task objective. Here, the user
explicitly commands a loop between two via points.
Figure 5 shows the loop specified by the user commands
the the learned loop-free policy that the robot executes
after learning.

Figure 5. User-specified loop (left) and resulting
loop-free learned policy (right).

Although the robot will execute the loop as long as the

user explicitly commands this, it reverts to a policy that
fulfills the original task objective as soon as no further
user commands are received.

4.2 Multi-Level User Input

A second set of experiments was performed using a
walking robot dog, Astro (shown in Figure 6), to
demonstrate user-guided robot learning at multiple levels
of abstraction. In these experiments, high-level subgoals
as well as low-level joystick commands were integrated
to demonstrate the capabilities of the presented model for
variable autonomy.

Once again, the robot task is to navigate to a specified
location, but user guidance takes multiple forms. First,
user-specified subgoals represent via-points that Astro
should visit en route to the goal location. Second, user
interaction guides the selection of low-level movement
patterns for Astro to make. In the wheeled robot
navigation task, a harmonic path is calculated for the
robot to circumvent corners in the space that could cause
collisions. However, this motion is inefficient for the
smaller, and potentially more agile, walking dog. As a
result, we provide two movement options for Astro:
straight line and harmonic motion.

A reinforcement learning algorithm is used to select
the movement pattern that is best for any pair of via
points. As we mentioned before, the system has two
controllers, namely a line controller and a harmonic
controller, to determine the most appropriate moving
pattern of the robot. If line controller is chosen, the robot
will travel between via-points along a straight line, while
with the harmonic controller, the robot will walk along a
curve. For a given pair of via points, the user selects a
direction for the robot to follow or allows the algorithm to
select a motion consistent with the learned policy. If the
user selects a direction, the dog moves in this direction for
a fixed distance. The executed path is compared with the
path generated using one of the two predetermined
movement patterns, and the movement choices are given

rewards based on the difference between planned and
selected movement paths.

This combination of high-level and low-level user
guidance is validated in a walking robot-based navigation
task. Here, Astro is successfully taught the best moving
style to follow from one location to another based on
joystick-controlled direction from the user as well as the
via points shown in Figure 6. Localization for this task is
based on heuristics, but future implementations will make
use of paw joint angles to further improve estimation of
the robot current location.

Figure 5. Walking robot dog, Astro.

Figure 6. MavHome layout with via points.

In this experiment, point via-005 is specified as the

goal. Initially, Astro chose via-003 as the first subgoal.
However, the user discourages that choice because it
would move too close to the wall. Astro then selects via-
005 as a subgoal. Because there is a wall between the
start and goal locations, this choice also ultimately fails
and Astro selects via-001 as the next choice.

Although the subgoal choice is viable, Astro selects a
harmonic motion to reach via-001. The user intercedes
using a joystick to flatten the path and the movement
policy is refined based on this interaction.

After reaching point via-001, Astro begins to move
straight toward point via-005, which again leads him to
the corner. The user maneuvers the joystick to avoid this.

After reaching via-003 using a curved motion, Astro
wisely chooses point via-004 as a pass-through point and
then walks straight to via-004 and finally to the goal.
When repeating the same task, Astro improves his
movement efficiency based on the same high-level and
low-level feedback from the user.

4.3 Intelligent Environment Robot Task

For our final experiment, we utilize our variable

autonomy approach to accomplish a retrieval task. This
class of robot tasks is an important component of the
MavHome smart home environment. The goal of
MavHome is to view the home as an intelligent agent,
able to make decisions to control the environment in a
way that maximizes comfort for inhabitants while
minimizing resource utilization (Das et al., 2002).

Robot agents in MavHome can perform a wide
variety of assistive tasks. One such task is to retrieve an
object at the request of an inhabitant. For example, a
bedridden individual at home alone may request the robot
to fetch some needed medicine when the person cannot
get it himself. This experiment equips Astro with the
capability of bringing medicine to a patient.

In this experiment, the patient is near the start point
shown in Figure 6 and commands Astro to retrieve the
medicine located at via-005. The task thus consists of
navigating to point via-005, picking up the medicine, and
returning to the start location.

In addition to the abstract navigation and low-level
motion controller actions discussed in the previous
sections, this application adds actions to search for a
target object and to pick up the object. To accommodate
retrieval tasks, we design a pink basket to hold small
objects, which the robot can identify and lift with its head.
Driven by high-level user commands, the robot arrives at
via-005 as he performs the navigation task, then he needs
to conduct the pickup action. Navigation is driven by the
high and low-level control policies learned earlier. The
robot then needs to identify the pink basket, and adjusts
its position based on the current neck angle and the
distance to the basket. After Astro adjusts his position, he
uses his neck to pick up the basket with the medicine.
Finally, Astro carries the medicine back to the start point
where the patient is. Figure 7 shows Astro executing this
task in the MavHome environment.

5 Conclusions and Future Work

To enable person assistive robot technologies to be

used by general end-users, such as inhabitants of
intelligent environments, user guidance at multiple levels
of abstraction must be integrated into the robot learning
task to speed learning and guide the robot policies toward

the user preferences. The control and interface approach
presented in this paper attempt to address these issues by
means of a formal control structure and through
integration of various types of user commands into an
autonomous reinforcement learning component, which
provides the robot with variable modes of autonomy. We
validate our approach with wheeled and walking robot
tasks, including an intelligent environment task, that
benefit from high-level and low-level user guidance.

Our future work in this area will provide additional
modes of human/robot interaction such as imitation
capabilities. The goal here is a system that can
seamlessly switch between different modes of autonomy
depending on the available user input, while maintaining
operational safety. We will test the ideas on a greater
variety of intelligent environment tasks, and will enhance
the technique to permit user input to adjust the internal
model of robot behaviors based on experimental feedback.

Figure 7. Astro performing MavHome retrieval task.

Acknowledgements

This work was supported in part by NSF IIS-0121297.

References

Barto, A. G., Bradtke, S.J., and Singh, S. P. 1993.
Learning to act using real-time dynamic programming.
Technical Report 93-02, University of Massachusetts.

Clouse, J., and Utgoff, P. 1992. A teaching method for
reinforcement learning. In Proceedings of the
International Conference on Machine Learning, 92-101.
San Mateo, CA: Morgan Kaufmann.
Connolly, C.I., and Grupen, R. A. 1993. The
applications of harmonic functions to robotics. Journal of
Robotics Research, 19(7):931-946.
Das, D. K., Cook, D. J., Bhattacharya, A., Heierman, E. O.
III, and Lin, T. 2002. The role of prediction algorithms
in the MavHome smart home architecture. IEEE Wireless
Communications, 9(6):77-84.
Dorias, G., Bonasso, R. P., Kortenkamp, D., Pell, B., and
Schreckenghost, D. 1998. Adjustable autonomy for
human-centered autonomous systems on Mars. In Mars
Society Conference.
Hexmoor, H., Lafary, M., and Trosen, M. 1999.
Adjusting autonomy by introspection. Technical Report
SS-99-06, AAAI.
Huber, M., and Grupen, R. A. 1999. A hybrid
architecture for learning robot control tasks. In AAAI
1999 Spring Symposium: Hybrid Systems and AI-
Modeling, Analysis and Control of Discrete + Continuous
Systems. Stanford University, CA: AAAI.
Kaelbling, L. P., Peters, R. A. II, Johnson, C., Nilas, P.,
and Thongchai, S. 2001. Supervisory control of mobile
robots using sensory egosphere. In IEEE International
Symposium on Computational Intelligence in Robotics
and Automation 531-537. Banff, Alberta, Canada.
Papudesi, V. N., Wang, Y., Huber, M., and Cook, D. J.
2003. Integrating user commands and autonomous task
performance in a reinforcement learning framework. In
AAAI 2003 Spring Symposium: Human Interaction with
Autonomous Systems in Complex Environments.
Papudesi, V. N. 2002. Integrating advice with
reinforcement learning. M.S. Thesis, University of Texas
at Arlington.
Ramadge, P. J., and Wonham, W. M. 1989. The control
of discrete event systems. Proceedings of the IEEE
77(1):81-97.
Smart, W. D., and Kaelbling, L. 2000. Practical
reinforcement learning in continuous spaces. In
Proceedings of the International Conference on Machine
Learning.
Watkins, C. J. C. H. 1989. Learning from delayed
rewards. Ph.D. Dissertation, Cambridge University,
Cambridge, England.
Wettergreen, D., Pangels, H., and Bares, J. 1995.
Behavior-based gait execution for the Dante II walking
robot. In Proceedings of IROS, 274-279. Pittsburgh, PA:
IEEE.

