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Abstract 
 

Autonomous robots hold the possibility of performing a variety 
of assistive tasks in intelligent environments.  However, 
widespread use of robot assistants in these environments 
requires ease of use by individuals who are generally not skilled 
robot operators.  In this paper we present a method of training 
robots that bridges the gap between user programming of a robot 
and autonomous learning of a robot task.  With our approach to 
variable autonomy, we integrate user commands at varying 
levels of abstraction into a reinforcement learner to permit faster 
policy acquisition.  We illustrate the ideas using a robot assistant 
task, that of retrieving medicine for an inhabitant of a smart 
home. 
 
 
1  Introduction 
 

The application of robot technologies in complex, 
semi-structured environments and in the service of 
general end-users promises many benefits.  In particular, 
such robots can perform repetitive and potentially 
dangerous tasks, as well as assist in operations that are 
physically challenging for the user.  In the context of 
intelligent environments, assistive robots have a variety of 
functions to offer.  They can move through the 
environment making sure that the contents and inhabitants 
are secure.  They can also perform simple tasks such as 
cleaning and retrieving needed objects.  

Moving robot systems from factory settings into more 
general environments, particularly environments requiring 
interaction with humans, poses large challenges for their 
control system and for the interface to the human user.  
The robot system must be able to operate based on direct 
user guidance or increasingly autonomously as the 
environment, robot experience, and task complexity 
dictates.  Furthermore, it must do so in a safe and efficient 
manner without requiring constant, detailed user input 
which can lead to rapid user fatigue (Wettergreen et al., 
1995). 

For personal robot applications, such as robot assistive 
tasks in intelligent environments, this requirement is 
further amplified by the fact that the user is generally not 
a skilled engineer and can therefore not be expected to be 

able or willing to provide constant, detailed instructions.  
An inhabitant of a smart home, for example, would like to 
request that needed medicine be retrieved without giving 
detailed instructions of how to accomplish the task.  For 
the user interface and the integration of human input into 
an autonomous control system, this implies that a robot 
system must facilitate the incorporation of user 
commands at different levels of abstraction and at 
different bandwidths.  This, in turn, requires operation at 
varying levels of autonomy (Dorais et al., 1998; Hexmore 
et al., 1999) depending on the available user feedback.  

An additional challenge arises because efficient task-
performing strategies that conform with the preferences of 
the user are often not available a priori.  As a result, the 
system has to be able to acquire them on-line while 
ensuring that autonomous operation and user-provided 
commands do not lead to catastrophic failures. 

In recent years, a number of researchers have 
investigated the issues of learning and user interfaces 
(Clouse & Utgoff, 1992; Smart & Kaelbling, 2000; 
Kawamura et al., 2001).  However, this work was 
conducted largely in the context of mission-level 
interaction with the robot systems using skilled operators.  
In contrast, the approach presented here is aimed at the 
integration of potentially unreliable user instructions into 
an adaptive and flexible control framework in order to 
adjust control policies on-line.  The learned policies 
should more closely reflect the preferences and 
requirements of the particular end-user.  To achieve this, 
user commands at different levels of abstraction are 
integrated into an autonomous learning component.  Their 
influence speeds learning of the control policy, but is 
limited to not prevent ultimate task achievement.  As a 
result, the robot can seamlessly switch between fully 
autonomous operation and the integration of high and/or 
low-level user commands. 

In the remainder of this paper, our approach to 
variable autonomy is presented.  In particular, fully 
autonomous policy acquisition, the integration of high-
level user commands in the form of subgoals and the user 
of intermittent low-level instructions using direct 
teleoperation are introduced.  Their use is demonstrated in 
the context of an intelligent environment task using a 



walking robot, that of retrieving an object as requested by 
the environment inhabitant. 

 
2  Combining User Input and Autonomous 
Learning for Variable Autonomy 

 
The approach presented here introduces a method of 

achieving variable autonomy by integrating user input and 
autonomous control policies in a Semi-Markov Decision 
Process (SMDP) model that is built on a hybrid control 
architecture.  Overall behavior is derived from a set of 
reactive behavioral elements that address local 
perturbations autonomously.  These elements are 
endowed with formal characteristics that permit the 
hybrid systems framework to impose a priori safety 
constraints that limit the overall behavior of the system 
(Huber & Grupen, 1999; Ramadge and Wonham, 1989).  
These constraints are enforced during autonomous 
operation as well as during phases with extensive user 
input.  In the latter case, they overwrite user commands 
that are inconsistent with the specified safety limitations 
and could thus endanger the system.  The goal here is to 
provide the robot with the ability to avoid dangerous 
situations while facilitating flexible task performance. 

On top of this control substrate, task-specific control 
policies are represented as solutions to an SMDP, 
permitting new tasks to be specified by means of a reward 
structure rT that provides numeric feedback according to 
the task requirements.  The advantage here is that 
specifying intermittent performance feedback is generally 
much simpler than determining a corresponding control 
policy.  Using this reward structure, reinforcement 
learning (Barto et al., 1993; Kaelbling et al., 1996) is used 
to permit the robot to learn and optimize appropriate 
control policies from its interaction with the environment.  
When no user input is available, this forms a completely 
autonomous mode of task acquisition and execution. 

User input at various levels of abstraction is integrated 
into the same SMDP model.  User commands temporarily 
guide the operation of the overall system and serve as 
training input to the reinforcement learning component.  
Use of such training input can dramatically improve the 
speed of policy acquisition by focusing the learning 
system on relevant parts of the behavioral space (Clouse 
& Utgoff, 1992).  In addition, user commands provide 
additional information about user preferences and are 
used here to modify the way in which the robot performs 
a task.  This integration of user commands with the help 
of, and as a jumpstart for, reinforcement learning 
facilitates a seamless transition between user operation of 
the robot and fully autonomous execution, based on the 
availability of user input.  Furthermore, it permits user 
commands to alter the performance of autonomous 
control strategies without the user needing to provide a 

complete specification of the control policy.  Figure 1 
shows a high-level overview of the components of the 
control system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Overview of the control system. 

 
In the work presented here, user commands at a high 

level of abstraction are presented to the SMDP model in 
the form of temporary subgoals to be achieved or 
suggested specific actions to execute.  This input is used, 
as long as it conforms with the a priori safety constraints, 
to temporarily drive the robot.  At the same time, user 
commands play the role of training input to the learning 
component, which optimizes the autonomous control 
policy for the current task.  Here, Q-learning (Watkins, 
1989) is used to estimate the utility function, Q(s,a), by 
updating its value when action a is executed from state s 
according to the formula 

 
 
 

where r represents the obtained reward. 
Low-level user commands in the form of intermittent 

continuous input from devices such as a joystick are 
included in the same fashion into the learning component, 
serving as temporary guidance and training information. 

 
3  User Commands as Reward Modifiers 
 

To address the preferences of the user beyond a single 
execution of the action and to permit user commands to 
have long-term influence on the robot’s performance of a 
task, we employ user commands to modify the task-
specific reward structure to more closely resemble the 
actions indicated by the user.  This is achieved by means 
of a separate user reward function, ru, that represents the 
history of commands provided by the user.  User input is 
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captured by means of a bias function, bias(s,a), which is 
updated each time a user gives a command to the robot 
according to the function 

 
 
 
 
 

ru(s,a) = f(bias(s,a)), 
 

where action a in state s is part of the user command and 
there are n possible actions in state s.  The total reward 
used by the Q-learning algorithm throughout robot 
operation is then 
 

r = rt + ru, 
 
leading to a change in the way a task is performed even 
when operating fully autonomously. 

Incorporating user commands into the reward 
structure rather than directly into the policy permits the 
autonomous system to ignore actions that have previously 
been specified by the user if they were contradictory, if 
their cost is prohibitively high, or if they prevent the 
achievement of the overall task objective as specified by 
the task reward function, rt.  This is particularly important 
in personal robot systems such as assistive robots in 
intelligent environments, where the user is often untrained 
and might not have a full understanding of the robot 
mechanism.  For example, a user could specify a different, 
random action every time the robot enters a particular 
situation (e.g., a different fetch operation from a different 
location).  Under these extreme circumstances, the user 
rewards introduced above would cancel out and no longer 
influence the learned policy.  Similarly, the user might 
give a sequence of commands which, when followed, 
form a loop (e.g., perform sentry duty over the entire 
house, returning to start location) and thus prevent the 
achievement of the task objective.  To avoid this, the user 
reward function has to be limited to ensure that it does not 
lead to the formation of spurious loops.  In the approach 
presented here, the following formal lower and upper 
bounds for the user reward, ru, applied to action a in state 
s, have been established and implemented.  Details on the 
derivation of the bounds are reported elsewhere (Papudesi, 
2002). 

 
 
These bounds ensure that the additional user reward 

structure does not create any loops, even if explicitly 
command by the user.  As a result, the system can 
successfully achieve the overall task objective provided 
by the task reward, rT. 

 
 

4  Experiments 
 

To demonstrate the power and applicability of the 
model of variable autonomy introduced here, a number of 
experiments in simulation and on mobile and walking 
robot tasks have been performed.  These experiments 
demonstrate that the approach presented here provides an 
effective interface between robot and human as well as a 
valuable robot training mechanism. 

 
4.1  High-Level User Commands 

 
Our first experiment demonstrates the integration of 

user commands and autonomous learning.  The goal of 
the robot navigation task is to learn to optimally navigate 
the environment and reach a specific target. The 
environment itself consists of a set, V, of via points 
superimposed on a collection of maps consisting of a 
50x50 grid of square cells.  These via points represent 
user-guided bias and thus affect the problem reward. 

Actions are specified as instances of geometric motion 
controllers that permit the robot to move safely between 
subsets of the via points.  These actions directly handle 
the continuous geometric space by computing collision-
free paths to the selected via point, if such a path exists. 
Targets represented by via points are directly reachable by 
at least one controller. However, controllers are only 
applicable from a limited number of states, making it 
necessary to construct navigation strategies as a sequence 
of via points that lead to the target location.  Here, 
harmonic path control (Connolly & Grupen, 1993), a 
potential-field path planner is used to generate continuous 
robot trajectories while ensuring that the robot does not 
collide with an object. By abstracting the environment 
into a set of via points, the agent is capable of a 
combination of geometric and topological path planning. 
At the lower level, each harmonic controller generates 
velocity vectors that describe the path geometrically. At 
the higher level, the D-EDS Supervisor produces 
topological plans in the form of sequences of via points. 

To illustrate the guidance of the robot using high-level 
user commands in the form of subgoals, two experiments 
were performed on the Pioneer 2 mobile robot.  These 
experiments demonstrate the ability of high-level user 
input to accelerate learning and modify autonomous 
behavior while avoiding unreliable user commands. 

First, we demonstrate the capability of the approach to 
use sparse user input to modify the learned control policy.  
This forces the learned policy to more closely reflect the 
preferences of the user.  We demonstrate this capability 
on a navigation task, which is first learned without user 
input and then modified by incorporating a single user 
command in the form of an intermediate subgoal.  
Because the subgoal is outside the chosen path, the 
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learned path is modified based on user input, as shown in 
Figure 3.  Here, the end location is marked with an X and 
the learned paths are highlighted.  Figure 3 shows the 
corresponding changes in the Q-value and user reward 
functions for the previously best action (black line) and 
the new best action (grey line).  These graphs illustrate 
the effect of the command on the reward function for the 
task and, as a result, on the value function and policy.  
Figure 4 shows the robot performing the navigation task.  

 
 
 
 
 
 
 
                                                                          

 
Figure 2.  Change in control policy by user command. 

 

 
Figure 3.  Change in the Q-value function due to the 

input user command. 
 

 
Figure 4.  Pioneer robot executing navigation task. 

 
Second, we illustrate the capability of the presented 

approach to overwrite inconsistent user commands that 
would invalidate the overall task objective.  Here, the user 
explicitly commands a loop between two via points.  
Figure 5 shows the loop specified by the user commands 
the the learned loop-free policy that the robot executes 
after learning. 

 
 
 
 
 
 
 
 
 
 

Figure 5.  User-specified loop (left) and resulting 
loop-free learned policy (right). 

 
Although the robot will execute the loop as long as the 

user explicitly commands this, it reverts to a policy that 
fulfills the original task objective as soon as no further 
user commands are received.  

 
4.2 Multi-Level User Input 
 

A second set of experiments was performed using a 
walking robot dog, Astro (shown in Figure 6), to 
demonstrate user-guided robot learning at multiple levels 
of abstraction.  In these experiments, high-level subgoals 
as well as low-level joystick commands were integrated 
to demonstrate the capabilities of the presented model for 
variable autonomy. 

Once again, the robot task is to navigate to a specified 
location, but user guidance takes multiple forms.  First, 
user-specified subgoals represent via-points that Astro 
should visit en route to the goal location.  Second, user 
interaction guides the selection of low-level movement 
patterns for Astro to make.  In the wheeled robot 
navigation task, a harmonic path is calculated for the 
robot to circumvent corners in the space that could cause 
collisions.  However, this motion is inefficient for the 
smaller, and potentially more agile, walking dog.  As a 
result, we provide two movement options for Astro:  
straight line and harmonic motion. 

A reinforcement learning algorithm is used to select 
the movement pattern that is best for any pair of via 
points.  As we mentioned before, the system has two 
controllers, namely a line controller and a harmonic 
controller, to determine the most appropriate moving 
pattern of the robot. If line controller is chosen, the robot 
will travel between via-points along a straight line, while 
with the harmonic controller, the robot will walk along a 
curve. For a given pair of via points, the user selects a 
direction for the robot to follow or allows the algorithm to 
select a motion consistent with the learned policy.  If the 
user selects a direction, the dog moves in this direction for 
a fixed distance.  The executed path is compared with the 
path generated using one of the two predetermined 
movement patterns, and the movement choices are given 



rewards based on the difference between planned and 
selected movement paths.  

This combination of high-level and low-level user 
guidance is validated in a walking robot-based navigation 
task.  Here, Astro is successfully taught the best moving 
style to follow from one location to another based on 
joystick-controlled direction from the user as well as the 
via points shown in Figure 6.  Localization for this task is 
based on heuristics, but future implementations will make 
use of paw joint angles to further improve estimation of 
the robot current location. 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 5.  Walking robot dog, Astro. 

 

 
 

Figure 6.  MavHome layout with via points. 
 
In this experiment, point via-005 is specified as the 

goal.  Initially, Astro chose via-003 as the first subgoal.  
However, the user discourages that choice because it 
would move too close to the wall.  Astro then selects via-
005 as a subgoal.  Because there is a wall between the 
start and goal locations, this choice also ultimately fails 
and Astro selects via-001 as the next choice. 

Although the subgoal choice is viable, Astro selects a 
harmonic motion to reach via-001.  The user intercedes 
using a joystick to flatten the path and the movement 
policy is refined based on this interaction. 

After reaching point via-001, Astro begins to move 
straight toward point via-005, which again leads him to 
the corner.  The user maneuvers the joystick to avoid this.  

After reaching via-003 using a curved motion, Astro 
wisely chooses point via-004 as a pass-through point and 
then walks straight to via-004 and finally to the goal.  
When repeating the same task, Astro improves his 
movement efficiency based on the same high-level and 
low-level feedback from the user. 
 
 
4.3 Intelligent Environment Robot Task 

 
For our final experiment, we utilize our variable 

autonomy approach to accomplish a retrieval task.  This 
class of robot tasks is an important component of the 
MavHome smart home environment.  The goal of 
MavHome is to view the home as an intelligent agent, 
able to make decisions to control the environment in a 
way that maximizes comfort for inhabitants while 
minimizing resource utilization (Das et al., 2002). 

Robot agents in MavHome can perform a wide 
variety of assistive tasks.  One such task is to retrieve an 
object at the request of an inhabitant.  For example, a 
bedridden individual at home alone may request the robot 
to fetch some needed medicine when the person cannot 
get it himself.  This experiment equips Astro with the 
capability of bringing medicine to a patient. 

In this experiment, the patient is near the start point 
shown in Figure 6 and commands Astro to retrieve the 
medicine located at via-005. The task thus consists of 
navigating to point via-005, picking up the medicine, and 
returning to the start location. 

In addition to the abstract navigation and low-level 
motion controller actions discussed in the previous 
sections, this application adds actions to search for a 
target object and to pick up the object. To accommodate 
retrieval tasks, we design a pink basket to hold small 
objects, which the robot can identify and lift with its head. 
Driven by high-level user commands, the robot arrives at 
via-005 as he performs the navigation task, then he needs 
to conduct the pickup action. Navigation is driven by the 
high and low-level control policies learned earlier.  The 
robot then needs to identify the pink basket, and adjusts 
its position based on the current neck angle and the 
distance to the basket. After Astro adjusts his position, he 
uses his neck to pick up the basket with the medicine. 
Finally, Astro carries the medicine back to the start point 
where the patient is.  Figure 7 shows Astro executing this 
task in the MavHome environment. 

 
5  Conclusions and Future Work 

 
To enable person assistive robot technologies to be 

used by general end-users, such as inhabitants of 
intelligent environments, user guidance at multiple levels 
of abstraction must be integrated into the robot learning 
task to speed learning and guide the robot policies toward 



the user preferences.  The control and interface approach 
presented in this paper attempt to address these issues by 
means of a formal control structure and through 
integration of various types of user commands into an 
autonomous reinforcement learning component, which 
provides the robot with variable modes of autonomy.  We 
validate our approach with wheeled and walking robot 
tasks, including an intelligent environment task, that 
benefit from high-level and low-level user guidance. 

Our future work in this area will provide additional 
modes of human/robot interaction such as imitation 
capabilities.  The goal here is a system that can 
seamlessly switch between different modes of autonomy 
depending on the available user input, while maintaining 
operational safety.  We will test the ideas on a greater 
variety of intelligent environment tasks, and will enhance 
the technique to permit user input to adjust the internal 
model of robot behaviors based on experimental feedback. 

 

 

 

 

 
 

Figure 7.  Astro performing MavHome retrieval task. 
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