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Abstract.  Many intelligent systems that focus on the needs of a human require information about the activities that are being 
performed by the human. At the core of this capability is activity recognition. Activity recognition techniques have become 
robust but rarely scale to handle more than a few activities. They also rarely learn from more than one smart home data set 
because of inherent differences between labeling techniques.  In this paper we investigate a data-driven approach to creating 
an activity taxonomy from sensor data found in disparate smart home datasets. We investigate how the resulting taxonomy 
can help analyze the relationship between classes of activities. We also analyze how the taxonomy can be used to scale activi-
ty recognition to a large number of activity classes and training datasets. We describe our approach and evaluate it on 34 smart 
home datasets. The results of the evaluation indicate that the hierarchical modeling can reduce training time while maintaining 
accuracy of the learned model. 
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1. Introduction 

Many artificial intelligence applications that focus 
on the needs of a human require information about 
the activities being performed by the human. At the 
core of such technologies, then, is activity recogni-
tion, which is a challenging and well researched 
problem. Approaches to activity recognition differ in 
terms of the underlying sensing technology, the ma-
chine learning models and the realism of the envi-
ronment. Irrespective of these variables, the literature 
is abundant with evidence that existing techniques 
work well, particularly in controlled settings. 

Activity recognition techniques have improved 
over the past few years in terms of accuracy and reli-
ability. In order to move to the next level, the tech-
niques need to be improved for generalizability and 
scalability. The long-term goal of our research pro-
ject is to design machine learning approaches that 
recognize a large number of activities for a broad 
segment of the population.  Because activity models 
need to generalize over variations in environmental 
and resident characteristics, and because robust activ-
ity models require plenty of training data, we want to 
use as many data sources as are available to train 
activity models. When activity recognition data is 

collected from multiple sources, challenges begin to 
arise not only because of differences in physical set-
tings and human subjects, but also because the activi-
ty labels and annotation styles vary from one data 
source to another.  We hypothesize that the similari-
ties between activity patterns can be detected auto-
matically. These similarities can be used to analyze 
the relationship between activity labels and annota-
tion styles and to find relationships between automat-
ically-discovered activities and predefined activity 
classes. 

In this paper we validate our hypothesis that clus-
tering activities into a hierarchical activity taxonomy 
can facilitate analysis of activity patterns from multi-
ple sources. In addition, we also postulate that such a 
taxonomy can also be used to scale activity recogni-
tion. Instead of using a single classifier to distinguish 
between large numbers of activities, we design a hi-
erarchy of classifiers, each of which distinguishes 
between child nodes at a particular location in the 
hierarchy.  We describe our proposed technique, 
evaluate alternative clustering algorithms, and 
demonstrate how the method improves model train-
ing time and accuracy.  We also introduce a recogni-
tion precision measure, called HC-Index. We validate 
our method for 55 pre-defined activities as well as 55 



automatically-discovered activities found in data col-
lected from 34 smart home datasets. In addition, we 
demonstrate how the technique can be used to repre-
sent the relationship between predefined activities 
and those that are automatically discovered from un-
labeled sensor data. 

2. Related Work 

The goal of activity recognition is to identify activ-
ities as they occur based on data collected by sensors. 
There exist a number of approaches to activity 
recognition [22] that vary depending on the underly-
ing sensor technologies that are used to monitor ac-
tivities, the machine learning algorithms that are used 
to model the activities and the realism of the testing 
environment. 

Advances in pervasive computing and sensor 
networks have resulted in the development of a wide 
variety of sensor modalities that are useful for gather-
ing information about human activities. Wearable 
sensors such as accelerometers are commonly used 
for recognizing ambulatory movements (e.g., walk-
ing, running, sitting, climbing, and falling) [24],[32]. 
More recently, researchers are exploring smart 
phones equipped with accelerometers and gyroscopes 
to recognize such movement and gesture patterns 
[26]. 

Environment sensors such as infrared motion de-
tectors or magnetic door sensors have been used to 
gather information about more complex activities 
such as cooking, sleeping, and eating. These sensors 
are adept in performing location-based activity 
recognition in indoor environments [2],[31],[46] just 
as GPS is used for outdoor environments [29]. Some 
activities such as washing dishes, taking medicine, 
and using the phone are characterized by interacting 
with unique objects. In response, researchers have 
explored the usage of RFID tags and shimmer sen-
sors for tagging these objects and using the data for 
activity recognition [33],[36]. Researchers have also 
used data from video cameras and microphones as 
well [2]. 

There have been many varied machine learning 
models that have been used for activity recognition. 
These can be broadly categorized into template 
matching / transductive techniques, generative, and 
discriminative approaches. Template matching tech-
niques employ a kNN classifier based on Euclidean 
distance or dynamic time warping. Generative ap-
proaches such as naïve Bayes classifiers where ac-

tivity samples are modeled using Gaussian mixtures 
have yielded promising results for batch learning. 
Generative probabilistic graphical models such as 
hidden Markov models and dynamic Bayesian net-
works have been used to model activity sequences 
and to smooth recognition results of an ensemble 
classifier [27]. Decision trees as well as bagging and 
boosting methods have been tested [32]. Discrimina-
tive approaches, including support vector machines 
and conditional random fields, have also been effec-
tive [23],[46] and unsupervised discovery and recog-
nition methods have also been introduced [15],[38]. 

Many of these methods analyze pre-segmented 
activity sequences that have been collected in con-
trolled settings. The work summarized here reports 
classification accuracies ranging from 88% to 93% 
for 6-13 classes of pre-segmented activities. A few 
projects evaluate activity recognition on continuous 
data streams in real-world settings. These experi-
ments have been evaluated for 7-17 activity classes 
and report accuracies that are on average 20% lower 
than the pre-segmented experiments. In this paper we 
focus on extending this prior work on real-time activ-
ity recognition for large numbers of activities gath-
ered from multiple datasets. In addition, there has 
been work that employs hierarchical models to repre-
sent activities. Wang et al. [48] have proposed a 
framework that maps low-level patterns to high-level 
activities using a hierarchical framework. Van 
Kasteren et al. [45] employ a hierarchical hidden 
Markov model to model motion sensor data. 

While some researchers have offered approaches 
to transfer data between sensor networks [47], envi-
ronmental settings [8] or activity labels [20],[45] to 
perform activity recognition across generalized set-
tings, none to date have investigated how data from 
multiple sources can be leveraged to scale activity 
recognition methodologies.  

While recognizing predefined activities often re-
lies on supervised learning techniques, unsupervised 
learning is valuable for its ability to discover recur-
ring sequences of unlabeled sensor activities that may 
comprise activities of interest. Our approach to activ-
ity discovery builds on a rich history of discovery 
research, including methods for mining frequent se-
quences [1],[15], mining frequent patterns using reg-
ular expressions [4], constraint-based mining [35], 
mining frequent temporal relationships [3], and fre-
quent-periodic pattern mining [18]. 

More recent work extends these early approaches 
to look for more complex patterns. Ruotsalainen et al. 
[41] design the Gais genetic algorithm to detect inter-
leaved patterns in an unsupervised learning fashion. 



Other approaches have been proposed to mine dis-
continuous patterns [7],[34],[50], in different types of 
sequence datasets and to allow variations in occur-
rences of the patterns [38]. Aspects of these earlier 
techniques are useful in analyzing sensor sequence 
data. We build from these earlier approaches and 
enhance them in order to perform activity discovery 
as well as real-time activity recognition and tracking 
from streaming sensor data. 

3. Introduction 

We test the ideas described in this paper using 34 
sensor event datasets collected from 31 different 
smart home testbeds operated by 5 research groups. 
In all of the testbeds, sensor readings were captured 
while residents lived in the home and performed their 
normal daily routines. Sensors that are used for these 
data collections include infrared motion sensors and 
sensors that monitor door open/shut state. In some 
cases sensors are to monitor light usage, light levels, 
temperature, power usage, water usage, burner usage, 
and object usage. 

The physical settings vary between testing sites – 
some are apartments while others are one story or 
two story homes. The residential situations vary as 
well. Some of the sites have one resident, some have 
two residents, and some include pets. The datasets 
themselves were collected by different research 
groups including the MIT Placelab group [38], the 
University of Amsterdam [46], the Alpen-Adria Uni-
versity, Bosch, and the WSU CASAS group [8]. The 
timespan of the data varies from one to eight months. 
Human annotators at the respective labs provided the 
activity labels for each dataset. Some of the annota-
tors viewed video footage of the house to label activi-
ties, while others scanned raw sensor data. Although 
many of the syntactic labels for the activities are sim-
ilar, we postulate that there will exist differences in 
the interpretation of the activity and thus in the sen-
sor data sequences that correspond to even similar 
activity labels collected at different sites and annotat-
ed by different experimenters. We use labels provid-
ed with each data set as ground truth to train and test 
our activity recognition algorithms. 

Table 1 lists the activities for which annotations 
were available. It can be observed that there are many 
activities that have the same connotation, but slightly 
different labels. Dataset features are summarized in 
Table 2. We initially filter out data that has no corre-
sponding activity label, and have a remaining total of 

136,529,421 data points to analyze. In the second 
part of this paper we will describe an approach to 
discovering activity patterns in the un-annotated data 
and integrating the corresponding activity models 
into our hierarchy. 

 
Table 1. Activity labels collected from all datasets. 

Bathe 
Eat_ 

Dinner 
Phone Wakeup 

Bathing 
Eat_ 

Lunch 
Read 

Wash_Break-
Fast_Dishes

Bed_Toilet_
Transition 

Eating Relax 
Wash_Dinner

_Dishes 
Bed_to_ 
Toilet 

Enter_ 
Home 

Resperate Wash_Dishes

Brush_ 
Teeth 

Entertain 
_Guests 

Shower 
Wash_Lunch

_Dishes 

Cook 
Evening 
_Meds

Sleep Watch_TV 

Cook_ 
Breakfast 

Exercise 
Sleep_Out 
_Of_Bed 

Work 

Cook_ 
Brunch 

Groom Sleeping 
Work_At 

_Computer 
Cook_ 
Dinner 

House 
Keeping 

Sleeping 
_in_Bed 

Work_At 
_Desk 

Cook_ 
Lunch 

Leave_ 
Home 

Snack 
Work_At 

_Table 

Dress 
Meal_ 

Preparation 
Take_ 

Medicine 
Work_On 

_Computer 

Drink 
Morning 
_Meds 

Toilet work 

Eat 
Night_ 

Wandering 
Toilet_ 

Downstairs 
 

Eat_ 
Breakfast 

Personal_ 
Hygiene 

Wake  

 
While the activity taxonomy can be learned using 

natural language processing techniques, this mapping 
may not be necessarily the most accurate across mul-
tiple settings because label definitions vary between 
annotators. To overcome this problem, we propose a 
data-driven approach to identify the similarity be-
tween different labels. The sensor events for an activ-
ity are transformed into feature descriptors. Because 
the datasets use sensors with different identifiers, we 
map the sensor identifiers to a common vocabulary. 
Sensors are identified using the labels summarized in 
Table 3. 

 
 
 
 
 



Table 2. Description of the 34 smart home datasets used in this paper. 

Dataset #Residents #Activities #Sensors #Months #Events 

Arubaa 1 11 39 7 1719553
Cairoa 2 (+cat) 8 32 2 725163 

HH102a 1 35 41 1 133638 
HH103a 1 35 21 1 79470
HH104a 1 35 45 1 181664 
HH105a 1 35 36 1 58341 
HH106a 1 35 46 1 171990
HH108a 1 35 27 1 149406 
HH109a 1 35 31 1 184672 
HH110a 1 35 31 1 99897
HH111a 1 35 40 1 168521 
HH112a 1 35 29 1 205497 
HH113a 1 35 44 1 226794
HH114a 1 35 28 1 192685 
HH115a 1 35 39 1 118715 
HH116a 1 35 33 1 255975
HH117a 1 35 27 1 142950 
HH118a 1 35 40 1 525039 
Kyoto 2a 2 5 72 2 135616
Kyoto 3a 2 7 72 2 7770712 
Kyoto 4a 2 10 72 8 2798552 
Milana 1 (+dog) 9 33 2.5 426449 

Tulum 1a 2 6 20 4 433820 
Tulum 2a 3 10 36 6 1085900 

Klagenfurt 11b 1 (+dog) 6 11 1 9601 
Klagenfurt 14b 1 (+dog) 3 6 5 3818 
Klagenfurt 32b 1 2 6 5 3137 

Bosch 1c 1 10 32 6.5 658792 
Bosch 2c 1 10 32 6.5 572255 
Bosch 3c 1 11 32 5.5 518759 
Placelabd 2 10 180 1 3494137 

UA1e 1 8 14 1 53611 
UA2e 1 8 23 0.5 118842 
UA3e 1 8 21 1 286071 

aWashington State University, bAlpen-Adria University, cBosch, dMassachusetts Institute of Technology, 
eUniversity of Amsterdam.  

 
While the activity taxonomy can be learned using 

natural language processing techniques, this mapping 
may not be necessarily the most accurate across mul-
tiple settings because label definitions vary between 
annotators. To overcome this problem, we propose a 
data-driven approach to identify the similarity be-
tween different labels. The sensor events for an activ-
ity are transformed into feature descriptors. Because 
the datasets use sensors with different identifiers, we 
map the sensor identifiers to a common vocabulary. 

Sensors are identified using the labels summarized in 
Table 3. 

Table 3. List of sensor names used in models. 

Bath KitchenDoor 
Bathroom LivingRoom 

BathroomDoor LivingRoomDoor 
Bedroom LoungeChair 

BedroomDoor OutsideDoor 
DiningRoom WorkArea 

DiningRoomDoor OtherRoom 
Kitchen OtherDoor 



4. Learning an Activity Taxonomy 

4.1. Activity recognition on streaming sensor data 
 
Data collected in a smart home is stored as a tuple 

<Date, Time, SensorId, Message> and are referred to 
as events. Our activity recognition goal is to provide 
real-time activity labeling as sensor events arrive in a 
stream. To meet this goal, we formulate the learning 
problem as that of mapping the sequence of k most 
recent sensor events to a label that indicates the activ-
ity that corresponds to the last (most recent) event in 
the sequence.  The sensor events preceding the last 
event define the context for this last event. For ex-
ample, the sequence of sensor events: 

2011-06-15 03:38:23.27 BedMotionSensor ON
2011-06-15 03:38:28.21 BedMotionSensor ON 
2011-06-15 03:38:29.21 BedMotionSensor ON 
could be mapped to a Sleep activity label. Empiri-

cal evidence suggests that a sequence of k=20 yields 
consistently good accuracy [23] and this is the size 
we use for our experiments. We are currently im-
proving this approach to allow k to be dynamic based 
on the most likely activities that are being observed. 

To provide input to the classifiers, we define fea-
tures describing data point i that corresponds to a 
sensor event sequence of length k. Vector xi includes 
values for the 25 features summarized in Table 4. 
Each vector xi is tagged with the label yi of the last 
sensor event in the window. The label yi corresponds 
to the activity label associated with the last sensor 
event in the window. 

Table 4. The feature vector describing a data point. 
Feature # Value 

1..16 #Times each sensor generated an event 
in the sequence (16 unique sensors) 

17..20 Time of day at beginning of sequence 
(morning, afternoon, evening, night) 

21..24 Time of day at end of sequence 
25 Time duration of entire sequence

In this paper we use support vector machines 
(SVMs) and naïve Bayes (NBC) classifiers to learn 
the activity models.  We have tested naïve Bayes, 
hidden Markov models, and conditional random field 
models as well on similar data. We found that SVMs 
achieved consistently better performance than the 
NBC and HMM models and performed as well as the 
CRF on average with a reduced training cost. In addi-
tion, SVMs offer additional advantages in terms of 
determining the degree of fit between a data point 
and a class, which has been used to identify anoma-

lous points [42]. However, SVMs are costly in terms 
of training time and thus methods are needed to re-
duce these costs. We use the LibSVM implementa-
tion [6] with the one-vs-one paradigm and a radial 
basis function kernel with default parameter settings. 
A number of approaches have been explored for 
adapting SVMs to multi-class learning, including the 
one-vs-one approach, a one-vs-all formulation, a 
formulation of a multi-class SVM objective function, 
and utilization of a DAGSVM. Experiments conduct-
ed by Hsu and Lin [19] reveal that the one-vs-one 
paradigm is one of the most practical multi-class 
SVM approaches. The other successful approach 
utilizes a DAG, which we also test in this paper by 
approximating a DAG with the activity taxonomy. 
Though we test the SVM and NBC classifiers, our 
methodology can use any classifier. 

 
4.2. Creating an activity cluster hierarchy 

Learning an activity model is time consuming, 
even more so when the number of activity classes is 
large and when costly models are used. We hypothe-
size that insights can be gained about activities and 
models can be learned effectively with less training 
time by organizing activities in a cluster hierarchy. In 
the hierarchy, each leaf node represents a single ac-
tivity, and internal nodes represent unions of the ac-
tivities that reside in the subtree rooted at the node. 

Multiple approaches have been proposed for cre-
ating hierarchical clusters.  We propose to use a bot-
tom-up or agglomerative method [13]. At each step 
of the process the two most similar nodes are merged. 
When nodes are merged a parent node is created in 
the hierarchy, which represents a union of the two 
activities. The original (merged) activities become 
the children of the new node. Because merging oc-
curs between two nodes at a time the resulting hierar-
chy is represented as a binary tree.  

Central to the problem of clustering is the notion 
of similarity between two nodes. One of the most 
popular methods, which we adopt, is to estimate sim-
ilarity as the inverse mean distance between elements 
of each cluster. This method, also referred to as aver-
age linkage clustering, merges clusters X1 and X2 
with the smallest average distance between all pairs 
of their elements, as shown in Equation 1. 
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However, we still need to define a distance meas-
ure between the data points. We experiment with 
three alternative distance functions for this study. 
The first method, fmean, calculates d(x1,x2) as the 
Euclidean distance between the feature vectors for 
data points x1 and x2. The second method, smean, 
performs spectral decomposition on the feature dis-
tances. Spectral clustering makes use of the spectrum 
of the feature distance matrix to reduce the dimen-
sionality of the space and thus perform cluster merg-
ing in fewer dimensions. Let c1,..,cL represent the set 
of nodes (activities). We first compute the pairwise 
distance matrix Davg = davgmn, where davgmn is the 
distance between activities cm and cn as computed by 
Equation 1. This distance matrix is then transformed 
into an adjacency matrix, W, by applying the Gaussi-
an / heat kernel, where  and 

 is the free parameter representing the kernel width. 
The normalized Laplacian, L, for this adjacency ma-
trix is computed as defined in Equation 2, where I is 
the identity matrix and D is the degree matrix. 

  (2) 
In Equation 2, D is a diagonal matrix where the 

diagonal elements contain the sum of all of the ele-
ments in the corresponding row of W. The eigenvec-
tors of L up to K dimensions (where K corresponds to 
the index with the maximum eigengap) represent the 
activity data points in the transformed space. Finally, 
cluster distances are computed based on the Euclide-
an distance between the data points in the trans-
formed space. For high-dimensionality data, spectral 
clustering should generate clusters that reflect the 
distribution of the data without being sensitive to 
redundancies in the feature vector description. 

The third choice of distance function, mm, again 
uses spectral clustering to generate the final cluster 
differences.  However, where the smean calculation 
started with Euclidean differences between feature 
vectors representing the different activities, the mm 
approach computes the differences in the first-order 
Markov models of the activity sequences. Let (Im, Tm) 
and (In, Tn) represent the initial probability vector and 
transitional probability matrices of the Markov mod-
els representing the two activities m and n, respec-
tively. We measure the difference between the two 
Markov models by computing the symmetric 
Kullback-Leibler divergence measure [25] between 
the initial (Im, Tm) and (In, Tn) probability distribu-
tions. Let DKL represent the distance matrix between 
the activities, measured in terms of the symmetric KL 
divergence measure. Each element of the matrix is 
thus defined as shown in Equation 3. 
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Using the mm approach, distances between data 
points are obtained based on the probabilities of the 
activity sequences. In contrast to the fmean and 
smean approaches, mm is highly sensitive to the or-
dering of sensor events that occur within the instanc-
es of each activity class. The cluster hierarchy that 
was generated by the fmean approach is shown in 
Figure 1. This hierarchy represents a fairly balanced 
tree of height 13. The cluster hierarchy that was gen-
erated by the smean approach is identical to the 
fmean hierarchy for these datasets, so we do not in-
clude discussion of this hierarchy in the remainder of 
the paper. The mm approach generates the maximally 
unbalanced hierarchy shown in Figure 2. 

 
4.3. Comparing hierarchies 

By varying the choice of distance measure, merg-
ing criteria, and algorithm direction (top down or 
bottom up), alternative cluster hierarchies can be 
generated. Here we compare the hierarchies that are 
generated using these various methods. A number of 
cluster quality measures have been introduced in the 
literature. Internal measures evaluate cluster quality 
based only on the data that was clustered. Example 
internal evaluation including measuring compactness 
within a cluster vs. the separation between clusters 
[12],[16] and measuring pairwise similarity within a 
cluster weighted by the size of the cluster [51]. Other 
measures such as centrality and weakest link are use-
ful when clustering graphs [21], whereas the Davies-
Bouldin index [10] and cophenetic distance measure 
[44], used here, can be applied specifically to evalu-
ate hierarchical clusters. On the other hand, external 
measures related the quality of the clusters to an ex-
ternal factor such as classification accuracy [14],[37]. 
Here we compare alternative hierarchies using inter-
nal evaluation methods. Later we will perform exter-
nal evaluation by determining the effectiveness of the 
hierarchy to perform activity classification. 

Examining the hierarchies, we see that both data-
driven methods tend to group activities with similar 
labels together.  In the fmean cluster, one subtree 
contains the activities Sleep, Sleeping, Sleep-
ing_in_Bed, Bed_to_Toilet, Bed_Toilet_Transition, 
and Night_Wandering, and another subtree contains 
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the activities Bathe, Personal_Hygiene, Shower, and 
Toilet. The mm hierarchy also groups similar seman-
tic labels together, although the resulting hierarchy is 
much more imbalanced. These groupings result from 
the data features, despite the fact the data and the 
labels originate from different sites and annotators. 
This provides evidence that 1) activities are per-
formed in similar ways even in different settings with 
different residents, 2) annotators at different labs take 
similar approaches to identifying activities, and 3) 
activities with similar textual labels exhibit similar 
sensor event sequences. We note, however, that not 
all similarly-labeled activities appear as siblings in 
the hierarchy. For example, classes “Shower” and 
“shower” have virtually identical labels yet have a 
path length of 14 between their nodes in the hierar-
chy. Later we will examine differences between the 
corresponding data patterns. 

To compare cluster hierarchy quality using inter-
nal evaluation, we compute the Davies-Bouldin index 
and the cophenetic correlation coefficient for each 
hierarchy. The Davies-Bouldin index [10] is the ratio 
of the sum of within-cluster distance to between-

cluster separation. Smaller ratios are better, because 
they indicate that the clusters are compact and far 
apart. The index is calculated using Equation 4 where 
n is the number of clusters, Sn is the average distance 
of cluster points to the cluster centroid, and S(Ci,Cj) 
is the distance between cluster centroids. 

  (4) 

The cophenetic correlation coefficient [44] 
measures how well the cluster hierarchy maintains 
pairwise distances between the original data points 
(between individual activities). Specifically, the coef-
ficient c measures how closely the original distances 
between data points (activities) i and j correlate with 
their distance in the hierarchy t(i,j), or the height of 
the node at which points i and j are merged. Calcula-
tion of c is shown in Equation 5. The closer the value 
of c is to 1, the more accurately the cluster hierarchy 
reflects the similarity of the actual data points (activi-
ties). 
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Figure 1. Cluster hierarchy built from 55 activities using the fmean method. 



Figure 2. Cluster hierarchy built using mm. 

 (5) 

A summary of the cluster internal evaluation 
scores is provided in Table 5. We note that while 
both hierarchies provide a better organization than 
the original (non-clustered) set of activities, the hier-
archy that is generated using feature vector distances 
(fmean) yields both a lower Davies-Bouldin index 
and a higher cophenetic correlation coefficient than 
the hierarchy generated using Markov model distanc-
es (mm). Furthermore, the cophenetic correlation 
coefficient for the fmean hierarchy is very close to 1, 
which indicates that the generated hierarchy provides 
a taxonomy that accurately reflects the underlying 
data. 

 
Table 5. Internal cluster hierarchy results. 

Hierarchy type 

Measure Flat Fmean Mm 

DB 50.07 4.03 36.26 

CCC N/A 0.93 0.80 

 

4.4. Hierarchy activity model creation 

Our objective is to train a binary classifier at every 
internal node of the cluster tree to differentiate 
between the node’s children, thus creating a 
hierarchical activity model. The data samples for a 
parent node are obtained by combining the instances 
of its children. Using all of the child data points can 
lead to a difficulty for activity modeling, however, 
because the class distribution can become very 
imbalanced. Consider the root’s left child in Figure 1. 
If all data points are propagated from child to parent 
nodes, then the model for this node has to 
discriminate a class (the left subtree) which 
represents a union of five different activities and 
20,914,278 data points with another class (the right 
subtree) which represents a single activity, 
Night_Wandering, which contains 123,627 data 
points. This results in a classic class imbalance 
situation, which is a challenge for machine learning 
algorithms [17]. One way to face this challenge is to 
strategically undersample the majority class (the 
class with the majority of data points) [30]. 
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We employ an undersampling method in our 
hierarchical classifiers. Instead of combining all 
instances from child nodes into the parent node, we 
selectively sample instances from the children. 
Consider an internal node N with two children, N1 
and N2, with n1 and n2 numbers of data points, 
respectively. Our hierarchical classifier selects 
max(n1, n2) data points to assign to parent node N. 
We select half of these data points to be the ones 
furthest from the decision boundary separating the 
instances of N1 and N2, and the remaining half are 
those which are closest  to this decision boundary. 
Samples that are farthest from the decision boundary 
represent the unique characteristics of the individual 
children. In contrast, points that are closest to the 
decision boundary represent the characteristics of the 
combined dataset. Selecting the data points for the 
parent in this manner helps the algorithm to partially 
preserve the data distribution of its children. This is 
also a good method to even the distribution of 
activity data that normally occurs. 

5. Learning an Activity Taxonomy 

We originally postulated that activity modeling 
would require less training time when activities are 
organized in a cluster hierarchy rather than as a flat 
set. We further argue that by using sampling methods 
activity recognition performance would not be sacri-
ficed. In this section we describe some experiments 
that are designed to validate these hypotheses. We 
evaluate the performance of the flat model (no clus-
ters, the model discriminates between all activity 
classes at once) and the hierarchical model (based on 
the fmean hierarchy).  We report the results in terms 
of model training time and recognition accuracy for 
the SVM and NBC classifiers. The flat models for 
these classifiers are denoted as FSVM and FNBC, 
and the hierarchical models are denoted as HSVM 
and HNBC. 

In addition, we introduce a new measure, a Hier-
archical Classification Index (HC-Index), and evalu-
ate activity recognition for activity cluster hierarchies 
using this index. We introduce this alternative per-
formance measure based on the observation that not 
all recognition errors are alike. Looking at the activi-
ties in Figure 1 one can note that if a Sleep-
ing_in_Bed activity is mislabeled as Sleeping (the 
sibling node in the hierarchy), this error is not as 
great as mislabeling a Sleeping_in_Bed activity as 
Wash_Dishes (a node far removed in the hierarchy). 
For some applications a precise activity label is re-

quired.  On the other hand, in some cases an activity 
label which is close to the actual activity will suffice. 

Let yi be the ground truth label for a test sample xi 
and let li be the label predicted by the hierarchical 
model. HC-index(li, yi) determines the hierarchical 
classification accuracy of the predicted label li by 
computing the ratio of the depth of the lowest node in 
the tree that is an ancestor of both li and yi to the max-
imum depth of li and yi. 

To compute this index, the activity recognition 
algorithm traverses a path from the root node of the 
hierarchy to a leaf. At each node, the corresponding 
classifier processes the data to determine which edge 
to pursue. If an activity is labeled correctly, then the 
path to the ground truth label (yi) aligns with the hi-
erarchical model-generated path from the root node 
to the leaf node (li) resulting in an HC-Index(li, yi)  of 
0.  If an activity is not labeled correctly, then at some 
level in the hierarchy, the model outputs an edge 
node that differs from the correct path. 

 
 
 
 
 
 
 
 

Figure 3. Two sample subtrees. T1 has L=2 leaves 
and T2 has L=4 leaves. 

 
Activity modeling consists creating an activity 

hierarchy and then training separate models for each 
node in the hierarchy in a bottom-up fashion, using 
undersampling methods to provide data to the higher-
level nodes. In contrast, labeling new data involves 
nagivating the tree in a top-down manner. Consider 
an example of how an activity is categorized using a 
portion of the fmean cluster hierarchy (see Figure 1). 
In this example, a sensor sequence is input that corre-
sponds to the activity Meal_Preparation. A dramatic 
mistake would be to mislabel the sensor sequence as 
Night_Wandering. In this case, the classifier decides 
the data point belongs to the left child of the root.  
The only point of agreement between the classifier-
generated label and the true label is at the root node, 
so the HC-Index for the data point is 0/9 = 0.00.  On 
the other hand, a less obvious mistake would be to 
classify the point as Cook_Dinner, which is intuitive-
ly a subset of Meal_Preparation. In this case, classifi-
ers at four levels correctly label the data point before 
the path between the true label and the classifier-
generated label diverge. Activity recognition perfor-
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mance compared with HC-Index for this data point is 
6/9 = 0.67. The HC-Index values are averaged over 
all test data points to determine the HC-Index of the 
hierarchical model for a particular dataset. We com-
pare HC-Index to classification accuracy for our clus-
ter hierarchies. 

In our first experiment we compare a flat SVM 
(FSVM) and a hierarchical SVM (HSVM) on our 
targeted dataset. In order to examine how 
performance is affected by the number of activities, 
we compare these two approaches for all of the 
subtrees of the hierarchy shown in Figure 1. We plot 
training time as a function of the number of leaves 
(activities) that are found in the corresponding 
subtree. For example, the subtrees in Figure 3 have 
sizes L=2 and L=3, respectively. The training times 
for all subtrees in the fmean cluster hierarchy are 
shown in Figure 4 and are plotted as a function of the 
number of leaves in the subtree. Each of the times is 
compared with the corresponding training time if a 
flat SVM is used. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Classifier training time in seconds (y axis) 
as a function of subtree size (x axis) measured as the 
number of leaf nodes (activity classes) in the subtree. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5. Training time savings in seconds for 

HSVM as a function of subtree size. 
 

A few observations can be made about these 
results. First, as is expected, the training time 
increases superlinearly with the number of activities 
that are being considered. Second, HSVM requires 
significantly less training time than FSVM. Not 
surprisingly, the savings in training time increases 
superlinearly with the size of the subtree, as is shown 
in Figure 5.  The training time averaged over all 
subtrees is 10,718.71 seconds for HSVM and 
41,629.25 with a statistically significant (p < 0.01) 
improvement using the hierarchical model. The 
hierarchy generation time is less than 10 seconds for 
each approach so we do not include this in the 
summary. 

Improvement for the naïve Bayes classifier is not 
as dramatic, because both the flat and hiearchical 
classifiers are fast.  A flat NBC completes training 
for this dataset within 1 second on average, while the 
hierarchical version completes training in 0.76 
seconds.  However, as we will see next, the naïve 
Bayes classifiers do not generate as predictive of a 
model for this type of data. 

 
 

Table 6. Predictive accuracy for flat and hierarchical 
models. 

Classifier 
FNBC HNBC FSVM HSVM 
.409 .763 .777 .690 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. H
um

an-generated activity hierarchy. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. B
irds-eye view

 of a cluster hierarchy com
bining predefined activities and discovered activities. G

reen nodes are predefined activities and 
blue nodes are discovered patterns. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Classification accuracy for HSVM, HSVM-
NS, and FSVM as a function of subtree size. 

 
 
Next, we note that activity recognition 

performance is not adversely affected using the 
hierarchy with sampling. Table 6 summarizes the 
predictive accuracy results obtained for FNBC, 
HNBC, FSVM, and HSVM using (2/3, 1/3) testing 
and averaged over all subtrees in the hierarchy.  
While the hierarchical models have an edge over the 
flat models in both cases, the difference is not as 
great for the SVM classifier, although both SVM 
classifiers outperform the naïve Bayes classifiers.  
Looking at individual subtree sizes (plotted in Figure 
6), we note that the HSVM consistently outperforms 
the flat model for subtrees of size less than 25. This 
improvement in the performance is due to several 
factors, including the smaller number of classes to 
model for a subtree and the undersampling that evens 
the class distribution. 

Ironically, this undersampling sometimes also 
causes the HSVM to underperform the FSVM for 
subtrees of size greater than 25. As we approach the-
se large subtrees the methodology tends to aggres-
sively undersample parent nodes that otherwise 
would have a large number of data points from very 
diverse classes. An example of this situation is the 
subtree rooted at n48, which contains 19 leaves. If all 
of the data points were considered the model would 
learn from 1,163,559 data points. However, when 
sampling is used the SVM at this node learns a model 
from only 297,396 data points (approximately 1/4 of 
the total data points). We note that in the case of 
class imbalance the highest-accuracy approach is 
generally to label all points as the majority class.  
However, this lowers the true positive rate for the 

minority class, which is problematic if detecting the 
minority class is important.  

We test the result of sampling by comparing with 
performance of FSVM with HSVM and HSVM with 
no sampling (NS-HSVM). As Figure 6 shows, the 
lack of sampling does not result in a consistent im-
provement in performance. In fact, the predictive 
accuracy averaged over all subtrees in the hierarchy 
degrades from .790 for HSVM to .742 for NS-HSVM. 
Additional performance measures would need to be 
used to capture the affect of the HSVM and FSVM 
for cases with dramatically imbalanced classes. We 
will investigate these issues in the future, along with 
exploring alternate sampling methodologies for se-
lecting data points for the parent node. 

Next, we take a look at the relationship between 
HC-Index and accuracy. Accuracy averaged over all 
subtree sizes is 0.798 based on HC-Index, as opposed 
to 0.790 based on accuracy. This difference indicates 
that many of the errors are closer in the hierarchy that 
the accuracy measure would indicate. Knowing the 
similarity of the generated label with the true label 
provides an application with option to still use the 
output of the classifier. These near misses may still 
represent valuable information for many intelligent 
system applications. 

A natural question that arises is how our automat-
ically-generated activity hierarchy compares with 
other possible hierarchies for the purpose of activity 
recognition. There is no single hierarchy that is obvi-
ously intuitive or can provide a ground truth hierar-
chy for comparison. Annotators for the various da-
tasets do not maintain definitions for their interpreta-
tions of activities that were labeled, and there are 
obvious differences in interpretations of the activities 
between datasets. These variances are consistent with 
the study by Hu et al. [20] in which humans showed 
tremendous differences in their determination of the 
similarities of activities. Some participants ranked 
activities similar based on function while others used 
spatial relationships, temporal relationships, or other 
criteria for determining activity similarity. 

As a result, we compare the result of our activity 
taxonomy with two other hierarchies. One is the hier-
archy shown in Figure 7 which is built based on hu-
man intuition of activity similarity based on the in-
tended function of the activities. In the other hierar-
chy we utilize the structure of the fmean hierarchy 
but we randomly order the activity classes within the 
hierarchy. The resulting activity recognition accuracy 
for a random sample of the entire datasets using the 
human-generated hierarchy is 35.3%, while the accu-
racy for the randomly-labeled hierarchy is 29.6% and 



the accuracy for our generated hierarchy is 35.6%. 
These results indicate that well-formed hierarchies do 
impact the performance of activity recognition algo-
rithms and that the formation can be based on human 
interpretation of activities or on the data itself. 

6. Merging Predefined Activities with Discovered 
Activities 

The generally accepted approach to activity recog-
nition is to design or use machine learning techniques 
to map a sequence of sensor events to a correspond-
ing activity label. Recognizing activities in real time 
from streaming data introduces new challenges for 
this problem because data must be processed that 
does not belong to any of the targeted activity classes. 
Such “out of vocabulary” detection is difficult, par-
ticularly when the out of vocabulary data represents a 
majority of the data that is observed.  For the datasets 
that we are considering, more than half of the sensor 
events are unlabeled and do not correspond to any of 
the predefined activity classes. 

One way to handle unlabeled data is to design an 
unsupervised learning algorithm to discover activities 
from the sensor data. We have shown in earlier work 
[9] that segmenting unlabeled data into smaller clas-
ses improves activity recognition performance be-
cause the “Other” class is not dominant in terms of 
size. Another important reason to discover activity 
patterns from unlabeled data is to characterize and 
analyze as much behavioral data as possible, not just 
predefined activity classes.  The unlabeled data rep-
resents an important part of everyday life that needs 
to be examined and modeled in order to get a com-
plete view of everyday life. 

Our AD algorithm [9] searches the space of can-
didate patterns which consist of sensor event se-
quences appear in the raw data. Each potential pat-
tern is evaluated based on its ability to compress the 
data.  Once the best pattern is identified, AD com-
presses the data using the pattern and repeats the dis-
covery process to find additional patterns in the data. 

While our initial experiment only clustered 
predefined activities into a hiearchy, the same 
approach can be taken to create a hierarchy that 
combines predefined and discovered patterns. All of 
the clustering approaches are data-driven, so the 
algorithm only needs sensor sequence instances of 
the predefined patterns and of the discovered patterns 
in order to create the hiearchy. 

One difficulty that we encounter is limiting the 
number of discovered patterns. Because AD reports 

as many patterns as possible (until no more 
compression is achieved), the number of patterns that 
result from processing 34 datasets is very large.  AD 
discovered an average of 200 patterns in each dataset.  
If the hiearchy included all of the patterns the 
hierarchy would be enormous and the discovered 
patterns would dominate the hierarchy. In addition, 
some of the discovered patterns might be common to 
one setting but may not generalize over a population. 

We want to target patterns that are frequent over 
many smart home datasets. We therefore evaluated 
each pattern in terms of its ability to compress all of 
the unlabeled data in all of the datasets. To do this, a 
one-class SVM model was trained for each pattern 
and the number of instances of the pattern for all 
unlabeled data over all datasets was calculated. 
Compression of the combined data was then 
estimated as the number of unlabeled sensor events 
divided by the number of sensor events that were not 
instances of the pattern in question. The entire set of 
patterns was sorted based on this value. For our 
experiment, we selected the top n=55 patterns for 
clustering, equal to the number of predefined 
activities that are also processed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Visualization of AD-discovered patterns: 
P1 (top left), P2 (top right), P3 (bottom left). 

 
Figure 8 shows a high-level view of the hierarchy 

that is generated by clustering predefined activities 
and discovered activities together.  Figure 9 provides 
a visualization of the three top AD-discovered 
activities. The first one in the upper left contains a 
sequence consisting of motion in the bedroom 
followed by the living room (sometimes interspersed 
with kitchen events) and back to the bedroom, around 



10:20 in the evening. Looking at the larger context, 
we see that many of these events occur prior to 
sleeping and may represent getting ready for bed. 
The second pattern in the upper right consists of a 
front door closing followed by a series of kitchen 
events and then a living room event, usually in the 
late morning or mid afternoon.  This could represent 
a number of different activities that occur after 
returning home, such as putting away groceries or 
getting a drink. The third pattern in the lower left 
consists of a sequence of events alternating between 
the bedroom, a work area, and the living room, 
shortly after waking up in the morning.  This pattern 
might represent an individual gathering or setting up 
items in order to get ready for their daily routine. 

Many of the patterns represent transitions between 
activities or bursts of activity that are too short to 
easily label. Others represent activities that are 
recognizable but do not appear on the list of 
predefined activities, such as spending extended time 
in a secondary bedroom that is used for guests or 
crafts. 

Another visualization that allows us to better 
observe the similarity between nodes in the cluster 
hierarchy is a radial bar chart. With this chart, bars 
on the inside of the circle point to locations in the 
home (the 12:00 position is front door, followed in a 
clockwise direction by kitchen, work area, lounge 
chair, living room, dining room, bedroom, bathroom, 
shower, other room, medicine cabinet, other door, 

Figure 10. Radial bar charts for Cook (left), Meal_Preparation (middle), and Pat_3 (right). 

Figure 11. Radial bar charts for Shower (left), shower (middle), and Bathing (right). 



kitchen door, bathroom door, and other). The icon 
ordering was generated using an MIC-based distance 
graph [39] between areas of the home with a least-
cost traversal of the graph. Bars on the outside of the 
circle indicate the times during the day when the 
activity is performed. Figure 10 shows the radial bar 
charts for activities Cook, Meal_Preparation, and 
Pat_3. We observe that all occur predominately in the 
kitchen and are distributed in time 7 am to 8pm (with 
peaks around 8am and noon). 

We also want to better understand why some 
activities have similar semantic labels but are 
positioned far apart in the hierarchy.  As mentioned 
earlier, activities “Shower” and “shower” are not 
close together while the names are virtually identical. 
As is shown in Figure 11, the radial bar charts for 
Shower, shower, and Bathing in fact reveal fairly 
different patterns. The chart on the left shows a 
pattern that occurs in the bathroom anytime between 
7 am and 7 pm. In contrast, the chart in the middle 
shows a pattern that trips non-motion sensors 
(perhaps humidity or temperature sensors) and occurs 
between 7 am and 8 am. The chart on the right 
reflects a pattern that occurs in the bathtub between 7 
am and 8 am and late in the evening, around 11pm. 
These charts highlight the fact that there can exist 
significant differences in the interpretation of an 
activity name as well as differences in how the 
activity may be performed at different locations. In 
order to create activity models that generalize to 
larger populations, these differences will need to be 
recognized and standards for activities will need to 
be defined. While the hierarchical SVM model when 
tested for all 110 activities yields an accuracy that is 
25 times better than random guess, the resulting 
accuracy of 0.228 highlights the fact that continued 
research is needed to make these recognition 
techniques even more robust. 

7. Conclusions 

In this paper we propose and evaluate methods to 
analyze the similarity of predefined and discovered 
activities and to scale activity recognition by creating 
a hierarchical cluster of activity labels provided by 
various datasets. Instead of using a single flat classi-
fier to distinguish between a large numbers of activi-
ties, we design a hierarchy of classifiers, each of 
which distinguishes between child nodes at a particu-
lar location in the hierarchy. We hypothesize that 
building the activity hierarchy in this manner will 
result in a reduction in the training time without los-
ing recognition performance over the flat classifier 

model. We validate our method for 55 different activ-
ities based on data collected from 34 smart home 
datasets. The activity taxonomy that was generated 
using our proposed data-driven method did often 
group activities with similar labels together. On the 
other hand, some differences between activities with 
similar names were discovered using this analysis. 
Our experiments also demonstrate clearly the ad-
vantage of employing hierarchical activity organiza-
tion for modeling activities, resulting significant sav-
ings in training time reducing the class imbalance 
inherent in the datasets. 

In addition, an individual’s daily routine includes 
many activities outside the lists of activities that were 
annotated in these datasets. We introduced a method 
by which these activities can be extracted using ac-
tivity discovery algorithms based on frequent pattern 
mining. In this paper we demonstrated how discov-
ered activities and predefined activities can be 
merged together into a comprehensive model of 
smart home behavioral data. Future work may focus 
on gathering physical interpretations of some of the 
discovered activities by studying their relationships 
with other known activities in the taxonomy.  

As part of our future work, we plan to explore 
different pruning strategies, to further improve the 
current hierarchical taxonomy. In the current model, 
we do not associate any physical connotation to the 
intermediate nodes of the hierarchy. It would be an 
interesting exercise to devise methodologies for as-
sociating an “activity label” to the intermediate nodes 
and thereby study the relationships between the child 
nodes and its parent.  

The activity taxonomy generated by our approach 
can also be used in the context of transfer learning 
across generalized settings. For example, consider 
the challenge of learning an activity model for a new 
activity in the new setting. We can determine the 
position of the new activity label in the hierarchy 
using few labeled samples of the activity, which then 
can be combined with labeled samples of similar 
activities as determined by the taxonomy for learning 
the new activity model.  

In addition to exploring the above described di-
rections, we also plan to investigate other 
undersampling approaches for selecting data samples 
for the parent node from its children. We will also 
consider better feature descriptors based on mutual 
information and time weighting for encoding the in-
formation present in the sensor events describing an 
activity and for handling the interwoven and parallel 
activities. Finally, we will explore the use of the hier-



archical activity taxonomy with other activity recog-
nition algorithms. 
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