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Smart Homes predicting the Multi-Domain
Symptoms of Alzheimer’s Disease

Ane Alberdi, Alyssa Weakley, Maureen Schmitter-Edgecombe, Diane J. Cook,
Asier Aztiria, Adrian Basarab and Maitane Barrenechea.

Abstract—As members of an increasingly aging society, one of our major priorities is the development of tools to early detect
age-related disorders such as Alzheimer’s Disease (AD). The goal of this paper is to evaluate the possibility of using unobtrusively
collected activity-aware smart home behavioral data to detect the multimodal symptoms of AD. After gathering longitudinal smart home
data of 29 older adults for an average of > 2 years, we automatically labeled the data with corresponding activity classes and extracted
time-series statistics containing 10 behavioral features. AD symptoms were assessed every six months by means of self-reported
mobility, memory/cognition and mood tests. Using these data, we created regression models to predict AD symptoms as measured by
the tests and a feature selection analysis was performed. Classification models were built to detect reliable absolute change in the
scores predicting AD and SmoteBOOST algorithm was used to overcome class imbalance where needed. Results show that all
mobility, cognition/memory and depression symptoms are predictable by the activity-aware smart home data, as well as a reliable
change in mobility and visuospatial skills related to cognition. Results also suggest that not all behavioral features contribute equally to
the prediction of every symptom. Future work must focus on improving the sensitivity of the presented models by collecting more
longitudinal data and by focusing on class-imbalance suitable algorithms and in in-depth feature selection. The results presented
herein contribute significantly towards the development of an early AD detection system based on smart home technology.

Index Terms—Activity Recognition, Alzheimer’s Disease, Automatic Assessment, Behavior, Multimodal Symptoms, Older Adults,
Smart Home.
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1 INTRODUCTION

The increasing life expectancy in the developed coun-
tries has resulted in more and more cases of people af-
fected by age-related neurodegenerative diseases, such as
Alzheimer’s Disease (AD). An estimate of 115.4 million
people will suffer from AD in 2050 [1], and not having a
definitive cure for it yet [2], this can result in devastating
consequences in terms of health-care costs and quality of
life of patients and relatives. As a matter of general interest,
the search for solutions for the early detection and cure for
AD is currently a high priority issue.

AD manifests symptoms in multiple domains, such as
psychology, physiology, behavior and cognition [3]. These
symptoms are usually measured by means of self and
informant-reported tests, by interviews with psychologists
or physicians or in costly medical examinations based on
brain imaging, which are often performed too late, resulting
in a delayed diagnosis. Nowadays, only treatments to re-
lieve AD’s cognitive and behavioral symptoms are available
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Narbonne, 31062 Toulouse, France
E-mail: adrian.basarab@irit.fr

Manuscript received X X, X; revised X X, X.

[4], but the key for even these to be effective is the early
detection of the disease.

Smart homes are an emerging technological solution
enabling the monitoring of people’s behavior unobtrusively
and ubiquitously [5]. Real-life data can be gathered non-
stop throughout the day in a completely transparent way for
the user, offering a complete view of older adults’ behavior
and allowing the detection of changes that might indicate
the onset of a disorder at all times. If smart home-based
behavior shifts were mapped to AD, the main disadvantages
of the usual assessment methods could be overcome making
an early diagnosis of the disorder possible.

Our goal in this paper is to assess the possibility of
detecting the psychological, cognitive and behavioral symp-
toms of AD making use of unobtrusively collected smart
home behavior data. The affirmation of this hypothesis
would result in a path to follow towards the final devel-
opment and implementation of an early AD detection sys-
tem that could alert patients and relatives on time gaining
efficacy of treatments.

The main contributions of this work can be summarized
as follows. 1) The predictability of wide variety of health
assessment scales measuring AD’s multi-domain symptoms
or its onset is analyzed for the first time. 2) A throughout
analysis about the contribution of each behavioral feature
to the prediction of each health assessment score is done.
3) Some new smart home-based behavior features aiming
at measuring the global daily routine of the elderly are
presented and their contribution to the scales under analysis
is evaluated. 4) Finally, the problem of detecting a reliable
change in the health assessment scores of the elderly from
unobtrusively collected behavioral data is addressed using
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specific algorithms (SmoteBOOST) to overcome the so com-
mon class imbalance of health-related research.

This paper is structured as follows: In section 2 the
related literature is reviewed. In section 3, the steps fol-
lowed to collect and process the data, as well as to create
and validate the prediction models is explained. Section 4
summarizes the results of the study, and finally in section 5
the main conclusions and future lines are stated.

2 RELATED WORK

Previous research has demonstrated that longitudinal
monitoring of smart home-based behavioral data can be
useful not only to assess older adults’ health state but also
to detect the onset and follow the progress of some age-
related diseases and disorders. Dawadi et al. affirmed that
the overall cognitive and mobility skills of older adults can
be predicted by unobtrusively collected in-home behavioral
data [6]. For that purpose, they introduced an algorithm
called Clincal Assessment using Activity Behavior (CAAB)
and tested its validity for global Repeatable Battery for
the Assessment of Neuropsychological Status (RBANS) and
Timed Up and Go (TUG) scores’ prediction using time-series
statistics of several activities of daily living as predictors.
Hayes et al. have found MCI [7] as measured by the Clinical
Dementia Rating (CDR) and Mini-Mental State Examina-
tion (MMSE) tests to be correlated with in-home walking
parameters and mobility measures, whereas Galambos et al.
[8] discovered associations between overall in-home activity
and outings patterns with both dementia and depression,
which is also known to be a common AD symptom. MMSE,
Short Form Health Survey-12 and GDS scales were used to
determine subjects’ state. Petersen et al. [9] also affirmed
emotional states in terms of mood and loneliness to be
correlated to outing patterns, whereas they also verified
the possibility of predicting other overall health predictors
such as physical activity from these data. Loneliness of older
adults has also been predicted by analyzing their behavioral
data by Austin et al [10] .

3 METHODS

3.1 Data collection
First, we accessed unobtrusively collected in-home behav-
ioral data of 40 older adults living in 38 Smart-Homes, as
well as their biannual neuropsychological assessment data,
which were collected by the Center for Studies in Adaptive
Systems (CASAS) and the Neuropsychology and Aging
Laboratory at Washington State University (WA, USA).

Neuropsychological assessments of the subjects were
performed twice a year. Even if a wide variety of overall
health and psychology checking tests were performed in
each one of the assessment sessions, for the current study
we’ll focus on cognition/memory, mobility and mood (de-
pression) scores (see table 1), which have been found to be
affected by AD [3]. Cognitive abilities of the older adults
were measured by means of the Repeatable Battery for
the Assessment of Neuropsychological Status (RBANS) [11],
the Prospective and Retrospective Memory Questionnaire
(PRMQ) [12] and a Digit Cancellation test, while mobility
was assessed by Timed Up and Go (TUG) [13] and Arm

TABLE 1: Modality, test-retest reliability and standard devi-
ations of the scores used in the study

Domain Score rscore SDscore Ref.

Mobility Arm Curl 0.96 4.98 [16]
TUG 0.96 3.18 [17]

RBANS - total 0.88 14.04

[18]

RBANS - attention 0.88 17.47
RBANS - delayed memory 0.88 19.62

RBANS - immediate memory 0.88 17.12
Cognition / RBANS - visuospatial 0.88 12.96

Memory RBANS - language 0.88 15.60
PRMQ - total 0.89 9.15

[19]PRMQ - prospective memory 0.85 4.91
PRMQ - retrospective memory 0.89 4.98

Digit Cancel 0.85 37.20 [20]
Mood GDS 0.68 2.20 [21]

Curl [14] tests. The Geriatric Depression Scale - Short Form
(GDS-15) [15] was used to assess the depression level of the
elderly under study.

Smart home sensor data collection started in 2011 and
lasted until 2016, a period in which the data were collected
continuously for lengths ranging from < 1 month to 60
months (M= 19.95 months, SD=17.98 months) depending on
each apartment. As data coming from homes with multiple
habitants might pose problems to correctly estimate each in-
dividual’s activity level, these were removed for the follow-
ing analyses. Subjects with missing health assessment data
or with behavioral data collected for less than 6 months were
also removed. Hence, the final dataset contained the be-
havioral and health assessment data of multiple modalities
(cognition/memory, mobility and mood) of 29 older adults
who were living independently and alone in their own
smart home residences (M=26 months, SD=17.5 months,
range=6-60 months).

3.2 Preprocessing
3.2.1 Day-level behavior feature extraction
Smart homes were set-up to collect all sensor events that
took place in each residence during the study period. Each
raw-sensor data stream was an entry specifying the events’
timestamp, ID of the sensor detecting the event and type
of event (activation/deactivation). In order to make the
raw sensor-data streams interpretable, it was first necessary
to assign a specific activity to each sensor entry. For that
purpose, the AR activity recognition algorithm specified in
[22] was used. The reliability of this algorithm has been
demonstrated in a previous work, where accuracy greater
than 98% was achieved on 30 testbed smart homes using
three-fold cross validation.

Once the activity-level information was available, we
computed 17 daily behavior features for each subject, ex-
plaining their daily sleep and mobility patterns, time spent
in some specific ADLs and overall characteristics of their
routines. A detailed list of the computed features can be
seen in table 2.

The daily distance that the subjects were traveling inside
their homes was estimated by creating sensor mapping-files
based on the floor plan and sensor layout for each residence
(see example in Figure 1), where the x-y coordinates of the
motion sensor’s positions were specified. Three of the apart-
ments lacked specific information about the positioning of
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TABLE 2: Day-level activity features included in the study

Type Day-level features

Duration of specific
activities (6 features)

Time spent per day in cooking, eating,
relaxing, carrying out personal hygiene
activities, being out of home and
nighttime toileting activities

Sleep-related (2 features) The daily sleep duration and frequency

Mobility-related
(2 features)

The total number of activated sensors
and the total distance covered walking
inside the apartment per day

Routine-related (7 features)

Complexity of the daily routine, number
of total and of non-repeated activities
performed per day, maximum and
minimum inactivity times, day length
and similarity with previous day

Fig. 1: Floor plan and sensor layout of one of the residences
of the study

the sensors and/or the distribution within the houses. In
those cases, it was first necessary to estimate the positions
of the sensors, which was done by considering the apart-
ments to be of a similar shape to the rest and checking the
activation order of the sensors in the raw sensor data files.
Once all sensor positioning information was available, we
computed the daily sum of the Euclidean distances between
the consecutively activated motion sensors in order to esti-
mate the total walking distance traveled by the inhabitants.
Note that this approach only provides an approximation of
the real covered distance, as it doesn’t take into account the
existence of walls or other obstacles between the sensors
that must be avoided or surrounded.

To compute daily-routine features, we first extracted the
daily activity sequence from the AR-labeled sensor data
stream. We then encoded the daily activity sequence by
replacing each activity with a number from 1 to 12 (i.e.
Sleep=1, Cook=2, Relax=3, ..., Others = 12). Shannon entropy
was used as the measure of complexity of the daily routine.
So as to get this entropy value, we computed the daily
probability distribution (histogram) of the activity sequence
(P), and we then applied the Shannon entropy as in (1),

Complexityroutine =
12

∑
activity=1

Pactivity − log2Pactivity (1)

where Pactivity was the probability of a certain activity to
happen during the day based on the actual day’s histogram.

The same encoded activity-sequence was used to com-
pare the daily routines of consecutive days. For this pur-
pose, we used an implementation of the “gestalt pattern
matching” algorithm [23] available in Python as “Sequence-
Matcher” function, which expresses the similarity of any
two sequences as a ratio between 0 and 1. This allowed us to
measure the degree of similarity between consecutive days.
Finally, we checked the timestamps of the daily activity
events and computed the day-length as the time elapsed
from the first to the last detected activity of the day. We
believe that the remaining features are self-explanatory.

3.2.2 Between-assessments behavior statistics’ computa-
tion

At the end of the previous step, we had available a set
of daily activity features for each subject. We then applied
the CAAB algorithm, which was introduced in [22], to the
daily activity data in order to extract the behavioral statistics
of each between-assessment period. RStudio for R was the
selected environment for this purpose.

In short, CAAB algorithm was used to apply the follow-
ing processing steps to the daily behavior data: 1) Take each
subject’s between-assessment daily behavior data (which
was 6-months length as assessments were performed twice
a year), 2) Apply a log transform and a Gaussian detrend-
ing to each time-series (behavioral variable), 3) Compute
five summarizing time-series statistics (variance, skewness,
kurtosis, autocorrelation and change) for each behavioral
feature in this period using a sliding window of length 4%
and 4) Compute the average of each time-series statistic for
the 6-month period and use them for the final predictions.

The resulting preprocessed dataset for further analysis
was a collection of 85 (5 time-series statistics of 17 behavioral
features) biannual summary behavior statistics of 31 older
adults who were living alone in their sensorized apartments
for a period of 24.0± 13.68(SD) months.

3.2.3 Health assessment scores’ set-up

Our goal is to create prediction models that map smart
home-based behavior features to health assessment values
that might capture AD symptoms. In this study, our target
variables are the Arm Curl and TUG mobility test scores,
cognition and memory assessment based on Digit-Cancel
test and RBANS and PRMQ score and subscores, as well
as depression symptoms represented as GDS test-scores. All
these values were self-reported by the participants at the
end of each corresponding 6-month period.

Self-reported questionnaires can be highly subject-
dependent for several reasons. In order to take into account
the inter-subject variability that each subject’s age, gender,
education or habits might provoke in the scores, we also
considered to standardize them for each one of the subjects
by computing a Reliable Change Index (RCI) [24] that in-
forms whether a subject has suffered a significant change in
an assessment score based on his/her own previous perfor-
mance. The RCI discards changes that might have appeared
due to reasons other than an actual change in scores (such
as measurement unreliability) by applying a threshold to
the scores’ differences. We looked for both reliable abso-
lute changes compared to baseline values (RCIbaseline) and
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compared to the previous assessment point (RCIconsecutive)
of each subject for all tests’ outputs.

In order to calculate the RCIs for the scores used herein,
we gathered test-retest reliability (rscore) and standard devi-
ations (SDscore) that the tests have shown in their develop-
ment cohorts and/or in previous works, as shown in table
1. Therefore, the RCIs for each subject were computed as:

RCIbaseline(i) =
Scorei − Scorebaseline√

2SEm
(2)

RCIconsecutive(i) =
Scorei − Scorei−1√

2SEm
(3)

where SEm or Standard Error of Measurement repre-
sents the expected variation of the observed test scores
due to measurement error and is computed as SEm =
SDscore

√
1− rscore , rscore is the test-retest reliability measur-

ing the consistency of the test-scores over time, Scorei is the
test score at assessment point i, Scorebaseline is the test score
at the first/baseline assessment and Scorei−1 is the test score
at the previous assessment point.

Nonetheless, a Reliable change in a health-assessment
score is a rare event. As such, we had very few posi-
tive instances (data instances where a reliable change was
observed) for some of the assessment scores, resulting in
highly imbalanced data. For the following, we removed
from the study those tests which were extremely imbalanced
(<10% of positive instances). We distinguished the remain-
ing tests in imbalanced (10%-30% of positive instances) and
not-imbalanced data (30%-50% of positive instances).

3.3 Cognition and mobility change prediction

The preprocessed dataset resulting from the previous steps
was analyzed using Weka.

First, we performed a correlation analysis between the
mobility, cognition/memory and mood assessment scores
and smart home behavior data. For this purpose, we im-
plemented four different regression models using all be-
havioral features computed in the previous step for each
one of the scores using Support Vector Regression (SVr)
with a linear kernel, Linear Regression (LinearR), SVr with a
Radial Basis Function (RBF) kernel and k nearest neighbours
(kNN) algorithms. We compared the correlation coefficients
(r) and Mean Absolute Errors (MAE) of the models using
10-fold Cross-Validation approach. Corresponding pairwise
random algorithms were built and evaluated in our dataset
following the same process. These random algorithms pro-
vided a basis of comparison to ensure that performance
results are not due to chance. The random algorithms were
built using a uniformly distributed random data-matrix of
the same size as the real behavioral data, while respecting
each variable’s data range as in the original dataset. A
corrected paired t-test was used to detect significant im-
provement of smart home-based algorithms in comparison
to the random data algorithms.

In order to analyze the types of behavioral features that
are most correlated with each one of the tests, we built
and evaluated activity-specific models for the main test
scores with a 10-fold CV. The behavioral features that were
included in each one of the models are shown in table 3.

TABLE 3: Task-specific grouping of the daily features

Group Day-level features

Daily-routine

Complexity of the daily routine number of total activities
and number of non-repeated activities performed per day,
maximum and minimum inactivity times, day length and
similarity with previous day

Mobility The total number of activated sensors and the total
distance covered walking inside the apartment per day

Outings Time spent per day in being out of home
Mobility & outings Mobility + Outings

Sleep The daily sleep duration and frequency
Overnight toileting Time spent per day in nighttime toileting activities
Overnight patterns Sleep + Overnight toileting

Cook & eat Time spent per day in cooking and eating

Again, we searched for statistically significant improvement
in comparison to pairwise random algorithms using a cor-
rected paired t-test.

Regarding RCI detection, we used different approaches
for the imbalanced and not-imbalanced datasets. First, not
imbalanced datasets containing all behavioral features were
reduced by means of a Principal Component Analysis. Prin-
cipal Components explaining the 95% of the variability in
the behavior data were kept to create the reduced datasets.
SVM, AdaBoost, Multilayer Perceptron (MLP) and Random
Forest (RF) algorithms were trained and validated following
a 10-fold CV approach. Area under the ROC curve (AUC
ROC), area under the Precision-Recall curve (AUC PRC),
F-score and sensitivity were selected as the metrics for mod-
els’ evaluation. The combination of these metrics offers an
excellent overview of both models’ overall performance and
capability to detect the event of interest (the reliable change
event), and are specially suitable when the data to work
with is skewed. A corrected paired t-test was used to detect
significant improvement of smart home-based algorithms in
comparison to the pairwise random data algorithms.

For the imbalanced datasets, a different approach was
required. Common machine-learning algorithms tend to
create biased models towards the majority class when being
applied to imbalanced datasets, resulting in high-accuracies
but, very low sensitivity. In most of the health-related
machine learning applications, the event in which we are
more interested is the rare event or the minority class,
highlighting the need to use alternative methods to improve
the detection of these minority events. SMOTEBoost [25] is
a method combining Boosting techniques with SMOTE [26]
oversampling techniques. Whereas boosting aims at creat-
ing a “strong” classifier using a set of “weak” classifiers,
SMOTE is a technique to oversample the minority class by
creating synthetic data instances and thus, reduce class im-
balance. SMOTEBoost combines these processes iteratively
in order to improve the sensitivity of the models without
the overall accuracy being affected.

We built prediction models for imbalanced datasets us-
ing SMOTEBoost and kNN with k=5 as the “weak” clas-
sifier. A 3-fold CV was performed for validation purposes.
Pairwise random algorithms were also built using the pre-
viously mentioned random data and were validated for
prediction of our data following the same 3-fold CV process.
Again, AUC ROC, AUC PRC, F-score and sensitivity of the
models were computed for models’ performance screening.
McNemar’s test was applied to check whether a significant
improvement was observed using smart home data in the
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TABLE 4: Regression results for the absolute test scores
using all behavioral features for 10-fold CV. (Statistically
significant improvement (*p<0.05,**p<0.01,***p<0.001) in
comparison to the corresponding pairwise random algo-
rithm.))

SVR LinearR SVR RBF kNN
r MAE r MAE r MAE r MAE

Mobility
Arm Curl 0.17 5.62 0.06 4.99 0.29** 4.18* 0.14 5.91

TUG 0.51*** 3.89 0.36*** 3.92 0.57*** 3.03*** 0.42*** 3.72
Cognition & Memory

PRMQ 0.26** 9.28 0.20* 8.42 0.31*** 7.01 0.31** 8.40
Prospective Memory 0.30** 4.72 0.12 4.55 0.26** 3.72 0.28** 4.50

Retrospective Memory 0.15 5.15 0.14 5.17 0.39*** 3.57** 0.27* 4.53
RBANS 0.27* 15.97 0.34*** 15.50 0.40*** 13.07* 0.34*** 15.74

Attention 0.40*** 16.14 0.33*** 17.12 0.31*** 15.52 0.22* 16.80
Delayed Memory 0.13 15.01 0.04 17.65 0.31** 11.19 0.31** 16.39

Immediate Memory 0.00 16.23 0.03 15.43 0.08 12.04 0.29*** 14.52
Language 0.47*** 10.77 0.35*** 13.25 0.47*** 10.10** 0.26** 12.41

Visuospatial 0.01 18.25 0.04 17.51 0.21** 12.28 0.18 15.12
Digit Cancel - Speed 0.22* 35.05 0.17 46.10 0.18 26.88 0.23* 31.26

Mood / Depression
GDS 0.02 2.79 0.02 2.84 0.21* 1.67** 0.12 1.97

prediction of reliable change in the scores in comparison to
random data algorithms.

4 RESULTS

4.1 Absolute test scores’ prediction

Table 4 shows the results of the regressions for all the
absolute test scores using all smart home behavioral fea-
tures. For mobility tests, whereas Arm Curl has a weak
correlation with behavioral data, TUG has been found to
be strongly correlated with behavioral data. Regarding cog-
nition and memory overall scores and subscores, all of them
show moderate correlations with behavioral data except
the visuospatial and immediate memory subscores of the
RBANS test, which were found to correlate weakly. Finally,
depression has shown a weak correlation with the global set
of smart home behavioral data.

Regressions based on specific activities, which can be
seen in table 5 have shown some interesting results. Arm
Curl mobility test has shown weak but, statistically signif-
icant correlations only with outings, daily routine, cooking
and eating and mobility features. In contrast, TUG test has
shown significant moderate correlations with daily routine,
sleep, overnight toileting and the combination of the last
two, as well as a significant weak correlation with cooking
and eating features.

Regarding cognition and memory tests, global PRMQ
score was moderately associated to daily routine and to the
overnight patterns, as well as weakly correlated to sleep,
overnight toileting and mobility. RBANS was moderately
correlated with overnight patterns, whereas it was also
showing weak yet statistically significant correlations with
mobility, mobility and outings, sleep and overnight toileting
behaviors. Digit Cancel processing speed was found to be
moderately correlated to sleep and overnight patterns, and
weakly yet significantly to overnight toileting, daily routine
and cooking and eating features.

Finally, for the geriatric depression assessment, we’ve
found weak yet significant correlations with mobility alone,
mobility and outings and sleep features.

TABLE 5: Regression results for the absolute test scores by
behavioral feature type for 10-fold CV. (Statistically signif-
icant improvement (*p<0.05,**p<0.01,***p<0.001) in com-
parison to the corresponding pairwise random algorithm.))

(a) Mobility - Arm Curl

SVr LinearR SVr RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.28* 4.35 0.17 4.83 0.16 4.43 0.05 6.52
Mobility 0.09 4.93 0.12* 4.71 0.02 4.61 0.18 5.80

Mobility & outings 0.14 4.58 0.11 5.01 0.11 4.42 0.15 5.79
Outings 0.28** 4.30 0.20 4.46 0.23* 4.40 0.00 6.45

Sleep 0.17 4.99 0.11 4.74 0.00 4.57 0.17 5.77
Overnight patterns 0.03 4.81 0.16 4.63 0.10 4.65 0.04 6.51
Overnight toileting 0.10 4.67 0.14 4.66 0.06 4.57 0.12 7.21

Cook & eat 0.06 4.85 0.20* 4.55 0.27** 4.32 0.08 6.19

(b) Mobility - TUG

SVr LinearR SVr RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.35*** 3.77 0.33** 3.97 0.37*** 3.52** 0.32* 3.77
Mobility 0.12 3.74 0.04 4.21 0.14 3.68* 0.08 4.71

Mobility & outings 0.18 3.74 0.11 4.19 0.16 3.70* 0.10 4.61
Outings 0.00 3.96 0.07 4.08 0.08 3.76 0.08 4.73

Sleep 0.30* 3.66 0.30* 3.75 0.25* 3.71 0.13 4.53
Overnight patterns 0.33** 3.59 0.30* 3.78 0.32*** 3.53* 0.19 4.21
Overnight toileting 0.26** 3.54** 0.30** 3.81 0.29** 3.50** 0.14 4.62

Cook & eat 0.16* 3.78 0.24** 3.91 0.10 3.73 0.19 5.92

(c) Cognition & Memory - PRMQ

SVr LinearR SVr RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.18 7.96 0.20* 7.93 0.21* 7.42 0.32** 8.15
Mobility 0.12 7.84 0.21* 7.45 0.16 7.35 0.01 10.63

Mobility & outings 0.09 8.03 0.14 7.91 0.14 7.44 0.17 10.28
Outings 0.05 7.74 0.10 7.88 0.04 7.59 0.19 8.73

Sleep 0.28** 7.13 0.19 7.56 0.24* 7.57 0.11 9.86
Overnight patterns 0.30** 7.37 0.27* 7.42 0.29** 7.47 0.25* 8.51
Overnight toileting 0.29** 7.18 0.23* 7.43 0.25* 7.54 0.28*** 8.13

Cook & eat 0.11 7.65 0.07 7.92 0.09 7.54 0.01 12.29

(d) Cognition & Memory - RBANS

SVr LinearR SVr RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.13 15.64 0.13 16.43 0.25** 14.27 0.18 17.86
Mobility 0.18* 14.51 0.23* 14.59 0.26** 14.21 0.18* 19.00

Mobility & outings 0.14 15.24 0.22* 14.73 0.25* 14.11 0.15 17.69
Outings 0.01 14.62 0.09 14.6 0.01 14.45 0.16 16.37

Sleep 0.20 14.36 0.20 14.72 0.24* 14.12 0.19 17.12
Overnight patterns 0.30** 14.18 0.31** 13.46 0.31** 13.61* 0.17 17.17
Overnight toileting 0.26** 13.66 0.22* 13.91 0.25** 13.72** 0.03 18.61

Cook & eat 0.02 14.78 0.10 14.72 0.04 14.23 0.02 18.83

(e) Cognition & Memory - Digit Cancel

SVr LinearR SVr RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.23* 26.86 0.20* 32.44 0.16 27.08 0.05 37.28
Mobility 0.07 27.77 0.07 29.04 0.08 27.33 0.03 36.70

Mobility & outings 0.00 29.35 0.13 31.26 0.05 27.62 0.13 33.43
Outings 0.12 28.94 0.11 30.22 0.06 27.55 0.02 36.84

Sleep 0.22 26.98 0.30** 26.44 0.20 26.92 0.04 37.91
Overnight patterns 0.22* 28.52 0.31** 28.03 0.20 27.10 0.09 33.83
Overnight toileting 0.22* 27.49 0.29** 27.68 0.14 27.12 0.17 31.81

Cook & eat 0.21* 30.06 0.17* 31.59 0.18 27.56 0.02 46.91

(f) Mood - GDS

SVr LinearR SVr RBF kNN
r MAE r MAE r MAE r MAE

Daily routine 0.16 1.85 0.15 2.38 0.16 1.67* 0.07 1.92
Mobility 0.12 1.72* 0.25* 1.9 0.19 1.66** 0.13 1.97

Mobility & outings 0.21* 1.68** 0.24* 1.95 0.25* 1.62** 0.07 2.07
Outings 0.14 1.73 0.17 1.98 0.19 1.67* 0.03 2.55

Sleep 0.26* 1.67** 0.21* 1.97 0.25* 1.66** 0.08 2.07
Overnight patterns 0.19 1.77 0.13 2.07 0.22 1.67* 0.06 2.05
Overnight toileting 0.02 1.76 0.08 1.91 0.09 1.74 0.14 2.01

Cook & eat 0.08 1.83 0.04 2.07 0.09 1.70* 0.01 2.24
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TABLE 6: Reliable change detection of Arm Curl scores from
baseline (*: Statistically significant improvement (adjusted
p<0.0125) in comparison to the corresponding pairwise
random algorithm.)

AUC ROC AUC PRC F-score Sensitivity
RF 0.58 0.73* 0.77* 0.92*

SVM 0.59 0.69* 0.77* 0.89*
AdaBoost 0.64 0.76* 0.76* 0.84*

MLP 0.58 0.75* 0.69* 0.71*

TABLE 7: Reliable change detection of the imbalanced scores
using SMOTEBoost (*: Statistically significant improvement
(adjusted p<0.005) in comparison to the corresponding pair-
wise random algorithm.)

AUC ROC AUC PRC F-score Sensitivity
RBANSbaseline − total 0.66 0.17 0.09 0.13

RBANSbaseline − language 0.55 0.19 0.18 0.21
RBANSbaseline − visuospatial 0.60 0.21 0.25 0.21

TUGbaseline 0.48 0.17 0.063 0.11
ArmCurlconsecutive 0.40 0.18 0.13 0.12

RBANSconsecutive − language 0.54 0.11 0.00 0.00
RBANSconsecutive − visuospatial 0.57* 0.24* 0.29* 0.30*

TUGconsecutive 0.56* 0.22* 0.15* 0.50*

4.2 RCI detection

Global PRMQ and subscores, consecutive global RBANS
scores, RBANS subscores related to attention, delayed mem-
ory and immediate memory, Digit cancel score and GDS
test were excluded from the study as they were capturing
less than a 10% of reliable change instances. Among the
remaining labels, only the reliable change in Arm Curl score
from baseline had enough positive instances to be consid-
ered a balanced dataset. The remaining scores (RBANS,
RBANS language, RBANS visuospatial and TUG change
from baseline, and RBANS language, RBANS visouspatial
and TUG change between consecutive assessments) were
considered imbalanced and processed as such.

Table 6 shows the results for Arm Curl reliable change
detection from baseline. All four classifiers show a statisti-
cally significant improvement in terms of Area under the
PR curve, F-score and sensitivity for the adjusted p-value,
whereas area under the ROC curve shows reasonable results
surpassing the 0.6 barrier.

Table 7 summarized the results for the prediction models
for the imbalanced datasets based on SMOTEBoost algo-
rithm. McNemar’s tests have found significant improve-
ment of the smart home based prediction models compared
to random classifiers for an adjusted p-value of 0.005 for the
reliable change detection between consecutive assessments
in visuospatial skills measured by RBANS test and mobility
measured by the TUG test. However, and even having used
methods to overcome class-imbalance, models remain yet
biased and lacking sensitivity.

5 CONCLUSION

The problem addressed in this work is not an easy task
to solve. Our goal was to predict the multi-modal symp-
toms of AD from unobtrusively collected behavioral data
inside older adults’ apartments. Despite the complexity of
the task, our results show that AD symptoms related to
cognition, mobility and depression are predictable using
activity-labeled smart home data.

A regression analysis of the smart home-based behavior
data with all the tests under analysis have shown several
significant correlations. As expected, behavioral data were
the most correlated to mobility assessment scores, followed
by cognitive and memory skills, whereas the most difficult
task seems to be mood prediction. Nonetheless, all models
have shown a significant improvement compared to models
based on random data.

The feature selection analysis has brought to light such
valuable information as the predictability of mobility scores
from outing patterns, daily routine, cooking and eating
patterns and mobility features. In the specific case of TUG
score there was also a significant correlation with sleep
& overnight patterns. In [6], TUG also showed significant
correlations with mobility, outings, sleep and ADL features.
Memory and cognition were mainly correlated to sleep
and overnight patterns, but also to daily routine, mobility,
outings and cooking and eating features. These results also
agree with previous work [6], where correlations between
total RBANS score and smart home activity data were ana-
lyzed. Finally, depression assessed with the GDS scale was
found to correlate with mobility, outings and sleep features.
This agrees with previous work [8] where correlation of GDS
score with overall in-home mobility and outing patterns was
discovered. Thus, our results validate those reported in the
literature, in addition to analyzing more in detail each aspect
of mobility and memory/cognition skills thanks to the use
of more tests and their subscores, as well as discovering new
correlations with daily routine patterns.

Regarding reliable change detection, we’ve seen that
activity-labeled smart home data can actually be used to
build quite accurate models when a complete and balanced
dataset is available. This is the case of Arm Curl test change
from baseline, which has been seen to be predictable in a
quite accurate manner and with a high sensitivity. We have
verified in all four models built for this reliable change pre-
diction that the use of smart-home activity data significantly
contributes to the detection of such events. Unfortunately,
we didn’t have a balanced dataset available for all cases.
Despite that problem, by applying SMOTEBoost technique
to overcome class imbalance, we were able to demonstrate
that consecutive reliable change on mobility measured by
TUG test and consecutive reliable change on visuospatial
abilities measured by RBANS test are predictable using
smart-home activity labeled data. A McNemar’s test with an
adjusted p-value has supported this hypothesis, yet we are
aware that the models built in this work lack sensitivity to be
considered final models. Now that we know that behavioral
data can be used to at least automatically assess changes
in mobility and visuospatial skills, we can keep collecting
more longitudinal data to create better models in the future.
This might also result in the discovery of other significant
associations. Note that these results were also achieved by
using all the behavioral features, whereas a feature-selection
process can also help in improving them.

Summing up, this work has demonstrated the possibil-
ity of predicting AD mobility, cognitive and mood-related
symptoms from unobtrusively collected in-home behavioral
data. We believe that the results shown herein are of high
relevance in our increasingly older society, which is suffer-
ing more and more AD incidence, as they suggest the possi-
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bility of implementing a system that could bring huge ben-
efits to it. The models shown in this paper are early models
aimed at demonstrating the feasibility of such a system and
providing insight into the behavioral features that might
be used for this purpose. Completion and improvement of
the results shown in this paper must be done by collecting
more data and by applying algorithmic solutions that might
better adapt to the imbalanced detection problems posed
herein before their implementation in real-world settings.
Thus, future work will focus on keeping collecting data
for further analysis, on testing or designing more suitable
algorithms for imbalanced datasets an performing a more
in-depth feature selection analysis in order to improve the
sensitivity of the models shown herein, without the overall
accuracy of the models being affected.
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