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Abstract 
Background: Human digital twins have the potential to change the practice of 
personalizing cognitive health diagnosis because these systems can integrate 
multiple sources of health information and influences into a unified model. 
Cognitive health is multifaceted, yet researchers and clinical professionals struggle 
to align diverse sources of information into a single model.  
 
Objective: In this paper, we introduce a method called HDTwin, for unifying 
heterogeneous data using large language models. HDTwin is designed to predict 
cognitive diagnoses and offer explanations for its inferences. 
 
Methods: HDTwin integrates cognitive health data from multiple sources, including 
demographic, behavioral, EMA, n-back test, speech, and baseline experimenter 
testing session markers. Data are converted into text prompts for a large language 
model. The system then combines these inputs with relevant external knowledge 
from the scientific literature to construct a predictive model. The model’s 
performance is validated using data from three studies involving n=124 
participants, comparing its diagnostic accuracy with baseline machine learning 
classifiers. The source code for HDTwin is available at https://github.com/WSU-
CASAS/HDTwin. 
 
Results: HDTwin achieves a peak accuracy of 0.81 based on automated selection of 
markers, significantly outperforming baseline classifiers. On average, HDTwin 
yielded accuracy=0.77, precision=0.88, recall=0.63, and Matthews correlation 
coefficient (mcc)=0.57. In comparison, the baseline classifiers yielded average 
accuracy=0.65, precision=0.86, recall=0.35, and mcc=036. The experiments also 
reveal that HDTwin yields superior predictive accuracy when information sources 
are fused compared to single sources. HDTwin’s chatbot interface provides 



interactive dialogues, aiding in diagnosis interpretation and allowing further 
exploration of patient data. 
 
Conclusions: HDTwin integrates diverse cognitive health data, enhancing the 
accuracy and explainability of cognitive diagnoses. This approach outperforms 
traditional models and provides an interactive interface for navigating patient 
information. The approach shows promise for improving early detection and 
intervention strategies in cognitive health. 
 
Keywords: digital twin, smartwatch, digital behavior markers, large language 
models, text analysis, machine learning 
 

Introduction 
Mild cognitive impairment (MCI) is a transition state between healthy aging and 
dementia. Digital health technologies can enhance early detection and improve the 
ecological validity of traditional MCI diagnostic assessments. Current technology-
assisted approaches often focus on a small set of data sources, such as speech and 
text 1,2, mobile tests 3,4, self-reported in-the-moment states 5, and digital behavior 
markers 6–9. Each contributes valuable insights, but they are fragmented.  
 
We propose the construction of a human digital twin that utilizes these diverse 
pieces of digital information to form a more comprehensive model of an individual. 
This digital twin integrates data from multiple sources, recorded at different times 
and in real-world settings. The result offers a holistic view that enhances early 
diagnosis of cognitive impairment and facilitates timely interventions to slow 
progression, in line with the quest for precision health. 
 
Designing digital twins faces the challenges associated with merging data that 
differ in acquisition times, devices, formats, and fidelity. Clinicians also need help 
navigating these types of information with traditional dashboards 10. To overcome 
these challenges, we propose a system called HDTwin that uses large language 
models (LLMs) to create a cohesive digital twin from heterogeneous data sources. 
In this paper, we detail the design of HDTwin and evaluate the system in the 
context of automating cognitive health diagnosis for 124 participants from three 
studies. Specifically, we highlight the system’s ability to perform information 
retrieval, data fusion, and inference explanations. We demonstrate that HDTwin 
successfully integrates traditional machine learning models, numeric reasoning 
resources, scientific literature, audio recordings, and Ecological Momentary 
Assessment (EMA) responses to generate diagnosis predictions that are 
comparable or superior to traditional ensemble classifiers. We further investigate 
the ability of HDTwin to process information and articulate clear diagnostic 
explanations interactively, providing a bidirectional flow of information between a 
clinician and the computational model. 

 



Related Work 
Recent advances in language models have tremendously impacted health question 
answering and information retrieval. These prior works focus on leveraging 
specialized corpora for enhanced performance. Language models are trained on 
biomedical texts to refine their capabilities in summarizing documents and 
answering complex health-related questions 11,12. Models have been further 
enhanced by efforts like KeBioSum 13, which integrates medical knowledge into 
model training to improve response accuracy. 
 
Language models also support health prediction. As an example, AD-BERT 14 
processes electronic health record (EHR) notes with pretrained models to forecast a 
patient’s progression from mild cognitive impairment to Alzheimer's disease. 
Research by Asgari et al. 15 leverages text markers from recorded speech to predict 
mild cognitive impairment. Jiang et al. 16 train an LLM on medical language to 
predict hospital readmission, and Kim et al. 17 evaluate prompting strategies for 
LLMs on a variety of health prediction tasks. Because LLMs can inherently predict 
future state, Xue and Salim 18 explore pretrained LLMs to predict future 
temperature, electricity consumption, and movement trajectories. Similarly, Sprint 
et al. 19 demonstrated that LLMs could anticipate future health states based on past 
EMA reports and sensor-based behavior data. 
 
Recently researchers have extended LLM capabilities to interpret non-textual data 
inputs. Yu et al. 20 direct LLMs to diagnose sleep apnea and cardiac conditions by 
leveraging large databases. Jin et al. 21 convert time-series data into text to forecast 
electricity usage. Partnering principal component analysis (PCA) with text reports, as 
explored by de Zarza et al. 22, enhances predictive accuracy for forecasting weather 
and traffic volume. 
 
The next step in the evolution of LLMs for health diagnostics involves fusing diverse 
information sources. Girdhar et al. 23 aligned video, text, and audio by creating unified 
image embeddings. Xu et al. 24 paired images with radiology reports. While these prior 
efforts illustrate the potential of LLMs to synthesize information across modalities, 
Cascella et al. 25 caution that LLMs still face challenges in aligning personal and 
general information sources effectively. 
 
This paper aims to contribute to the evolving landscape by exploring the use of LLMs 
to create a human digital twin from diverse information sources.  First, we consider a 
novel integration of digital behavior markers into the language model that are 
collected from continuous sensor data. Second, we enhance the language model for 
cognitive health domains by incorporating self-report, traditional clinical assessment, 
and automated performance scores. Third, we investigate whether LLMs can offer an 
effective mechanism for creating a digital twin from these varied components that 
enhances the accuracy of cognitive health diagnosis and the explainability of system 
inferences.  



 

Methods 

HDTwin LLM 

We built HDTwin using langchain and OpenAI’s GPT-3.5-turbo-0125 language 
model. As with other GPTs, the model is based on a transformer architecture and 
uses a self-attention mechanism to aid in capturing dependencies and context 
within the text. HDTwin’s processing pipeline is illustrated in Figure 1.  Using 
custom langchain tools, HDTwin retrieves information from personal data, 
statistical summaries, paper abstracts, and a knowledge base to input as prompts to 
a large language model, which then generates output for the user in response to a 
query or diagnosis request. The knowledge base incorporates diverse personal 
markers which are prompt engineered for input to the language model. 
 
We validate HDTwin using data from three studies. Participants in these studies 
were 124 independent-living older adults (mean age=70.51; 72.4% female). 
Participant recruitment and screening were similar across the studies. Recruitment 
included community health and wellness fairs, TrialMatch, advertisements on social 
media, physician referrals, and online posts. Inclusion criteria were age 50+ and 
have the ability to speak English; exclusion criteria included current psychoactive 
substance use; significant auditory visual, or cognitive impairment; presence of a 
psychiatric, neurologic or medical condition that greatly attributed to cognitive 
complaints; and Telephone Interview for Cognitive Status (TICS) 26 score < 26. 
Participants provided informed consent, and the studies were approved by the 

Figure 1. HDTwin information processing pipeline. A user interacts with the LLM 
interface to request summary information about a person or a suggested diagnosis. 
Based on the query, HDTwin retrieves personalized markers together with paper 
abstracts and data from a knowledge base that informs a response. The query 
response is presented to the user, supporting an ongoing conversation about the 
person or explanation of the query response. 



Washington State University Institutional Review Board. Source code for HDTwin 
and a video demonstration of the chatbot interface are available online 27,28. 

 
Each participant was assigned a fictitious name, sampled from a repository 29. This 
step was performed to anonymize references to the names that appeared in 
processed text. Participants were categorized as cognitively healthy older adults 
(HOA, n=75) or older adults with mild cognitive impairment (MCI, n=49). To 
perform these categorizations, at study baseline interviews were conducted, 
questionnaires were completed (e.g., Patient-Reported Outcomes Measurement 
Information System 30), and standardized neuropsychological tests evaluating the 
cognitive domains of memory, language, executive functioning, and attention (three 
scores per domain) were administered. These included the Wechsler Adult 
Intelligence Scale – Fourth Edition 31 Digit Span Forward and Backward subtests, the 
Delis-Kaplan Executive Function System 32 Category Switching test, the Five Point 
Test 33, the California Verbal Learning Test 34, and self-reported measures from the 
Patient-Reported Outcomes Measurement Information System 30. Jak/Bondi criteria 
35 were followed to classify individuals as MCI. These participants were primarily 
single domain (80%), and most met the criteria for amnestic MCI (78%). 

Ethical Considerations 
These studies were reviewed and approved by the Institutional Review Board at 
Washington State University. To participate in any of the studies, participants 
needed to sign an informed consent; each person received compensation between 
$55 and $120 for their participation, consistent with the time demands of the study. 
All data were anonymized before performing analyses. 
 
Data 
Participant data stem from multiple numeric and text-based marker sources. 
Language models currently struggle with numeric reasoning for real-valued 
variables. HDTwin includes agents to summarize and learn models from raw 
numeric data. To handle the cases where prompts are fed directly to the LLM, 
however, we transform each real-valued marker to a 0-10 integer scale. 
 

Figure 2. In addition to collecting sensor data, the smartwatch app 
queries the user for their current state, includes an n-back shape test, 
and collects daily audio data. 



Demographic markers 
Each participant’s age, sex, and number of education years were included as 
markers. 
 
Behavior markers 
All participants wore a smartwatch (Apple Watch) daily for a minimum of two 
weeks. The watches continuously collected acceleration, rotation, and location data 
at 10Hz. From the location coordinates, we defined the participant’s home as the 
most-frequent visited location among the first 300 readings each day. From these 
data, we extracted activity level (estimated as total acceleration) and distance from 
home. These values were aggregated by day, then we calculated mean and variance 
over the entire data collection period. The missing data rate was 14%, and missing 
entries were not included in the calculations. Figure 2 shows screenshots of the 
smartwatch app. 
 
EMA markers 
Ecological momentary assessment (EMA) responses were collected 4x/day at 
random points within specified time windows. During this session, each participant 
responded to the prompt “Right now I feel mentally sharp” on a Likert scale of 1 
(“Not at all”) to 5 (“Extremely”). For each person, we extract the mean and variance 
for the EMA response value and response rate / compliance. 

N-back markers 
Prior research indicated that the n-back task, delivered via a mobile tablet, can 
capture cognitive capacity for older adults as it is influenced by fatigue, mental 
sharpness, and the environment 9.  We adapted this n-back shape test to the 
smartwatch. Three shapes (circle, square, and diamond) were displayed on the 
watch screen, and participants indicated whether the current shape was the same as 
the prior. We computed accuracy for each 45-second task. 
 
Earlier studies reveal the importance of considering n-back performance in terms of 
the learning phase (when scores start low but increase sharply) as well as 
characteristics of performance over the entire sampled period. After the learning 
phase, daily performance varies with fatigue, mood, mental sharpness, cognitive 
changes, and environmental factors 36,37. Applying linear regression to the sequence 
of daily scores, we extracted the slope for the first 6 scores (the learning rate). We 
also computed the overall score mean and standard deviation. 

Speech markers 
Each day, participants provided a verbal description of their day in response to the 
prompt, “Talk about your day, what you did, and how you felt.” Participant 
responses were collected by the smartwatch. The audio files were then converted to 
text and fed verbatim to the language models. A total of 2,995 audio files were 
provided by 85 participants across the three studies. All descriptions from a single 
participant were aggregated into one text entry per person. 



Testing session markers 
From the administered cognitive assessment tests that were delivered orally at 
study baseline, we converted the recorded testing session audio files to text. Based 
on the experimenter script, we input experimenter questions as prompts to the 
LLM. The purpose of this step was to have the language model quantitatively 
evaluate participant responses based solely on the recorded interaction. This 
contrasts with the traditional method of using a predefined set of rules to determine 
the score for each assessment task. There were 23 types of participant responses, 
generated from tests for phonemic and semantic fluency, list learning and delayed 
memory, cognitive screening, and health literacy. 
 
As shown in Table 1, we asked the LLM to extract and rate participant responses on a 
scale of 1 (poor) to 5 (excellent) or missing. While some prompts included a list of 
correct answers (e.g., “where is our lab located?”), many did not (e.g., “list all of the 
animals you can think of”). In the second case, response rating consequently relied on 
the model’s reasoning. Of the 124 baseline testing session transcripts, 116 had at least 
3 non-missing responses and were input to the LLM. 
 
Table 1. Example prompt for processing a baseline testing session data. The user 
provides the system message and prompt; HDTwin generates the corresponding 
response. 

System 
message 

You are a helpful assistant that extracts and rates participant responses to 
interview questions. 

Example 
prompt 

The following is an unlabeled transcript of an interview between an 
interviewer and a participant: "all right so the recordings on again for the 
next task I'm going to" 
 
There should be a part of the transcript where the interviewer asks the 
participant to list as many words that start with the letter S as they can think 
of. Using only exact quotes from the transcript, provide the participant's 
response to the interviewer's question. Then, using a scale of 1 (poor) – 5 
(excellent), rate the participant’s ability to think of words that start with S. 
Briefly explain your rating. If you cannot find the participant’s response, 
respond only with: Could not find the participant’s response. 

Example 
response 

Participant's Answer: Sun, stairs, startled, stars, stilt, stern, south, song 
 
Rating: 5 
Explanation: The participant was able to list multiple words that start with 
the letter S, demonstrating a strong ability to recall words. 

 
 
 
 



 
 
Figure 3 illustrates the distribution of participants between the healthy and mild 
cognitive impairment categories based on each type of quantifiable marker (i.e., 
demographics, behavior, EMA response, and n-back score). As can be seen from the 
plots, the categories are highly intermixed for each category of marker as well as the 
t-sne combination of these markers. The high degree of intermixing between 
categories indicates that there are no clear, simple class boundaries separating the 
groups, making diagnosis prediction more complex. This complexity necessitates 
leveraging all available information to improve prediction accuracy, which requires 

Figure 3. Distribution of healthy and mild cognitive impairment 
(MCI) participants based on HDTwin markers that include (from 
upper left): demographics, behavior, EMA response, and n-back 
scores. The bottom graph shows a t-sne plot of all quantifiable 
features. Text input from journals and testing sessions are not 
included in the plots. 



integrating information with diverse modalities, granularities, and availability. This 
challenge motivates the adoption of an LLM-based method for this task, which is 
well-suited to handling and synthesizing such heterogeneous data. 
 
Knowledge Base Construction 
To predict cognitive diagnoses with LLMs, we constructed a prompt template that 
combines two primary sources of context to be combined by the LLM: 

1. Insights gleaned from external knowledge about the field, and 
2. Insights gathered from personalized data markers. 

We utilize these information sources by transforming them into text prompts for the 
LLM. To integrate insights from the field, each prompt is framed based on a finding 
from a relevant publication. Language models have demonstrated their ability to 
summarize medical research articles 38. In contrast, we use such research articles as 
just one piece of the digital twin to provide more comprehensive reasoning about a 
person’s state. In this context, we introduce a novel use of such articles, leveraging 
them as sources of external neuropsychology insights. Table 2 provides a summary 
of the relevant literature sources we included for HDTwin. 
 
Table 2. Rules found in external information sources. These rules represent 
summaries of statements found in the included research articles. 

More hours spent outside the home and greater distance from home were associated 
with better cognitive function. 6 

Physical exercise demonstrated a protective factor for MCI; was associated with higher 
mean semantic memory and executive function. 8,39 

Association was found between participant sentence complexity and levels of cognitive 
impairment. 2 

Individuals with MCI were observed to perform worse on shape test than healthy older 
adults. 4 

Response / compliance rate was greater for healthy older adults compared to mild 
cognitive impairment. 5  

Detected changes in behavior patterns was early indicator of cognitive decline. 40 

 
Three types of LLM prompts are created. First, prompts that process text directly 
(i.e., journal entries, testing session transcripts) are formalized based on a statement 
found in the corresponding research article (i.e., external knowledge). HDTwin 
contains 11 of these rules, such as “if journal_text has a small vocabulary, short 
sentences, and/or low sentence complexity then more likely mild cognitive 
impairment” 41 (the full set of rules is provided in Table 6). The LLM must interpret 



the meaning of the rule in the context of the input text. Second, as described earlier,  
the LLM is directed to generate numeric ratings of the testing session participant 
responses. 
	
Third, a decision tree algorithm processes numeric markers from the training set, 
learning a concept distinguishing HOA from MCI. The purpose of these models is to 
provide a mechanism for learning from real-valued numeric data and demonstrate 
the ability of HDTwin to harness heterogeneous types of information. Decision trees 
are advantageous because the learned model is easily interpretable. In particular, 
these trees are automatically converted to if-then rules that are provided to the LLM 
in a prompt. From the large set of possible rules, we include those that support ≥ 
10% of the training data and the probability of rule occurrence in the tree is > 70%. 
In the case of single-term rules resulting from decision stumps, the rule inversion is 
also added. This process resulted in 20 rules, such as “if 
distance_traveled_from_home > 4.5 then more likely healthy” and “if 
physical_activity_level ≤ 1.5 and EMA_compliance ≤ 9.5 then more likely mild 
cognitive impairment.” The full set of decision tree-generated rules is provided in 
Table 7. 
 
Chatbot Agent Tools 
The chatbot agent is designed as a Python langchain OpenAI tools agent. We created 
custom tools that allow the chatbot agent to plan and take actions to solve 
specialized tasks. By integrating these tools, HDTwin links the LLM with additional 
sources of information and additional functionality, yielding a more complete digital 
twin. These agent tools include: 

1. Participant data retriever tool. We embedded and stored the test dataset in a 
FAISS vector database. We then created a langchain retriever tool for the 
database that the agent can query to find markers for a participant. 
2. Reference data calculation tool. We wrapped a langchain pandas agent in a 
custom tool that loads the reference data into a pandas DataFrame. The agent 
can query this calculation tool to get on-the-fly summary statistics for HOA 
and/or MCI training participants, such as grouping data by diagnosis then 
calculating a mean for a marker of interest. This tool allows HDTwin to 
interactively answer questions regarding a particular person, including their 
scores on each assessment component and how the scores compare with the 
participant cohort. 
3. Knowledge base retriever tool. We embedded and stored the knowledge base 
in a FAISS vector database. Similar to the participant data retriever tool, the 
agent can query a langchain retriever tool to find knowledge in the database 
that may interest the user. For example, HDTwin may quote one of the findings 
from the literature as part of the reason it predicted a particular diagnosis 
category for a participant. 
4. Paper abstract retriever tool: Using the langchain PubMed application 
programming interface, we created a tool that searches PubMed abstracts for 
information that may be relevant to the query tasks. Text from the abstracts is 



included verbatim as input. The tool can also be leveraged to include literature 
from other public domain sources. 
5. Diagnosis classification tool: Using the same classification prompting 
strategy described in the previous section, we created a langchain structured 
tool that uses a custom chat chain to classify a participant as HOA or MCI. The 
chain constructs a prompt using information from the knowledge base and 
personalized markers to request that the language model generate predictions 
(see the Diagnosis Prediction section for more details about diagnosis prompt 
construction). 

 

 
We designed the agent with an interface built using the Python streamlit library. 
Figure 4 provides a screenshot of this interface. As the figure demonstrates, HDTwin 
leverages the participant’s personal markers (demographics, behavior, EMA 
response, n-back scores, testing session data), rules generated from the training 
cohort, and literature from the field to respond to user queries. Upon request, the 
agent lists the steps that were performed by generating a response, pulling from the 
message memory as needed (i.e., interaction history), as well as the information 
sources. 

Figure 4. The HDTwin chatbot interface with an example prompt 
and response for a query regarding one of a person’s n-back 
score statistics. Users can see the agent’s message memory 
using the “Chat History” dropdown and the agent’s planning and 
execution steps using the “See Intermediate Steps” dropdown. A 
video demonstration of the chatbot is available online28.  



Table 3. Example cognitive diagnosis prompt. The user input the system message 
and prompt, HDTwin generated the corresponding response. In this case, the 
classification of diagnosis from HDTwin is correct. 

System Message You are a knowledgeable health assistant designed to diagnose 
someone as "healthy" or "mild cognitive impairment" using 
diagnosis rules and relevant personal information. 

Example 
Prompt 

Diagnose Sloan as healthy or mild cognitive impairment by 
applying the following rules to Sloan's information. 
 
Diagnosis Rules: 
Rule #1: if shape_score_sd > 2.5 then more likely mild cognitive 
impairment 
Rule #2: if shape_score_sd <= 2.5 then more likely healthy 
Rule #3: if shape_score_sd > 2.5 and shape_learning_rate > 1.5 
then more likely mild cognitive impairment 
Rule #4: if journal_text has a large vocabulary, long sentences, 
and/or high sentence complexity then more likely healthy 
Rule #5: if some interview_assessment ratings are <= 3 then more 
likely mild cognitive impairment 
 
Sloan's Information: 
shape_learning_rate: 9 
shape_score_sd: 6 
journal_text: made a list and went to the store and got everything 
on it and didn't alter from it 
interview_assessment: Category Fluency (Animals): Participant's 
Answer: "turkey" 
Rating: 2 
<text removed for brevity> 
 
Answer using the format: 
Diagnosis: ... 
Explanation: ... 

Example 
Response 

Diagnosis: Mild Cognitive Impairment 
 
Explanation: Based on the provided information, Sloan's 
shape_score_sd is 6, which is greater than 2.5, and the 
shape_learning_rate is 9, indicating a high learning rate. 
According to Rule #3, when shape_score_sd is greater than 2.5 
and shape_learning_rate is higher than 1.5, the individual is more 
likely to have mild cognitive impairment. Additionally, some of 
Sloan's interview_assessment ratings are <= 3, such as the ratings 
for Category Fluency (Animals) and Letter Fluency (F), further 
supporting the diagnosis of mild cognitive impairment. 



Diagnosis Prediction 
The long-term goal of HDTwin is to build a digital twin representing the cognitive 
health state of a physical human. The digital twin can respond to queries about the 
person’s behavior, task performance, and predicted cognitive health diagnosis. 
Unlike traditional machine learning tools, the system will interactively explain its 
reasoning and ingest additional information that is provided on the fly. 
 
In this paper, we consider the role of HDTwin in performing cognitive diagnosis 
prediction. Specifically, we seek to validate the ability of HDTwin to perform 
cognitive diagnosis from a fusion of heterogeneous information. Using the LLM 
model, we constructed a classification pipeline that we performed for each 
participant in the test set. The pipeline begins by constructing the context needed to 
form a prompt. Table 3 provides an example of this context, which primes the 
language model to perform reasoning and generate a response. As shown in the 
example, the prompt includes instructions, the knowledge base rules that it utilizes, 
and participant markers. The LLM is prompted to return a response with the 
diagnosis, which we extract using a regular expression pattern search. Upon 
request, the LLM will also provide an explanation for the diagnosis. By default, 
HDTwin provides a short (i.e., few-sentence) explanation. The full explanation can 
be extracted upon request. The latter not only provides insight into the LLM’s 
reasoning but can help with response accuracy using chain-of-thought reasoning 42. 
 
We measure prediction performance using accuracy, MCI precision and recall, and 
Matthew’s correlation coefficient (mcc). To provide a baseline for comparison, we 
trained three traditional classifiers using the numeric markers. We trained the 
models on the same participants used to build the LLM knowledge base and 
evaluated performance using the same test set. The baseline classifiers are random 
forest, gradient boosting, and XGBoost. 
 

Reference, training, and test sets 
Traditional supervised machine learning uses data from a training set to train a 
model. In contrast, HDTwin performs retrieval-augmented generation by combining 
information retrieval with a generative model43. In HDTwin, therefore, training data 
are used to build a knowledge base of text, data, and rule prompts for the language 
model to retrieve. Following literature guidelines for evaluating large language 
models44, we created three sets - reference, training, and test - from the participant 
group. Data from the reference set support the interactive chatbot functions. A 
subset of the reference group is selected as the training set. In our experiments, the 
training set is used to build a knowledge base of text input, numeric data, and 
decision tree rules for HDTwin to perform diagnosis prediction. Participants not in 
the reference (and training) set are reserved to form a test set. Prediction 
performance is determined based on these held-out data. 
 
Participants included in the training and test sets were required to have complete 
behavior, EMA, and n-back markers, as these markers were essential for conducting 



an ablation analysis of their contribution to diagnosis prediction. To ensure a 
uniform class distribution, 24 participants were randomly selected from each 
diagnosis group (MCI, HOA) to form a test set of 48 participants. Of these 
participants, 51 were labeled healthy and 25 were labeled MCI. For the training set, 
we randomly selected 25 reference set participants from each diagnosis category 
(51 labeled healthy, 25 labeled MCI), resulting in an equal split. 
 
 
Table 4. Example chatbot interaction. User-inputted text is highlighted with italic 
font. Each HDTwin response is listed with the chatbot agent tools that were 
employed to generate the corresponding response. 

Prompt Tools Used 

What do you know about Sloan? 

Sloan is a 57-year-old female with 14 years of education. She has 
a Shape Score Standard Deviation of 6 and a Shape Learning Rate 
of 9. Sloan's EMA compliance is rated at 8.0, and her physical 
activity level is 4.0. She has a mental sharpness mean of 6.0 and a 
mental sharpness variance of 5.0. 
Sloan's journal entry mentions activities such as making a list, 
going grocery shopping, using the EMMA app to remind her to 
take pills, and engaging in social and leisure activities. 
 
If you would like more specific information about Sloan or her 
cognitive health status, please let me know. 

Participant data 
retriever 

Would you diagnose Sloan as mild cognitive impairment? 

Sloan has been diagnosed with mild cognitive impairment based 
on her cognitive assessment results. If you have any further 
questions or need more information, feel free to ask. 

Diagnosis 

Can you explain why you made that diagnosis? 

Sloan has been diagnosed with mild cognitive impairment based 
on her cognitive assessment results. The diagnosis is supported by 
the fact that Sloan's shape_score_sd is greater than 2.5 and her 
shape_learning_rate is greater than 1.5, meeting the criteria for 
mild cognitive impairment. 

Message 
memory, 
Diagnosis 

How does Sloan’s shape_score_sd compare to the average? 

Sloan's shape_score_sd value is 6, which is higher than the 
average value of approximately 1.57 for healthy participants. This 
indicates that Sloan's shape_score_sd value is significantly higher 
compared to the average value of healthy participants. 

Message 
memory, Training 
calculation 

 



Results 
Table 4 demonstrates an interaction with the HDTwin chatbot agent in which the 
agent executes custom tools and accesses a memory cache for conversation history. 
The generated rules were used to form two classification prompt variants, one with 
a requested explanation that aids in understanding the LLM’s decision-making 
process. Experiment results showed no substantial difference between these 
variations, so results are reported for the smaller, diagnosis-only prompt. Lastly, 
HDTwin performs a wrapper-based selection of rules to include in the diagnoses. In 
the wrapper method, a greedy search is employed to identify the final set of 
features, or rules, to include 45. 
 
Table 5 summarizes the diagnostic accuracy of HDTwin compared to baseline 
classifiers. These include results for the LLM using wrapper selection, a single type 
of information source, or all available rules. Due to LLM non-determinism, each 
variation was executed 30 times; the mean and standard deviation were reported. 
To quantify the improvement gained by the wrapper approach, we computed a one-
tailed unpaired t-test, comparing the LLM wrapper results against the best single 
marker set (n-back; p < 0.001) and the best traditional classifier (XGBoost; p < 
0.001).  
 
Table 5. Prediction performance. Performance is reported in terms of prediction 
accuracy, precision and recall for the MCI category, and Matthews correlation 
coefficient (mcc). The best performer for each metric is highlighted in bold. 

Classification Accuracy MCI Precision MCI Recall MCC 

LLM / 
demographics 

0.48 ± 0.00 0.47 ± 0.00 0.33 ± 0.00 -0.04 ± 0.00 

LLM / behavior 0.43 ± 0.02 0.43 ± 0.02 0.43 ± 0.04 -0.14 ± 0.05 
LLM / n-back 0.75 ± 0.00 0.93 ± 0.00 0.54 ± 0.00 0.55 ± 0.00 
LLM / EMA 0.65 ± 0.00 0.89 ± 0.00 0.33 ± 0.00 0.37 ± 0.00 
LLM / journal 0.57 ± 0.04 0.56 ± 0.03 0.63 ± 0.05 0.13 ± 0.07 
LLM / test session 0.61 ± 0.01 0.78 ± 0.01 0.30 ± 0.02 0.28 ± 0.02 
LLM / all 0.56 ± 0.01 0.64 ± 0.02 0.29 ± 0.02 0.15 ± 0.02 
LLM / wrapper 0.77 ± 0.02 0.88 ± 0.05 0.63 ± 0.03 0.57± 0.05 
Random forest 0.62 ± 0.04 0.86 ± 0.03 0.27 ± 0.00 0.31 ± 0.07 
Gradient boosting 0.65 ± 0.01 0.89 ± 0.01 0.35± 0.03 0.39± 0.02 
XGBoost 0.67 ± 0.00 0.83 ± 0.00 0.42 ± 0.00 0.38 ± 0.00 

 

Discussion 
 
Principal Results 
The goal of this study was to explore the use of large language models as a 
mechanism to fuse multi-modal information relevant to understanding and 
predicting the cognitive health diagnosis for an individual. As demonstrated in Table 
4, the HDTwin chatbot agent conversationally provides answers related to the 



dataset and cognitive diagnosis. When prompted for a diagnosis for a particular 
participant, it succinctly responds with a predicted class label. When asked to 
explain the diagnosis, the agent correctly cites a rule from the knowledge base, 
though the chatbot may offer only a subset of rules that were used for the inference.  
 
We note that when the chatbot is requested to compare a participant to the training 
set, the LLM calls the training calculation tool, which generates and executes the 
code to select, filter, and summarize the underlying DataFrame (e.g., generating 
{'query': "df[df['diagnosis'] == 'healthy'] ['shape_score_sd'].mean()"}). In this case, 
the training calculation tool produces the correct value (1.57). Because LLMs are 
non-deterministic systems, the chatbot is not guaranteed to return the same 
response each time. 
 
Non-deterministic behavior also affected the classification results. This behavior is 
evidenced by the non-zero performance standard deviations that are listed in Table 
5. We further observed that longer prompts (e.g., journal and testing session) 
generally led to less consistent performance (e.g., higher standard deviation in Table 
5). As the prompt text increases in length, there is a higher risk of divergence due to 
the model latching onto different parts of the prompt in different ways across each 
run, creating more variability in the output.  
 
Another factor influencing classification performance is the type of information that 
is utilized and the way the information is incorporated into the LLM prompt. While 
HDTwin can use all information sources, Table 5 illustrates that not all information 
was equally effective at discriminating between diagnosis classes. Of the six marker 
sets, n-back offers the most predictive rules (0.75 accuracy). While the wrapper 
method occasionally selected the text-based journal and testing session markers, 
this marker set did not perform the best. The top-performing case, with 0.81 
accuracy, was a run utilizing the combination of n-back and behavior markers. The 
worst-performing cases combined demographic markers with behavior markers. 
This is not surprising considering only two rules utilizing demographic markers 
were supported with a high probability of occurrence in the training set. Our results 
show that the LLM wrapper method significantly outperformed the best traditional 
classifier as well as the best individual marker set (n-back). Results for the wrapper 
method are comparable to reported results, which use MRI and cerebrospinal fluid 
to perform a similar task, yielding an accuracy of 76.4% 46. These findings provide 
evidence supporting in-the-home data collection and the design of LLMs 
technologies for improved mild cognitive impairment diagnosis.  
 
Limitations 
This study faced several limitations, including missing data across several of the 
marker sets, reliance on an LLM to extract and label participant responses to testing 
session questions, and a small sample size of training participants (n=50) whose 
data formed the knowledge base. Additionally, LLM non-determinism affects the 
reproducibility of the results. In the future, we plan to explore other LLMs for the 
HDTwin chatbot agent and diagnosis classification task, as well as improve 



prediction accuracy with more in-depth prompt engineering and an expansion of 
the knowledge base. 
 
Many of HDTwin’s data sources are continually updated. These include the behavior 
markers, n-back scores, and journal entries. The rules can be periodically updated, 
allowing HDTwin to adapt to this new information dynamically. Our approach does 
not fine-tune the model but provides new context. Future work will investigate how 
to direct the LLM to model the historical evolution of the prompts and forecast the 
future state of the individual. In this setting, the digital twin can provide a tool for 
testing scenarios and predicting outcomes of various behavior and other changes. 
Such a tool can help optimize potential treatment decisions for each person before 
they are administered. 
 
Conclusions 
In this paper, we built a custom agent called HDTwin for interactively exploring a 
multimodal, in-the-wild health dataset (n=124), supporting the creation of a digital 
twin. The HDTwin digital twin contains an agent that supports diagnosis of mild 
cognitive impairment, guiding more informed and actionable cognitive assessment. 
To build this classifier with an LLM, we explored the predictive capability of diverse 
individual and fused health markers. A fusion of knowledge and participant data 
from different marker sets yielded the strongest performance. Our findings indicate 
that HDTwin significantly outperforms traditional classifiers in diagnosing mild 
cognitive impairment. Integrating diverse data sources through LLMs provides a 
comprehensive view of cognitive health, enhancing diagnosis and intervention 
strategies. Future studies can continue to explore approaches for increasing the 
accuracy of LLMs to improve the accuracy of custom agents like HDTwin for aiding 
clinicians with healthcare diagnosis and prediction of outcome. 
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Table 6. HDTwin text processing rules. These results are used to process 
information found in text including journal entries and interview assessments. 
Marker 
Set 

Rule 

Speech if journal_text is empty the more likely mild cognitive impairment 
if journal_text has a large vocabulary, long sentences, and/or high sentence 
complexity then more likely healthy 
if journal_text has a small vocabulary, short sentences, and/or low sentence 
complexity then more likely mild cognitive impairment 
if journal_text uses positive emotion words then more likely healthy 
if journal_text uses negative emotion words then more likely mild 
cognitive impairment 
if journal_text appears to have more than one entry then more likely 
healthy 
if journal_text appears to only have one entry then more likely mild 
cognitive impairment 

Baseline  
Testing 
Session 

if some interview_assessment ratings are <= 3 then more likely mild 
cognitive impairment 
if most interview_assessment ratings are >= 4 then more likely healthy 
if the interview_assessment explanations suggest the participant 
confidently answered the questions correctly then more likely healthy 
if the interview_assessment explanations suggest the participant struggled 
to answer the questions correctly then more likely mild cognitive 
impairment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 7. HDTwin numeric processing rules. These results are created from the 
trained decision trees and are listed with the corresponding probability of the rule 
occurring in the decision tree (Pr) and number participants supporting the rule (Pa). 

Rule	 Pr	 Pa	

if distance_traveled_from_home > 4.5 then more likely healthy 100.00 6 
if distance_traveled_variance > 8.0 and physical_activity_level <= 
5.5 then more likely healthy 91.67 12 
if physical_activity_level <= 1.5 and EMA_compliance <= 9.5 then 
more likely mild cognitive impairment 85.71 7 
if mental_sharpness_variance > 2.5 and mental_sharpness_mean > 
4.5 then more likely mild cognitive impairment 83.33 6 
if shape_score_sd <= 2.5 and mental_sharpness_variance <= 2.5 
then more likely healthy 81.82 22 

if distance_traveled_variance > 8.0 then more likely healthy 80.00 15 
if mental_sharpness_variance <= 2.5 and mental_sharpness_mean 
<= 4.5 then more likely mild cognitive impairment 80.00 5 
if mental_sharpness_mean > 5.5 and physical_activity_variance <= 
8.0 then more likely healthy 79.17 24 
if sex = male and age <= 79.5 then more likely mild cognitive 
impairment 77.78 9 
if mental_sharpness_variance > 2.5 then more likely mild cognitive 
impairment 77.78 9 
if sex = female and shape_learning_rate <= 4.5 then more likely 
healthy 76.47 17 
if shape_score_sd > 2.5 and shape_learning_rate > 1.5 then more 
likely mild cognitive impairment 75.00 16 
if physical_activity_variance <= 0.5 then more likely mild cognitive 
impairment 75.00 8 
if mental_sharpness_mean <= 4.5 then more likely mild cognitive 
impairment 75.00 8 

if shape_score_sd > 2.5 then more likely mild cognitive impairment 70.59 17 

if shape_score_sd <= 2.5 then more likely healthy 60.61 33 
if distance_traveled_variance <= 8.0 then more likely mild cognitive 
impairment 60.61 33 

if physical_activity_variance > 0.5 then more likely healthy 57.50 40 

if mental_sharpness_variance <= 2.5 then more likely healthy 57.50 40 

if mental_sharpness_mean > 4.5 then more likely healthy 56.10 41 
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