
Graph-Based Anomaly Detection
Caleb C. Noble

Department of Computer Science Engineering
250 Nedderman Hall

University of Texas at Arlington
Arlington, TX 76019

(817)272-5459

Diane J. Cook
Department of Computer Science Engineering

303 Nedderman Hall
University of Texas at Arlington

Arlington, TX 76019
(817) 272-3606

noble@cse.uta.edu

cook@cse.uta.edu

ABSTRACT
Anomaly detection is an area that has received much attention in
recent years. It has a wide variety of applications, including fraud
detection and network intrusion detection. A good deal of
research has been performed in this area, often using strings or
attribute-value data as the medium from which anomalies are to
be extracted. Little work, however, has focused on anomaly
detection in graph-based data. In this paper, we introduce two
techniques for graph-based anomaly detection. In addition, we
introduce methods for calculating the regularity of a graph, with
applications to anomaly detection. We hypothesize that these
methods will prove useful both for finding anomalies, and for
determining the likelihood of successful anomaly detection within
graph-based data. We provide experimental results using both
real-world network intrusion data and artificially-created data.

1. INTRODUCTION
In the field of data mining, there is a growing need for robust,
reliable anomaly detection systems. Although research has been
done in this area, little of it has focused on graph-based data. In
this paper, we introduce two methods for graph-based anomaly
detection that have been implemented using the Subdue system.
The first, anomalous substructure detection, looks for specific,
unusual substructures within a graph. In the second method,
anomalous subgraph detection, the graph is partitioned into
distinct sets of vertices (subgraphs), each of which is tested
against the others for unusual patterns. In addition, we describe
two measures of graph regularity, using concepts from
information theory. The first measure, substructure entropy,
describes the number of bits needed to describe an arbitrary
substructure of fixed size. The second measure is conditional
substructure entropy; for an arbitrary substructure of fixed size, it
describes the number of bits needed to describe the substructure’s
immediate surroundings. We report experimental results obtained
using the 1999 KDD Cup network intrusion dataset, as well as
artificially-produced data.

2. BACKGROUND ON SUBDUE
Many types of data contain temporal or spatial relationships

between elements that would best be represented in graphical
form. For example, using a graph representation of credit card
transactions, we could create relationships (edges) between
transactions occurring within a mile or within a second of each
other. These kinds of relationships could prove useful in certain
applications, and would be difficult to represent without a graph-
based format. For the purposes of this paper, a graph consists of
a set of vertices and a set of edges, which may be directed or
undirected. Furthermore, each vertex and edge contains a label to
identify its type, which need not be unique.

The methods for graph-based anomaly detection presented in this
paper are part of ongoing research involving the Subdue system
[1]. This is a graph-based data mining project that has been
developed at the University of Texas at Arlington. At its core,
Subdue is an algorithm for detecting repetitive patterns
(substructures) within graphs. A substructure is a connected
subgraph of the overall graph. Subdue keeps an ordered list of
discovered substructures called the parent list; at the beginning,
this list simply holds 1-vertex substructures for each unique
vertex label. Subdue repeatedly removes all the substructures
from the parent list, generates and evaluates their extensions, and
inserts the extensions onto the list. An extension of a substructure
is generated by adding either a new vertex (and its corresponding
edge), or just a single edge within the substructure. As new
substructures are being generated, a second list is maintained
holding the best substructures discovered so far. When this
process is finished, the substructure with the top value is reported,
and possibly used to compress the graph before the next iteration
begins. Compressing the graph refers to replacing each instance
of the substructure with a new vertex representing that
substructure. Each substructure is evaluated using the Minimum
Description Length heuristic [8]. The minimum description
length (or simply “description length”) is the lowest number of
bits needed to encode a piece of data; Subdue contains an
algorithm that will approximate this value for any given graph.
Using this heuristic, we consider the best substructure to be the
one that minimizes the following value:

)()|(),(1 SDLSGDLGSF +=

where G is the entire graph, S is the substructure, DL(G|S) is the
description length of G after compressing it using S, and DL(S) is
the description length of the substructure.

Here is a simple example of how Subdue works. Suppose that we
begin with the graph shown in Figure 1.

Figure 1. Example graph.

Notice that the substructure

appears twice. Subdue will generate and evaluate all
substructures, and this substructure will be ranked as the best. If
another iteration is going to be run, then Subdue will replace the
instances of this substructure with a new vertex. If we designate
the new vertex with the label “S”, then the newly compressed
graph will be as shown in Figure 2.

Figure 2. Example graph after compression.

Subdue can then go on to search for another substructure,
although in this example, there are no multiple-vertex
substructures remaining with more than one instance.

As with many algorithms involving graphs, the time complexity
of Subdue is exponential in the worst case. There are a number of
parameters that can be set, however, to reduce it to polynomial
time. These parameters include the beam width of the ordered
list, a limit on the number of substructures expanded, an option to
prune substructures with less value than their parent, and others.
For details on these parameters, as well as a closer examination of
the algorithm itself, see [1]. The basic algorithm has been
extended for use in several different ways, including concept
learning [3] and clustering [4].

3. TECHNIQUES FOR ANOMALY
DETECTION
Although a great deal of research has been done in the area of
anomaly detection, it remains difficult to give a general, formal
definition of what an anomaly is. For the purposes of this paper,
we will be using the intuitive notion of an anomaly as a
surprising or unusual occurrence. With this in mind, we
introduce two techniques for graph-based anomaly detection
using Subdue.

3.1 Anomalous Substructure Detection
This first approach is the simpler of the two, and it is also more
general. The objective of anomalous substructure detection is to
examine an entire graph, and to report unusual substructures
contained within it. This sounds simple, but there are some
subtleties involved. For example, it is not enough to simply look
for substructures occurring infrequently, since very large

substructures are expected to occur infrequently. (For example, if
we consider the entire graph as a substructure, it cannot occur
more than once.) Below, we introduce a method that circumvents
this and other problems, using a variant of the MDL principle.

As discussed earlier, the Subdue system is essentially a
mechanism for discovering patterns within graphs. The
"patterns" in this case are substructures that produce low values
of the quantity F1(S, G). The key to our approach is that an
anomaly can be thought of as the "opposite" of a pattern -- just as
patterns occur frequently in a graph, anomalies occur
infrequently. So one possible method for detecting anomalous
substructures is to simply invert the measure, and flag
substructures producing high values of the quantity F1(S, G).
There are a couple of problems with this, however. One problem
is that if S = G (i.e., we are considering the entire graph as our
substructure), then this quantity will be very high -- indeed,
higher than the description length of the graph, since

DL(G) DL(G) G)|DL(G DL(S) S)|DL(G G)F1(S, ≥+=+=

This is a higher value than would be returned for almost any other
substructure in the graph, so the substructure consisting of the
entire graph would always be flagged as very anomalous. This
would, of course, be useless. A similar problem occurs at the
other end of the spectrum, for substructures consisting of a single
vertex. In this case, attempting to compress the graph using S
would result in no compression at all. DL(G|S) would then equal
DL(G), and we would again have

DL(G) DL(S) DL(G) DL(S) S)|DL(G G)F1(S, ≥+=+=
Again, this is a very high value, so single vertices would always
be flagged as anomalous, regardless of how many times they
appeared in the graph.

Clearly, using this method directly would be problematic. The
basic idea is sound, however, and it turns out that a heuristic can
be used to remove the problems mentioned above. We define this
heuristic as follows:

G)S,Instances(*Size(S) G)F2(S, =

where Size(S) is the number of vertices in S, and Instances(S, G)
is the number of times that S appears in the graph G. This
function serves as an approximate inverse of F1; in other words,
as F1(S, G) increases, F2(S, G) tends to decrease. (We do not
provide a formal justification of this heuristic, but it should
appear reasonable. F1(S, G) essentially measures how well a
substructure compresses a graph, and the amount of compression
is closely tied to the substructure’s size and its number of
instances.) This means that we can use F2 instead of F1 for
anomaly detection – we consider substructures to be anomalous if
they produce low values of F2(S, G). This removes the problems
associated with very large and very small substructures. Large
substructures (e.g., the entire graph) will not be flagged as
anomalous since Size(S) will be very high, and single-vertex
substructures will only be considered anomalous if they do not
appear very often.

Suppose, as before, that we begin with the graph in Figure 1. The
most anomalous substructure in this graph is this:

Its F2 value is Size(S) * Instances(S, G) = 1*1 = 1, which is the
smallest possible. Several 2-vertex substructures have an F2
value of 2 (2 vertices * 1 instance); among them are:

and

The least anomalous substructure is the entire graph; it has 9
vertices and 1 instance, so its F2 value is 9*1 = 9.

It is important to realize that this measure is biased toward
discovering very small substructures. This is because larger
substructures are expected to occur only a few times; the
smaller the substructure, the less likely it is to be rare.

3.2 Anomalous Subgraph Detection
The first method is well-suited for detecting specific, unusual
substructures anywhere within a graph. In some situations,
though, it could prove useful to partition the graph into distinct,
separate structures (subgraphs), and determine how anomalous
each subgraph is compared to the others.

One immediate application of this method is the analysis of data
represented using a collection of (attribute, value) pairs. Suppose
that we have a table of credit card transactions, and we wish to
look for unusual or suspicious transactions. In this example, our
table contains 5 fields:

amount – amount of the transaction
num_trans – number of transactions on this account within the
last 24 hours before the purchase
trans_category – category of business at which the transaction
was made (online, department store, etc.)
credit_limit – credit limit on the card
months_active – number of months the card has been active
before the transaction

We can represent each transaction record in graphical form using
a star configuration, as shown in Figures 3 and 4.

amount num_trans trans_category credit_limit months_active
350.88 3 online 10,000 23

Figure 3. Example database record.

Figure 4. Graphical representation of record.

Each record has a “hub” vertex, representing the record itself,
along with a vertex for each attribute, each of which is connected
to the hub. (Note that both vertices and edges are labeled.) We
can then represent the entire table by combining all the records
into a single graph. To find anomalous database records, we
would be interested in determining how unusual each of the
separate star configurations was.

Application of anomalous subgraph detection to attribute-value
databases is straightforward, but many other classes of databases
can benefit from this technique; it can be applied to any graph in
which the vertices can be grouped in a meaningful way. An
example is web clickstream data. This type of data has a natural
graph-based representation: vertices correspond to web pages,
and directed edges correspond to links selected by the user to
navigate from page to page. Furthermore, the vertices can be
grouped into subgraphs in a meaningful way – organized by user.
Subgraph A would contain all the clickstream data from user A,
subgraph B would contain data from user B, and so forth. By
performing anomalous subgraph detection on the overall graph,
we would then be testing each user for unusual web-navigation
patterns.

Next we describe a method for anomalous subgraph detection
using Subdue. First, some background is necessary. Subdue can
be set to run multiple iterations on a single graph. After each
iteration, the graph is compressed using the discovered
substructure; in other words, every instance of the substructure is
replaced by a single vertex. The next iteration of Subdue will
then operate on the newly compressed graph. This multiple-
iteration capability is used in our approach. It is important to
realize that the “best” substructures will be discovered in the first
several iterations, while later substructures will become less and
less valuable (i.e., less common).

For our purposes, we are assuming that Subdue halts once the
graph contains no substructure with more than one instance.

The rationale for our method lies in the idea that subgraphs
containing many common substructures are generally less
anomalous than subgraphs with few common substructures. This
is related to the underlying idea behind anomalous substructure
detection – that common substructures are, in a loose sense, the

“opposite” of anomalous substructures. On each iteration,
Subdue discovers the “best” substructure (in the MDL sense), and
then compresses the graph with it. It stands to reason, then, that
anomalous subgraphs tend to experience less compression than
other subgraphs, since they contain few common patterns.

It is not sufficient, however, to simply wait until Subdue is
finished, and then check how much each subgraph was
compressed. In the later iterations, Subdue will begin finding
substructures that only occur a few times, since all the more
common patterns have already been discovered. The following
example should show why this could cause problems. Suppose
that a graph contains two subgraphs that are completely identical,
but are very unusual in the overall graph. For most of the
iterations, these subgraphs will remain uncompressed, since they
do not contain any of the common patterns that Subdue is
discovering. Eventually, however, since there is nothing unique
about either subgraph, they will both be compressed away
completely. Hence, neither subgraph will appear anomalous,
even though they are both anomalous in the context of the entire
graph. From this example, we see that another factor is needed –
how soon compression takes place in a subgraph. For example,
suppose that after all iterations have completed, subgraphs A and
B have both been compressed to half of their original size. If A
was compressed on the 1st iteration, and B was compressed on the
50th, then B would be considered more anomalous than A.

To put these concepts together, a measure is needed that
considers both how much and how soon a subgraph is
compressed. We define this measure as follows. To each
subgraph, we assign a value A; the higher A is, the more
anomalous the subgraph. A is given by this formula:

() i

n

i
cin

n
A *111

1
∑

=

+−−=

where n is the number of iterations and ci is the percentage of the
subgraph that is compressed away on the ith iteration. ci is more
rigorously defined as

)(
)()(

0

1

GDL
GDLGDL ii −−

where DLj(G) is the description length of the subgraph after j
iterations.

Some explanation of the above formula for A is in order. The
idea is that all subgraphs begin with an A-value of 1 (i.e.,
completely anomalous), and the values drop off as portions of the
subgraphs are compressed away during the iterations. The ci term
will vary from 0 to 1; a value of 0 means that the subgraph was
not changed on the ith iteration, while a value of 1 means that the
entire subgraph was compressed away. The (n – i + 1) term will
vary from n to 1 as i increases; this causes A to drop off more
sharply for compressions that occur early on. The (1/n) term
guarantees that the final value will be between 0 and 1, since the
maximum possible value for the summation is n. (This would
occur if the entire subgraph was compressed away on the first
iteration.)

Again, consider the example graph in Figure 1. Suppose that the
three triangles represent three separate subgraphs. (This is

acceptable, even though edges connect the subgraphs; the edges
running between are not considered to be part of any subgraph.)
Recall that after one iteration, the graph appears as shown in
figure 2. If this is the only iteration under consideration, then we
would consider the third subgraph to be the most anomalous; it
was not compressed at all, whereas two of the three vertices have
been compressed away in the first two subgraphs.

4. MEASURES OF GRAPH REGULARITY
As noted in [6], an important consideration in any anomaly-
detection system is the regularity of the data. “Regularity” can be
thought of as a synonym for “predictability”; generally, the more
predictable the data, the easier it is to detect anomalies.
Furthermore, anomaly-detection systems that are configured
using training data may perform poorly on data with a different
amount of regularity. A good deal of research has been done in
the area of regularity measures (e.g., [5]), but little work has been
focused on graph-based data. Here, we define two different
measures for the regularity of graphs, both of which have been
implemented using Subdue. (Note: In the following discussion,
we use the term entropy instead of regularity. The two terms are
opposites – the higher the entropy, the lower the regularity.)

4.1 Substructure Entropy
The concept of entropy is well-known; it is covered in many
textbooks (e.g., [2]). Broadly speaking, entropy measures the
number of bits needed to describe a particular occurrence or
event. For a given set of possible events X, the entropy H is
given by

∑
∈

−=
Xx

xPxPXH))(log(*)()(

where P(x) is the probability that x occurred and log(P(x)) is the
base 2 logarithm of P(x). For H(X) to be well-defined, log(0) is
understood to be 0.

Clearly, the concept of entropy is useful for determining the
regularity or predictability of a given data set. All that is needed
is a good definition of the set of possible events, X, and the
corresponding probabilities P(X). For example, consider the
domain of strings. A simple measure of string entropy would be
the predictability of an arbitrary character within that string. In
this approach, X would be the set of all characters contained in
the string. Furthermore, for x ε X, we would define P(x) as the
number of occurrences of x in the string, divided by the length of
the string. A more sophisticated approach would be to let X be
all substrings of a certain length (n). P(x) would then be the
number of occurrences of substring x, divided by the total number
of substrings of length n. As an example, let us choose a
substring length of n = 3. Suppose further that the given string is
“abcaabcc”. X would then be {“abc”, “bca”, “caa”, aab”, “bcc”},
and P(“abc”) would be 2/6. The denominator is 6 because there
are 6 (overlapping) substrings of length 3: “abc”, “bca”, “caa”,
aab”, “abc”, and “bcc”.

A similar idea holds for graphs. Our definition of substructure
entropy follows directly from the above approach for strings,
except that we replace substring length with substructure size (as
measured by the number of vertices). For a given size n and
graph G, we define X to be the set of all n-vertex substructures

within G. For a given substructure x ε X, P(x) is defined as the
number of instances of x in G, divided by the total number of
instances of all n-vertex substructures. With this definition, the
substructure entropy of a graph measures the number of bits
needed to describe an arbitrary substructure of size n.

A couple of comments about this definition are in order. First, it
should be clear that in general, the more regularity or “pattern” a
graph contains, the lower its substructure entropy measure will
be. As certain substructures occur more and more frequently, the
probabilities of these substructures will increase, while the
probabilities for other substructures will decrease (assuming a
fixed graph size). As is well known, entropy is highest when the
probabilities are uniform, and it decreases as the probability
distribution becomes less uniform. Second, there is no single
entropy measure for a given graph; the value is dependent on the
selected substructure size, n. For any given graph, how to choose
the “best” value of n is an open question. (In fact, it is not
obvious how “best” would be defined in this situation.) Clearly,
n = 1 is not the best choice; this would only measure the entropy
of vertex labels, without considering relationships between
vertices. Very large values of n would, of course, be worthless.
Another possibility would be to consider multiple sizes at once
(perhaps even all sizes). More research is needed in this area
before definite conclusions can be reached.

As an example, consider the directed graph shown in Figure 5.

Figure 5. Example graph.

If we choose a substructure size of n = 2, then X will contain the
following substructures:

The values of P(x) for these substructures are 1/5, 2/5, 1/5, and
1/5 respectively.

4.2 Conditional Substructure Entropy
A second, related measure can be defined using the concept of
conditional entropy. Conditional entropy measures the amount of
information needed to describe an event, given that some other
event is known to have occurred. We now must work with two
sets instead of one: X, which is again the set of possible events,
and Y, which is the set of prior events (one of which is known to
have occurred). We then say that the conditional entropy of X

given Y is

))|((log*)|(*)()|(yxPyxPyPYXH
XxYy
∑∑
∈∈

−=

Again, log(0) is understood to be 0.

This value measures how well an event from Y can predict an
event from X. Suppose that for any given y ε Y, we can always
predict with certainty which event from X will occur. Then
P(x|y) will be either 0 or 1 for all x ε X, y ε Y, and H(X|Y) will be
zero. On the other hand, suppose that knowing the event from Y
tells us nothing about the event from X – i.e., X and Y are not
correlated. Then P(x|y) = P(x) for all x ε X, y ε Y, and H(X|Y)
will degenerate to H(X).

In the domain of strings, a natural use for these concepts is to
determine the conditional entropy of a character, given a certain
number (n) of previous characters. In other words, the
conditional entropy answers the question: “Given a certain
number of characters in a sequence, how many bits are needed to
describe the next character?” Let us again consider the example
string “abcaabcc”, and suppose that n = 3. Then X = {‘a’, ‘b’,
‘c’}, and Y = {“abc”, “bca”, “caa”, “aab”, “bcc”}. P(“abc”)
equals 2/6, since 2 of the 6 3-character substrings are “abc”). P(
‘a’ | “abc”) = 1/2, since ‘a’ appears after “abc” 1 out of 2 times.

As before, our definition of conditional substructure entropy
follows the above ideas closely. It is slightly more complicated,
however. We are now answering the question: “Given an
arbitrary n-vertex substructure, how many bits are needed to
describe its surroundings?” By “surroundings,” we are referring
to the edges and vertices adjacent to the substructure. The
surroundings can be thought of as a set of extensions to the
substructure; we define an extension of a substructure to be the
addition of either a single vertex (along with the edge connecting
it to the substructure), or a single edge within the substructure.

The set Y and its associated probabilities P(Y) are defined just as
X and P(X) were defined for substructure entropy; Y contains all
n-vertex substructures within the graph. However, some care
must be taken in defining X and the associated conditional
probabilities, P(X|Y). According to the above discussion, X
should contain all possible extensions of all n-vertex
substructures. Since an extension (as defined above) may add a
new vertex to the substructure or merely a single edge, this means
that X should contain all substructures containing n or (n + 1)
vertices. For particular substructures x ε X, y ε Y, we define
P(x|y) to represent the percentage of instances of y that extend to
an instance of x.

There is one more complication: we cannot use the above formula
H(X|Y) exactly as given above. In that definition, it is assumed
that exactly one event in the set X has occurred. In our case,
however, multiple “events” may occur (since a substructure can
have more than one extension), and we want to measure the bits
needed to describe which events occurred and which ones did not
occur. To account for this, H(X|Y) must be changed to

∑∑
∈∈

−−+=
XxYy

yxPyxPyxPyxPyPYXH)))|(1log(*))|(1(())|(log(*)|((*)()|(

With this revision, the definition of conditional substructure
entropy is complete.

As an example, let us again use the graph in Figure 6.

Figure 6. Example graph.

For the set Y, let us choose a substructure size of n = 2. Then Y
will contain these substructures:

Earlier, we defined X to contain all substructures containing n or
(n + 1) vertices. In this simple example, however, no edge-only
extensions exist; in other words, there is no way to extend a given
substructure from Y without adding a new vertex. So the only
substructures in X that are worth considering are those containing
n + 1 = 3 vertices:

Suppose that y is

and that x is

Then P(x|y) = 1/2, since one of the two instances of y will extend
to x.

5. EXPERIMENTAL RESULTS
5.1 Anomaly Detection

We tested our anomaly-detection methods using the 1999 KDD
Cup network intrusion dataset [9]. The data consists of
connection records, each of which is labeled as “normal” or as
one of 37 different attack types. Each record contains 41 features
describing the connection (duration, protocol type, number of
data bytes, etc.); some of these features are continuous, others
discrete. In the original competition, the dataset was split into
two sections: the training data and the test data. Participants were
able to train their detectors with the training data, and were then
judged based on their performance on the test data.

Since our approach involves unsupervised learning instead of
supervised learning (i.e., no training is involved), we focused
solely on the test data. In each test, we sampled a certain number
of records from the dataset, and attempted to find the attacks
located within the sample. Each individual test involved only one
particular attack type; the sampling was essentially random, but
controlled so that most selected records (96-98%) were labeled
“normal,” while the rest were of the one attack type. Purely
random sampling would have worked very poorly, since attacks
are quite common in the test data; one of the assumptions of
unsupervised anomaly detection is that the anomalous events are
generally rare. In the case of network intrusion data, this is a
reasonable assumption; in most situations, attacks would be quite
uncommon compared to normal connections. Each sample was
performed with replacement, so overlap between samples was
possible. We were interested in determining how anomalous the
actual attacks were reported to be.

We ran three groups of tests, varying the percentage of attacks
and the overall number of records. In the first group, each
sampled dataset contained 50 records, 1 of which was an attack.
In the second group, samples contained 50 records and 2 attacks;
in the third, they contained 100 records and 2 attacks. Each
sample was converted into a graph using the star-configuration
method described in section 3.2.

For the first method (anomalous substructure detection), we ran
one test for each attack type. In each test, we used Subdue to
discover the most anomalous substructures within the graph. For
the sake of time, we only discovered substructures consisting of 2
or 3 vertices. Also, since we were only interested in the most
anomalous substructures, we ignored substructures with a value
of F2 ≤ 6. (The number 6 is somewhat arbitrary, but provided a
convenient value for these tests.) We then looked at the fraction
of substructures that appeared in an attack record, compared to
the total number. We used a weighted fraction, to give the most
anomalous substructures a higher contribution. This was
accomplished by giving each substructure a contribution of

2
1

F

instead of just 1. For example, suppose that there are three
substructures discovered, with F2 values of 2, 3, and 4
respectively, and that the second substructure occurs in an attack
record. Then we would say that the attack accounts for

13
4

4
1

3
1

2
1

3
1

=
++

 of the discovered anomalies. Clearly, it is

desirable for attacks to account for a high percentage of the
anomalies.

The results from the first group of tests (50 connection records, 1
attack) are displayed in Figure 7. The numbers displayed are the
inverses of the weighted fractions; e.g., if the attack accounts for
1/15 of the anomalies, then a 15 is displayed. The lower the
number, the more anomalous the attack was considered to be.

sq
la

tta
ck

la
nd

te
ar

dr
op

ftp
_w

rit
e

m
ai

lb
om

b
w

or
m

ht
tp

tu
nn

el
ba

ck
im

ap
lo

ad
m

od
ul

e
ne

pt
un

e
ro

ot
ki

t
nm

apps
pr

oc
es

st
ab

le
m

sc
an

xt
er

m
sa

ta
n

pe
rl

w
ar

ez
m

as
te

r
ud

ps
to

rmph
f

ap
ac

he
2

po
d

po
rts

w
ee

p
bu

ffe
r_

ov
er

flo
w

sa
in

t
gu

es
s_

pa
ss

w
d

se
nd

m
ai

l
xs

no
op

m
ul

tih
op

ip
sw

ee
p

sm
ur

f
xl

oc
k

na
m

ed

0

5

10

15

20

25

Figure 7. Anomalous substructure detection; 50 records, 1

attack.

Overall, the results were good. For most types, the attack
accounted for at least 1/10 of the discovered anomalies. Since
there were 50 records, an average record would only account for
1/50 of the anomalies. It should be noted, however, that two of
the attack types (snmpgetattack and snmpguess) performed so
poorly that they could not be shown on the graph; their values
were about 2211 and 126, respectively. Interestingly, these two
types caused very poor results in the anomalous subgraph
detection tests as well. Excluding these two types, the average
value was about 8.64; in other words, the attack accounted for
between 1/8 and 1/9 of the discovered anomalies, on average.

The results from the second group of tests (50 records, 2 attacks)
are given in Figure 8. The separate fractions of the two attacks
have been added, and the inverse of this sum is shown for each
attack type.

sq
la

tta
ck

la
nd

te
ar

dr
op

ftp
_w

rit
e

m
ai

lb
om

b
w

or
m

ht
tp

tu
nn

el
ba

ck
lo

ad
m

od
ul

e
ne

pt
un

e
ro

ot
ki

t
nm

apps
pr

oc
es

st
ab

le
m

sc
an

xt
er

m
sa

ta
n

pe
rl

w
ar

ez
m

as
te

r
ud

ps
to

rmph
f

ap
ac

he
2

po
d

po
rts

w
ee

p
bu

ffe
r_

ov
er

flo
w

sa
in

t
gu

es
s_

pa
ss

w
d

se
nd

m
ai

l
xs

no
op

m
ul

tih
op

ip
sw

ee
p

sm
ur

f
xl

oc
k

na
m

ed

0

2

4

6

8

10

12

14

16

18

Figure 8. Anomalous substructure detection; 50 records, 2

attacks.

The results were poorer for the second group, which is to be
expected; the attacks comprised 4% of the records instead of 2%,
so they would not be considered as anomalous. Other things
being equal, we would expect the numbers to be cut in half, since
we are now considering the contribution of two records instead of
one. (If a record accounts for 1/8 of the anomalies, then two of
them account for 1/4 – i.e., the denominator is cut in half.)
Excluding snmpgetattack and snmpguess (which had respective
values of 456 and 3184), the overall average was about 5.56,
significantly higher than half of the first group’s average. This
demonstrates the principle that anomaly detection systems cannot
be fully trusted in a situation where unwanted behavior occurs too
frequently to be considered anomalous.

The results of the third group (100 records, 2 attacks) are shown
in Figure 9. Again, the contributions of the two attacks were
summed, and the inverses of these sums are displayed.

na
m

ed
xl

oc
k

sm
ur

f
ip

sw
ee

p
m

ul
tih

op
xs

no
op

se
nd

m
ai

l
gu

es
s_

pa
ss

w
d

sa
in

t
bu

ffe
r_

ov
er

flo
w

po
rts

w
ee

p
po

d
ap

ac
he

2
ph

f
ud

ps
to

rm
w

ar
ez

m
as

te
r

pe
rl

sa
ta

n
xt

er
m

m
sc

an
pr

oc
es

st
ab

le ps
nm

ap
ro

ot
ki

t
ne

pt
un

e
lo

ad
m

od
ul

e
ba

ck
ht

tp
tu

nn
el

w
or

m
m

ai
lb

om
b

ftp
_w

rit
e

te
ar

dr
op

la
nd

sq
la

tta
ck

0

5

10

15

20

25

Figure 9. Anomalous substructure detection; 100 records, 2

attacks.

The results for this group were the best of the three, although only
slightly better than those of the first group. Other things being
equal, the numbers would be expected to be similar to the first
group’s, since considering 2 records out of 100 is just like
considering 1 out of 50. Again excluding snmpgetattack and
snmpguess (which had values of 901 and 710), the average was
about 8.33, a slight improvement over the first group’s average of
8.64. This suggests that if anomalous events occur at a fixed rate,
increasing the amount of available data improves the chances of
successful anomaly detection.

For the second approach (anomalous subgraph detection), we ran
10 separate tests for each attack type. As described earlier, each
test sample consisted of 50 (or 100) records, with one or two of
the records being attacks. For each sample, we used anomalous
subgraph detection to rank the connection records from 1 to 50
(or 100), with 1 being the most anomalous.

Figure 10 shows results from the first group of tests (50 records, 1
attack). Each number represents an average of the 10 tests on a
particular attack type, with the numbers representing the ranking
of the single attack record. The lower the number, the more
anomalous that attack was considered to be.

sn

m
pg

et
at

ta
ck

na
m

e d
xl

oc
k

sm
ur

f
ip

sw
ee

p
m

ul
tih

op
xs

no
op

se
nd

m
ai

l
gu

es
s_

pa
ss

w
d

sa
in

t
bu

ffe
r_

ov
er

flo
w

po
rts

w
ee

p
po

d
ap

ac
he

2 ph
f

ud
ps

to
rm

w
ar

ez
m

as
te

r
p e

r l
sa

ta
n

xt
er

m
m

sc
an

pr
oc

es
st

ab
le ps

nm
ap

ro
ot

ki
t

ne
pt

un
e

lo
ad

m
od

ul
e

im
ap

ba
ck

ht
tp

tu
nn

el
w

or
m

m
ai

lb
om

b
ftp

_w
rit

e
te

ar
dr

op
la

nd
sq

la
tta

ck
sn

m
pg

ue
ss

0

5

10

15

20

25

30

35

Figure 10. Anomalous subgraph detection; 50 records, 1

attack.

As can be seen, the results are reasonably good; most attack types
had an average ranking below 5. Only two attack types
(snmpgettattack and snmpguess) had an average ranking of more
than 10. The overall average was about 4.75.

The results for the second group (50 records, 2 attacks) are
displayed in Figure 11. In this case, each number is an average of
20 rankings, since each of the 10 samples contained 2 attacks
instead of 1. The imap attack type was not included in this group,
since only a single imap record exists in the test data.

sn
m

pg
et

at
ta

ck
n a

m
e d

xl
oc

k
sm

ur
f

ip
sw

ee
p

m
ul

tih
op

xs
no

op
se

nd
m

ai
l

gu
es

s_
pa

ss
wd

sa
in

t
bu

ffe
r_

ov
er

flo
w

po
rts

we
ep po
d

ap
ac

he
2

ph
f

ud
ps

to
rm

wa
re

zm
as

te
r

pe
rl

sa
ta

n
xt

er
m

m
sc

an
pr

oc
es

st
ab

le ps
nm

ap
ro

ot
ki

t
ne

pt
un

e
lo

ad
m

od
ul

e
ba

ck
ht

tp
tu

nn
el

wo
rm

m
ai

lb
om

b
ftp

_w
rit

e
te

ar
dr

op
la

nd
sq

la
tta

ck
sn

m
pg

ue
ss

0

5

10

15

20

25

30

35

Figure 11. Anomalous subgraph detection; 50 records, 2

attacks.

The results were not as good for this group; 5 of the 36 attack
types had an average ranking above 10, with several others above
5. The overall average was about 6.41, up from the first group’s
average of 4.75. This group performed more poorly than the first
in the anomalous substructure detection tests as well.

Figure 12 shows the results for the third group (100 records, 2
attacks).

sn
m

pg
et

at
ta

ck
n a

m
e d

xl
oc

k
sm

ur
f

ip
sw

ee
p

m
ul

tih
op

xs
no

op
se

nd
m

ai
l

gu
es

s_
pa

ss
w

d
sa

in
t

bu
ffe

r_
ov

er
flo

w
po

rts
w

ee
p

po
d

ap
ac

he
2 ph
f

ud
ps

to
rm

w
ar

ez
m

as
te

r
pe

rl
sa

ta
n

xt
er

m
m

sc
an

pr
oc

es
st

ab
le ps

nm
ap

ro
ot

ki
t

ne
pt

un
e

lo
ad

m
od

ul
e

ba
ck

ht
tp

tu
nn

el
w

or
m

m
ai

lb
om

b
ftp

_w
rit

e
te

ar
dr

op
la

nd
sq

la
tta

ck
sn

m
pg

ue
ss

0

10

20

30

40

50

60

70

80

Figure 12. Anomalous subgraph detection; 100 records, 2

attacks.

As with the anomalous substructure detection tests, the third
group’s results were the best of the three. With 100 records
instead of 50, the rankings would be expected to double, all other
things being equal. However, many of the attack types still had
an average ranking of 5 or less, with all but 7 types having an
average of 10 or less. The overall average was around 9.28,
slightly less than twice the first group’s average.

5.2 Substructure Entropy and Conditional
Substructure Entropy
To test our definitions of substructure entropy and conditional
substructure entropy, we artificially generated a number of graphs
and used Subdue to produce both entropy and conditional entropy
values for the graphs. Each graph contained 96 vertices and 96
edges. In each graph, a particular pattern was inserted a certain
number of times. This pattern consisted of two vertices
connected with an edge, three vertices in a triangle, or four
vertices in a square. The rest of the vertices and edges were then
added with randomly-selected labels (out of several possibilities)
and randomly-selected edge endpoints. The following graph
factors were varied: 1. the number of vertices in the inserted
pattern; 2. the number of labels in the graph; and 3. the number of
inserted patterns. (The second factor specifies how many
possibilities exist for vertex and edge labels.) Also, the value of n

(size of substructures used to calculate the entropy or conditional
entropy) was varied, producing several different measures for any
given graph. For each combination of factor 1, factor 2, and
value of n, we plotted the calculated entropy and conditional
entropy values vs. the number of patterns inserted in the graph.
Ideally, the reported values would fall off smoothly as more and
more patterns were inserted into a graph. In each chart, the
number of inserted patterns increases from left to right; the
leftmost data point represents a graph with no instances of the
pattern, and the rightmost point indicates a graph consisting
entirely of the pattern.

The results varied widely depending on the combination of
factors. For example, Figures 13 and 14 show the results for
graphs with 3-vertex patterns, 6 labels, and a value of n = 2.

0

1

2

3

4

5

6

Figure 13. Substructure entropy; 3-vertex patterns, 6 labels,

n = 2.

0

2

4

6

8

10

12

14

Figure 14. Conditional substructure entropy; 3-vertex

patterns, 6 labels, n = 2.

These charts display the desired appearance; the values fall off
reasonably smoothly as patterns are added.

The results of other combinations of factors were not as good. As
an example, Figure 15 shows the conditional entropy values for
graphs containing 2-vertex patterns and 10 labels, along with n =

2.

0

2

4

6

8

10

12

Figure 15. Conditional substructure entropy; 2-vertex

patterns, 10 labels, n = 2.

This hill-like shape appears in several of the conditional entropy
charts. This is due to the fact that for graphs on the left side
(those with few inserted patterns), many of the 2-vertex
substructures appear only a few times within the graph. When the
average number of instances is very low, the conditional entropy
will always be underestimated. For a given graph, we consider
the “true” conditional substructure entropy to be that of an
imaginary graph that is constructed using the same rules but is
infinite in size. As is well known, underestimation is also likely
when calculating the (unconditional) entropy of a finite data set
(see, for example, [7]). In our tests, however, the effect was more
noticeable for conditional entropy.

One observed pattern in the (unconditional) entropy charts was
that if the value of n was larger than the size of the inserted
pattern, the values dropped off very slowly. For example, Figure
16 contains the results for graphs containing a 3-vertex pattern
and 6 labels, using a value of n = 4.

0

1

2

3

4

5

6

7

8

9

10

Figure 16. Substructure entropy; 3-vertex patterns, 6 labels, n

= 4.

This can be explained as follows: if n (the size of substructures

used to calculate the entropy) is greater than the pattern size, then
the patterns are “beneath notice.” As the number of (3-vertex)
patterns increases, 3-vertex substructures are becoming more and
more predictable, but the effect is much less pronounced if we are
considering the predictability of 4-vertex substructures. Many of
the patterns will be ignored, unless a randomly-placed edge
happens to join them to some other vertex. This shows that the
choice of n is important when measuring the substructure entropy
of a graph; a poorly chosen value might cause some regular
features of the graph to be ignored.

5.3 Applications of Graph Regularity to
Anomaly Detection
Finally, we tested our hypothesis that the level of regularity in a
graph affects the ability to perform anomaly detection on the data.
We again used the 1999 KDD Cup dataset. For each attack type,
we tested 11 samples, varying the amount of data regularity.
Each sample contained 51 “normal” records and one attack
record, similarly to how the data was sampled for the anomaly
detection tests. The difference was that in each of the 11 samples,
a certain number of the “normal” records were identical, i.e., were
actually the same record. In each case, the first normal record
selected was repeated anywhere from 0 to 50 times, progressing
by 5 from test to test. We then used anomalous subgraph
detection to rank the single attack record from 1 (most
anomalous) to 52 (least anomalous), as described in section 5.1.
These rankings were then averaged across all 37 attack types.
Figure 17 displays the average rankings vs. the number of
repeated “normal” records; the regularity of the data increases
from left to right.

50454035302520151050
0

1

2

3

4

5

6

Figure 17. Ranking of attacks as regularity increases.

As can be seen, the average rankings of the anomalous records
drop fairly smoothly as the regularity of the normal records is
increased. This supports our hypothesis that the regularity of

graph-based data affects the ability to detect anomalies within it.

6. CONCLUSIONS
Graph-based anomaly detection is a promising area that has
received little attention. In this paper, we have defined two
methods for detecting unusual patterns within graph-based data.
We have also defined two measures for calculating the regularity
of a graph, using the concepts of entropy and conditional entropy.
These approaches have been implemented and tested using the
Subdue system, with encouraging results. Future work will
include theoretical analysis of the abilities and limitations of these
methods. We will also be investigating strategies for
automatically selecting an optimal substructure size when
computing the entropy or conditional entropy of a graph, as well
as the possibility of considering multiple sizes at once. A detailed
examination of the relationship between graph regularity and
anomaly detection is also needed.

7. REFERENCES
[1] Cook, D.J. and Holder, L.B. Graph-Based Data Mining.

IEEE Intelligent Systems, 15(2), pages 32-41, 2000.

[2] Cover, T.M. and Thomas, J.A. Elements of Information
Theory. Wiley, 1991.

[3] Gonzalez, J., Holder, L.B., and Cook, D.J. Graph-Based
Concept Learning. Proceedings of the Seventeenth National
Conference on Artificial Intelligence, 2000.

[4] Jonyer, I., Holder, L.B., and Cook, D.J. Discovery and
Evaluation of Graph-Based Hierarchical Conceptual
Clusters. Journal of Machine Learning Research, 2, pages
19-43, 2001.

[5] Lee, W. and Xiang, D. Information-Theoretic Measures for
Anomaly Detection. Proceedings of The 2001 IEEE
Symposium on Security and Privacy, Oakland, CA, May
2001.

[6] Maxion, R.A. and Tan, K.M.C. Benchmarking Anomaly-
Based Detection Systems. International Conference on
Dependable Systems and Networks, pages 623-630, New
York, New York; 25-28 June 2000.

[7] Miller, G.A. Note on the Bias of Information Estimates.
Information Theory in Psychology: Problems and Methods,
Free Press, 1955.

[8] Rissanen, J. Stochastic Complexity in Statistical Inquiry.
World Scientific Publishing Company, 1989.

[9] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

