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Summary 

Objectives:  To many people, home is a sanctuary.  With the maturing of smart home technologies, 
many people with cognitive and physical disabilities can lead independent lives in their own homes 
for extended periods of time.  In this paper, we investigate the design of machine learning 
algorithms that support this goal.  We hypothesize that machine learning algorithms can be 
designed to automatically learn models of resident behaviour in a smart home, and that the results 
can be used to perform automated health monitoring and to detect anomalies. 
Methods:  Specifically, our algorithms draw upon the temporal nature of sensor data collected in a 
smart home to build a model of expected activities and to detect unexpected, and possibly health-
critical, events in the home. 
Results:  We validate our algorithms using synthetic data and real activity data collected from 
volunteers in an automated smart environment. 
Conclusions:  The results from our experiments support our hypothesis that a model can be learned 
from observed smart home data and used to report anomalies, as they occur, in a smart home. 
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1 Objectives 
 

By 2040, a projected 26% of the US population will be 60+ and at least 45% of the populations 
of Japan, Spain and Italy will be 60 or older by then [1].  Approximately 13% of these older adults 
suffer from dementia and related disabilities. Given the costs of nursing home care and the 
importance individuals place on remaining in their current residence as long as possible, use of 
technology to enable individuals with cognitive or physical limitations to remain in their homes 
longer should be more cost effective and promote a better quality of life.  As a long-term outcome 
of this investigation we expect to develop and to offer the community smart environment 
technologies with data mining and machine learning algorithms that can effectively perform a 
variety of health monitoring and intervention strategies. 

We define a smart environment as one that collects data about the residents and the environment 
in order to adapt the environment to the residents and meet the goals of safety, security, cost 
effectiveness, and comfort. In an environment that is equipped with sensors to detect motion, 
temperature, and other conditions, sensed events can be captured and associated with a time stamp.  
The history of observed events reflects activities that occur in the environment and can be used to 
discover frequent recurring activity patterns [2], to recognize activities of daily living [3], to 
identify suspicious states [4], and to predict resident actions [5].  While researchers argue that space 
and time play essential roles in everyday lives [6], this is the first such study which incorporates 
time interval information into a health monitoring algorithm.   These time intervals offer additional 
information about the relationships between timings of activities that improves the performance of 
health monitoring tasks such as anomaly detection. 

Allen [7] suggested that it is more effective to describe activities using time intervals rather than 
time points, and defined thirteen relations that comprise a temporal logic.  We refine Allen’s 
temporal logic for use in analyzing smart environment data, and apply it to the task of anomaly 
detection. While other methods treat each event as a separate entity (for example, turning on a lamp 
and later turning off the same lamp), our interval-based analysis considers these two events as 
members of the same activity and therefore belonging to the same time interval.  Each interval is 
expressed in terms of start time and end time values.  As a result, temporal relationships between 
such intervals can be identified and used to perform critical anomaly detection. By recognizing that 
many activities in a smart environment have a distinct beginning and end with an associated time 
span, we can reason about temporal relationships between activities that regularly occur.  For 
example, a data mining algorithm may note that a smart environment resident often makes popcorn 
during the same time interval that they are watching a movie.  If popcorn has not been cooked by 
the time the movie is over, this may be considered an anomaly. 

The objective of this study is to determine if anomalies can be effectively detected in smart home 
data using temporal data mining.  Specifically, we introduce a temporal representation that can 
express frequently-occurring relationships between smart environment events.  We then use the 
observed history of events to determine the probability that a particular event should or should not 
occur on a given day, and report as an anomaly the presence (or absence) of highly-likely events.  
To validate the approach, we test the algorithm on synthetic data as well as real data collected from 
a smart environment.  We discuss the implications of this work for health monitoring and 
assistance, and conclude with directions for continued research. 

The need for a robust anomaly detection model is as essential as a prediction model for any 
intelligent smart home to function in a dynamic world. For a smart environment to perform anomaly 
detection, it should be capable of applying the limited experience of environmental event history to 
a rapidly changing environment, where event occurrences are related by temporal relations. For 
example, if we are monitoring the well being of an individual in a smart home and the individual 
has not opened the refrigerator all day as they normally do, this should be reported to the individual 
and the caregiver.   Similarly, if the resident turned on the bathwater, but has not turned it off before 



going to bed, the resident or the caregiver should be notified, and the smart home could possibly 
intervene by turning off the water. 

2 Methods 

 
Temporal Intervals.  Allen listed thirteen relations (visualized in Fig. 1) comprising a temporal 
logic:  before, after, meets, meet-by, overlaps, overlapped-by, starts, started-by, finishes, finished-
by, during, contains, and equals [7]. These temporal relations play a major role in identifying 
temporal activities which occur in a smart home. Consider, for instance, a case where the inhabitant 
turns the Television on before sitting on the couch. We notice that these two activities, turning on 
the TV and sitting on the couch, are frequently related in time according to the “before” temporal 
relation. Therefore, when the relationship is violated, an anomaly is noted.  
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Figure 1. Temporal relations representation. 
 



Anomaly detection is most accurate when it is based on behaviours that are frequent and 
predictable.  As a result, we look for temporal interactions only among the most frequent activities 
that are observed in resident behaviour.  This filtering step also greatly reduces the computational 
cost of the algorithm.  To accomplish this task, we mine the data for frequent sequential patterns 
using the Apriori algorithm [8]. The input to the algorithm is a file of raw sensor events, each 
tagged with a date and time, and the result is a list of frequently-occurring sequences of events.  
Next, we identify temporal relations that occurred between events in these frequent sequences. The 
final step involves calculating the probability of a given event occurring (or not occurring), which 
forms the basis for anomaly detection. 

The temporal relations that are useful for anomaly detection are the before, contains, overlaps, 
meets, starts, started-by, finishes, finished-by, and equals relations.  Because we want to detect an 
anomaly as it occurs (and not after the fact), the remaining temporal relations - after, during, 
overlapped-by, and met-by – are not included in our anomaly detection process. 

Let us focus now on how to calculate the probability that event Z will occur (in this case, the 
start of the event interval).  Evidence for this probability is based on the occurrence of other events 
that have a temporal relationship with Z, and is accumulated over all such related events.  First 
consider the probability of Z occurring given that the start of the temporal interval for event Y has 
been detected. The formula to calculate the probability of event Z based on the occurrence of event 
Y and its temporal relationship with Z is given by Equation (1). Note that the equation is based on 
the observed frequency of the observed temporal relationships between Y and Z as well as the 
number of occurrences of Y in the collected event history. 
 

P(Z|Y) = | Before (Z,Y)| +  |Contains(Z,Y) | +  |Overlaps(Z,Y) | + |Meets(Z,Y) | + 
|Starts(Z,Y) | + |StartedBy(Z,Y) | +  |Finishes(Z,Y) | + |FinishedBy(Z,Y)|  + 
|Equals(Z,Y)|   

/   |Y|                                              (1) 
 

The previous discussion showed how to calculate the likelihood of event Z given the occurrence 
of one other event Y.  Now consider the case where we want to combine evidence from multiple 
events that have a temporal relationship with Z.  In our example we have observed the start of event 
X and the start of event Y, and want to establish the likelihood of event Z occurring.  The combined 
probability is computed as: 

P(Z|X∪Y) = P(Z∩(X∪Y) )  /  P(A∪Y) 
= P(Z∩X) ∪  P(Z∩Y)/ P(X) + P(Y) –P(X∩Y) 

= P(Z|X).P(X) + P(Z|Y)P(Z) / P(X) + P(Y) –P(X∩Y)       (2) 
 

Using Equation 2 we can calculate the likelihood of event Z occurring based on every event we 
have observed on a given day to that point in time.  We can also calculate the likelihood that an 
event Z does not occur as P(¬Z) = 1 – P(Z), the inverse of the probability that event Z does occur.  
Finally, we calculate the anomaly value of event Z using Equation 3. 

  
                  AnomalyZ = 1 - P(Z)                                   (3) 

Notice that if the event has a probability approaching 1 and has occurred, this is not considered 
an anomaly.  On the other hand, if the probability of the event we just observed is close to 0, then 
this is an unusual event and should be considered an anomaly.  The point at which these anomalies 
are considered surprising enough to be reported is based somewhat on the data itself [9].  If the 
probability of an event is based on the occurrence of other events which themselves rarely occur, 
then the evidence supporting the occurrence of the event is not as strong.  In this case, if the event 
has a low probability yet does occur, it should be considered less anomalous than if the supporting 
evidence itself appears with great frequency.  Consistent with this theory, we calculate the mean 



and standard deviation of event frequencies over the set of events in the resident’s action history.  
Events are reported as anomalies (or, conversely, the absence of an event) if it does occur and its 
anomaly value is greater than the mean + 2 standard deviations, which is a common threshold for 
identifying outliers in data. 
 
MavHome Smart Home.  The algorithms described here are part of the MavHome multi-
disciplinary project, which has been engaged in the creation of adaptive and versatile home and 
workplace environments in the past few years [10].  The goal of the MavHome project is to create a 
smart home that can act as an intelligent agent.  The home perceives the state of the environment 
and its residents using sensors, reasons about the state and possible actions using machine learning 
algorithms, and act on the state using powerline controllers. In order to design a smart environment, 
we need to design machine learning algorithms that can identify, predict, and reason about resident 
behaviours.  The objective of our initial MavHome study was to determine if our algorithms could 
learn an automation policy that would reduce the number of manual interactions the resident 
performed in a smart environment.  Our machine learning algorithms did accurate predict resident 
activities and substantially reduce the average number of daily manual interactions [10]. 

The MavHome algorithms are tested in two physical environments.  One is a smart apartment 
called the MavPad and another is a smart workplace environment, the MavLab. Our experiments 
are based on two months of real activity data collected in the MavLab working environment.  
During that time, a student volunteer performed his normal daily work activities in this 
environment.  All interactions with lights, blinds, fans, and electronic devices were performed using 
X10 controllers, so that all sensor and interaction events could be captured in a text file.  The layout 
of sensors and controllers in the MavLab is shown in Fig. 2.  The data collection system consists of 
an array of sensors and X10 powerline controllers, connected using an in-house sensor network. As 
shown in Fig. 2, MavLab consists of a presentation area, a kitchen, student desks, a lounge, and a 
faculty room. There are over 100 sensors deployed in the MavLab that include light, temperature, 
humidity, and reed switches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. MavLab Argus Sensor Network (M-Motion sensor, L-Light sensor, T-Temperature 
sensor, H-Humidity sensor, R- Reed switch sensor, S-Smoke sensor, C- Gas sensor). 



In addition, we created a synthetic data generator to validate our approach. The data generator 
allows us to input event sequences corresponding to frequent activities, and specify when the 
sequences occur.  Randomness is incorporated into the time at which the events occur within a 
sequence using a Gaussian distribution.  We developed a model of a user’s pattern which consists of 
a number of different activities involving three rooms in an environment and eight devices. Our 
synthetic data set contains about 4,000 actions representing two months of activities. 

3 Results 

We validate our algorithm by applying it to our real and synthetic datasets. We train the model 
based on 59 days of data and test the model on one day of activities. We use the training set to form 
the frequent item sets and identify temporal relations shared between them. The temporal relations 
formed in these data sets show some interesting patterns and indicate relations that are of interest. 
Table 1 summarizes characteristics of the datasets we used for the experiments. 

Next, we perform frequent itemset mining and identify the most frequent activities in the training 
dataset. Then we read these temporal relations into our anomaly detection tool which calculates 
evidence for each possible event and outputs anomalies that are detected in the test set data.   After 
manually inspecting the data, we report the number of true and false anomalies that are reported. 
Tables 2 and 3 display results from the synthetic and real datasets, respectively. Because anomalies 
are detected in real time as events are observed, we list anomalies in the order they are detected. 

Based on a manual inspection of the data we see that the anomaly detection algorithm performed 
well on synthetic data – all of the expected anomalies were detected and no false positives were 
reported.  In the real data no anomalies are reported.  This is consistent with the nature of the data 
which does not contain anomalous events, and reflects the fact the anomalies should be, and are in 
fact, rare.  We see that the approach is robust and does not report false anomalies in this case.  The 
graph in Fig. 3 visualizes the anomaly values for frequent events in the synthetic and real datasets.  
We notice that the spikes visible in the synthetic datasets are clear indication of anomaly, which is 
consistent with our expectation for the outcome of this experiment. 
 

 
 

Figure 3. Anomaly detection on test sets of real and synthetic data in 3-D.  The anomaly value is 
plotted for each possible activity as actual events are observed. 



4 Conclusions 

 
The experimental results on synthetic data provide evidence that our algorithm is capable of 
identifying anomalous events based on temporal relationship information.  The results applied to 
real data brought insights to the activities that were being performed in the MavLab setting.  In both 
cases these types of surprising behaviours should be reported to the resident and possibly their 
caregiver.  The caregiver could respond according to the health-critical nature of the anomaly and 
any additional information they may have available. 

A future use of anomaly detection is its use for reminder assistance. If the resident queries the 
algorithm for the next routine activity, the activity or activities with the greatest probability will be 
provided.  Similarly, if an anomaly is detected, the smart environment can first initiate contact with 
the resident and provide a reminder of the activity that is usually performed at that time.  
Autominder [11] is an example of an existing reminder system.  In contrast to our approach which 
learns a reminder schedule from observed events, Autominder’s reminder schedule is 
preprogrammed.  Autominder uses techniques such as dynamic programming and Bayesian learning 
to dynamically adjust this schedule in a way that accommodates dynamic changes in a person’s 
daily routines. 

Temporal reasoning enhances data mining in smart environments by adding information about 
expected temporal interactions between resident activities.  Based on our study, we conclude that 
the use of temporal relations provides us with an effective new approach for anomaly detection. We 
tested our algorithm on relatively small datasets, but will next target larger datasets with real 
activity data collected over a six month time span. Other future directions of this work also include 
improving activity prediction using temporal relations in smart home data.  One challenge this work 
introduces is determining which observed events belong to the same activity, and thus the same 
temporal interval.  In this study we grouped events that turned a device on together with those that 
turned the same device off.  However, for a more extensive study we need to determine a general 
method for grouping events. 

Acknowledgements 

This work is supported by NSF grant IIS-0121297. 

References 

1. Weisman J.  Aging population poses global challenges.  The Washington Post. 2005 Feb 2; 
Sect. A:1. 
2. Heierman EO, Cook DJ.  Improving home automation by discovering regularly occurring 
device usage patterns.  In:  Proceedings of the Third IEEE International Conference on Data 
Mining; 2003 Dec 19-22; Melbourne, Florida. IEEE Computer Society; 2003. p. 537-540. 
3. Liao L, Fox D, Kautz H.  Location-based activity recognition using relational Markov 
networks.  In: Proceedings of the International Joint Conference on Artificial Intelligence; 2005 Jul 
30 – Aug 5; Edinburgh, Scotland. Professional Book Center; 2005. p. 773-778. 
4. Lühr S, Venkatesh S, West GAW, Bu HH. Explicit State Duration HMM for Abnormality 
Detection in Sequences of Human Activity.  In: PRICAI 2004: Trends in Artificial Intelligence, 
Eighth Pacific Rim International Conference on Artificial Intelligence; 2004 Aug 9-13; Auckland, 
New Zealand.  Springer; 2004. p. 983-984. 
5. Gopalratnam K, Cook DJ.  Online sequential prediction via incremental parsing:  The 
Active LeZi algorithm.  IEEE Intelligent Systems. 2007; 22(1):1-8. 
6. Gottfried B,  Guesgen HW, Hübner S. Spatiotemporal Reasoning for Smart Homes.  In:  
Augusto JC, Nugent CD, editors. Designing smart homes. Springer Verlag; 2006. p. 16-34. 



7. Allen JF, Ferguson G.  Actions and events in interval temporal logic.  Journal of Logic and 
Computation. 1994; 4(5):531-579. 
8. Agrawal R, Srikant R.  Mining sequential patterns.  In: Yu PS, Chen ALP.  Proceedings of 
the Eleventh International Conference on Data Engineering; 1995 Mar 6-10; Taipei, Taiwan. IEEE 
Computer Society; 1995. p. 3-14. 
9. Noble CC, Cook DJ.  Graph-based anomaly detection.  In:  Getoor L, Senator TE, 
Domingos P, Faloutsos C, editors.  Proceedings of the Ninth ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining; 2003 Aug 24-27; Washington, D.C. ACM; 
2003. p. 631-636. 
10. Youngblood GM, Cook DJ.  Data mining for hierarchical model creation.  IEEE 
Transactions on Systems, Man, and Cybernetics. 2007; 37(4):1-12. 
11. Pollack ME. Intelligent Technology for an Aging Population: The use of AI to assist elders 
with cognitive impairment. AI Magazine summer issue. 2005; 26(2): 9-24. 



 Table 1. Characteristics of the synthetic and real datasets. 

Datasets #Days #Possible events #Frequent intervals Size 

Synthetic (train) 59 8 1703 105KB

Real (train) 59 17 1523 103KB

Synthetic (test) 1 8 17 2KB

Real (test) 1 17 9 1KB



 Table 2. Anomaly detection in the test set for the synthetic dataset  

Event 

Order Frequent Event Evidence Anomaly Reported 

1 Lamp 0.30 0.70 No 

2 Lamp 0.23 0.77 No 

3 Lamp 0.01 0.99 Yes 

4 Fan 0.32 0.68 No 

5 Cooker 0.29 0.71 No 

6 Lamp 0.45 0.55 No 

7 Lamp 0.23 0.77 No 

8 Lamp 0.01 0.99 Yes 

9 Lamp 0.23 0.77 No 

10 Fan 0.30 0.70 No 

11 Cooker 0.34 0.66 No 

12 Lamp 0.33 0.67 No 

13 Lamp 0.20 0.80 No 

14 Lamp 0.02 0.98 No 

15 Lamp 0.00 1.00 Yes 

16 Fan 0.34 0.66 No 

17 Cooker 0.42 0.58 No 

Anomaly Cut-off Threshold (μ + 2σ) 0.99 

 



Table 3. Anomaly detection in the real dataset. 

Event 

Order Frequent Event Evidence Anomaly Reported 

1 J10 0.45 0.55 No 

2 J11 0.32 0.68 No 

3 A11 0.33 0.67 No 

4 A15 0.24 0.76 No 

5 A11 0.23 0.77 No 

6 A15 0.22 0.78 No 

7 I11 0.27 0.73 No 

8 I14 0.34 0.66 No 

Anomaly Cut-off Threshold (μ + 2σ) 0.84 
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