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Abstract 

Growth in wireless sensor and machine learning have reshaped the technology landscape. The maturing of these 

technologies is well-timed, because an aging population needs sensor-based technologies to support their increasing 

health needs. In this paper, we examine the state of the science in sensor technologies and their ability to promote 

successful aging. We review recent developments in sensor design and behavior marker discovery as well as their 

roles in automating health assessment and intervention. In addition to highlighting technology progress, we also 

discuss significant challenges that researchers and designers are facing. The tremendous demand for sensor solutions 

to adaptive aging also introduces opportunities for unprecedented research breakthroughs. Both innovation and user 

needs must be considered as we transition technologies from infancy to widespread use. 

1. Introduction 

We are experiencing a dramatic and unprecedented shift in national and global demographics. Soon, a 

quarter of our population will be age 65+, and unique healthcare challenges will accompany this age 

wave. Because people are living longer, chronic illness rates are increasing, and with them, the number of 

individuals who are unable to function independently. For the first time, older adults will outnumber 

children, creating a discrepancy between persons needing care and those capable of providing it [1]. 

While the future of healthcare availability and service quality seems uncertain, the future of healthcare IT 

is bright, with a projected market growth to $391 billion by 2021 [2]. 



Technology holds a promise to meet some of the coming age wave needs by automating and 

dramatically scaling health assessment and treatment. This promise is reflected in research and business 

interest. As Figure 1 illustrates, research activity and market activity related to sensor technology for 

healthcare have both been steadily growing over the past decade. Because 90% of seniors want to stay in 

their own homes as they age [3], many look to technology to extend functional independence and improve 

quality of life. There are many potential benefits of sensor-based technology for promoting successful 

aging in place. Rather than calling Mom several times a day to check in, family members can discretely 

view a display that reassures them she is up and carrying about her daily business. Instead of seeing a 

patient for 30 minutes, care providers can create diagnosis and treatment plans based on a complete 

behavioral profile generated from continuous monitoring over the previous year. Older adults do not need 

to worry about taking the right medications in the correct context when smart pill dispensers offer timely 

reminders. Furthermore, they can rest assured that assistance is on its way if a fall or other accident does 

happen. 

Figure 1. (bars) Number of publications, by year, for sensor‐related healthcare topics over the past 

decade. Numbers are reported by Google Scholar; (line) Size of the global IoT market. Numbers are 

reported by Statista. 



To exploit the promise of aging-in-place support that is offered by smart sensor platforms, we need to 

determine what progress has been made in this field and what are essential next steps. In this paper, we 

look at the state of the science in smart sensor-based health monitoring, assessment, and intervention for 

aging in place. We start by comparing the capabilities of popular sensor platforms and types of 

information that can be gleaned from these sensors. Based on this starting point, we then investigate the 

variety and maturity of sensor-based technologies that have been developed for adaptive aging. Finally, 

we discuss barriers and opportunities that arise as we move this field forward. 

 

2. Sensors and Behavior Markers 

Sensors provide information on a vast variety of physiological and behavioral features. In recent years 

these sensors have become low cost, wireless, integrated into larger packages, and deployable in real-

world settings. Sensors differ in type, purpose, output signal, and technical infrastructure. Table 1 lists 

sensors that are commonly used for ubiquitous healthcare because they provide moment-by-moment 

human behavior markers, in situ. Here, we discuss the potential use cases for sensor data as well as the 

pros and cons for alternative sensor types. 

Table I. Common types of sensors employed for health monitoring and assistance. 

Category Sensors 

Ambient passive infrared (PIR) motion, magnet / contact switch, temperature, light, humidity, 

vibration, pressure, power usage, electric device usage, water usage, RFID 

Wearable accelerometer, gyroscope, magnetometer, compass, phone, text, app, battery, location 

Environment frequented locations with type, outdoor walkability score, indoor and outdoor air 

quality, temperature, light levels, sound levels, number of residents, environment clutter 

Physiological ECG, EEG, EMG, respiration, pulse, galvanic skin response, skin temperature, cortisol 

level, blood pressure, blood oxygen saturation 

High-

dimensional 

camera, microphone array 

Digital traces web browser, purchases, social media 

 



Ambient sensors are attached to a physical environment. These sensors passively provide data [4]. 

Thus, individuals do not need to interact with the sensor or change their behavior in any manner. Because 

they are not associated with a single person, these sensors generate data that reflect the actions of 

everyone in the space together with external environment influences. While these sensors are inexpensive 

and do not quickly drain their batteries, the information they provide is often coarse in granularity. As a 

result, sophisticated software is required to understand behavior patterns and health states from these data. 

In contrast with ambient sensors, wearable sensors both require much more user attention and provide 

much larger data. Individuals who collect data from mobile phones, smartwatches, or other wearable 

sensors need to consider proper sensor placement [5]. These sensors must be frequently charged because 

the battery drains quickly, especially if collected information is communicated offsite or location services 

are employed [6]. On the other hand, mobile devices offer a compact mechanism for bundling many 

sensors together. Frequently, these devices either directly collect physiological information or offer 

attachments that monitor these readings. These sensors provide personalized information in large volumes 

that offer tremendous insight into movement and behavior patterns. Consider a smartwatch that collects 

sensor readings at a rate of 50Hz. This device will generate over 4 million readings each day. While the 

resulting data are a treasure trove for data analysis, they quickly exceed the storage capacity of a mobile 

device. 

Other input devices that provide high-granularity data are cameras and microphone arrays. These 

sources offer perhaps the richest information and attract a great deal of research on activity recognition 

and analysis [7]. Video and audio data are valuable for fall detection, speech-based health assistance, and 

analysis of group activities [8]. At the same time, they pose some of the most significant challenges. 

These data are so voluminous that they prevent on-site storage and real-time analysis. They are sensitive 

to environmental factors, because lighting and ambient sound conditions can obscure the information. 

Perhaps most dauntingly, the perceived (or actual) privacy risk thwarts user acceptance of the technology, 

particularly in their own homes [9], [10]. An unlimited number of external information sources can also 

be analyzed to understand a person’s health state and behavior patterns. People leave digital traces when 



they use the Internet to browse, shop, and tweet. The digital exhaust contributes to creating personal 

behavior markers. Due to the computational and privacy hurdles faced by these information sources, we 

restrict our state-of-the-science focus to the role of ambient and wearable sensors in health monitoring 

and assistance, particularly for older adults. 

From raw sensor data, digital behavior markers can be gleaned. Mapping raw data onto health scores 

and identifying emergencies from raw data is extremely difficult. More often, features are extracted based 

on expert design or through automated feature learning methods such as autoencoders, independent 

component analysis, and clustering [11], [12]. Over the last few years, researchers have made great strides 

in identifying and validating these digital phenotypes [13]. Table 2 summarizes some of these phenotypes, 

or behavioral markers, that are particularly relevant for monitoring and assisting older adults. 

Table II. Behavioral markers that are extracted from sensor data. 

Category Features 

Mobility step count, walking speed, daily distance covered, number and duration of times in 

one spot, number walking bouts, activity level 

Exercise number, duration, movement types, intensity, location 

Sleep number and duration of daily sleep bouts, sleep times, sleep locations, sleep 

fitfulness, sleep interruptions, sleep apnea 

Activity number, duration, and location of basic and instrumental activities of daily living 

Environment frequented locations with type, outdoor walkability score, indoor and outdoor air 

quality, temperature, light levels, sound levels, number of residents, environment 

clutter 

Devices types of device interactions, medication frequency, use of compensatory devices 

Socialization number and duration of incoming/outgoing phone calls, text messages, missed 

calls, address book, calendar, time out of home, number and duration of visitors, 

activity before and after calls 

Circadian and 

diurnal rhythm 

complexity of daily routine, number of daily activities, minimum and maximum 

inactivity times, daily variance in activity and mobility parameters, periodogram-

derived circadian rhythm 

 

Perhaps the most prevalent behavior metric is movement type and intensity. An accumulating body of 

research indicates that engaging in preventative health brain aging behaviors may slow cognitive and 



physical decline as well as promote brain neuroplasticity [14], [15]. Furthermore, an estimated 10-25% 

improvement in modifiable risk factors could prevent up to 3 million cases of Alzheimer’s disease 

worldwide [16]. At the forefront of these healthy behaviors is exercise, which demonstrably improves 

cognition and mood while slowing signs of aging [17], [18]. In the home, motion sensors trigger a reading 

when movement is sensed in their field of view. Software estimates mobility levels and walking speed by 

tracking motion from one sensor to the next. On a mobile device, accelerometers quantify changes in 

speed and even support gait cycle estimation. Based on this information, walking speed, duration, and 

step counts can be estimated. Although these sensors can be fooled by other types of movements [19], 

they provide a baseline of movement behavior against which each person can measure changes. 

Sleep is also a strong indicator of health in older adults [20]. Not only does poor sleep correlate with 

many adverse health outcomes, but sleep quality itself is an indicator of aging and health [21]. Ambient 

and motion sensors, together with specialized bed sensors, provide a host of sleep quality indicators. Total 

sleep time, sleep efficiency, and deep sleep can be sensed from movement and respiration. When location 

information is added, unusual sleep locations (e.g., in a living room chair rather than in bed) can be 

detected. 

One of the most common features that is learned from sensor data is an activity label. Activities 

provide a vocabulary to express human behavior. Human activity recognition is a popular research topic 

[22]–[25]. Although much of the current work uses sensors to recognize activities in scripted settings, the 

same methods can be refined to label activities as they occur. Wearable sensors have traditionally be 

employed to recognize movement-based activities (e.g., sit, stand, walk, climb, lie down), while ambient 

sensors typically label basic and instrumental activities of daily living (e.g., work, exercise, relax, cook, 

eat, entertain, sleep). Once these labels are generated, information about the timing, regularity, location, 

and duration of routine activities can be incorporated into a personalized phenotype. 

When additional sources of information are added to the mix, the number of behavior features that can 

be extracted is virtually unbounded. Sensors can now determine the use of water and electrical devices, 

monitor medication access, and detect interaction with items that offer compensatory aid [26]–[28]. 



Online sources can be tapped to assess the air quality, temperature, and walkability of a geographic area. 

Similarly, a person’s computer usage leaves traces that indicate socialization habits. A vital behavior 

marker that confounds researchers is nutrition monitoring. While researchers have succeeded in detecting 

eating movements [29], they typically require users to specify the type of food being consumed, which 

results in a decline in technology use over time [30]. 

All of these behavior markers represent one level of information on top of raw sensor data. On their 

own, the markers have been linked with health indicators and can be used to automate prevention and 

treatment plans. However, the markers are most effective when they are examined in combination and 

over time. The amount of time that is spent outside the home by itself may not provide an indicator of 

health, social anxiety, or loneliness, but day-to-day variability and trends paint a more vivid picture [31]. 

Similarly, automatically identifying circadian and diurnal rhythms [32], [33] is essential for all of the 

behavior markers by themselves and in combination.  

3. Automated Assessment 

One particular need which technology can help address is the need to assess a person’s health and 

functional performance. Assessing the ability of an individual’s physical state and their ability to be 

functionally independent supports family planning, creation of an appropriate treatment plan, and 

evaluation of intervention strategies. Technology offers many potential improvements to assessment 

Because many technology-based tests can be administered without a clinician present, they can be utilized 

by people living in rural settings without imposing time and location constraints [34]. Performing 

assessments in a patient’s everyday environment is more representative of the person’s capabilities [35]. 

Figure 2. The sensor‐based process to support adaptive aging. Sensors generate readings, from 

which behavior markers are extracted. Machine learning techniques map behavior markers onto 

assessment categories, which form a basis for automated intervention. 



Additionally, collected sensor data can identify novel correlations that were unanticipated but are 

meaningful. As Figure 2 illustrates, automated assessment relies on large sensor data and corresponding 

behavior markers. Here, we review recent studies and findings that automate assessment of factors 

contributing to aging in place, including motor functioning, cognition, mood, and functional 

independence. 

Motor function. Throughout the field, wearable sensors are typically used to analyze ambulation and 

gestures. Thus, they naturally support motor function assessment. A key aspect of motor function is gait, 

and sensors placed within shoes pick up on multiple elements of gait, including walking patterns and 

stride [36], [37]. Researchers have used these patterns to diagnosis movement-related conditions 

including insensible feet, Parkinson’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, 

peripheral neuropathy, frailty, diabetic feet, injury recovery, and fall risk [38], [39]. In addition to 

analyzing movement patterns, these sensor technologies can also detect wandering and learn behavior 

precursors [40] and monitor time/distance traveled outside the home during rehabilitation [41]. 

Mood. Because sensors can be seamlessly woven into everyday life, they support timely assessment in 

ecologically valid settings. Moods can change quickly, and at unexpected times, so they need to be 

detected in-the-moment. Researchers have successfully identified mood at smaller sample sizes. For 

example, Boukhecbha et al. [31] predicted social anxiety based on visited location types as well as fine-

grained behavior features that were extracted before and after texting and phone conversations. Similarly, 

Quiroz et al. [42], as well as Mehrotra and Musolesi [43] inferred emotion from movement and heart rate 

data. Quiroz, et al. were able to predict happy, sad, or neutral states using accelerometer data. Mehrotra 

and Musolesi inferred levels of activeness, happiness, and stress, each on a Likert 1..5 scale. Instead of 

analyzing accelerometer readings, these researchers collected GPS data and extracted markers, such as 

number and duration of places visited throughout the day, to output predictions. Using ambient sensors, 

Aicha et al. [44] and Austin et al. [45] found a correlation between self-reported feelings of loneliness and 

sensor-detected minimal socialization. 



Cognition. Researchers have hypothesized that changes in cognition correlate with behavior changes. 

With the maturing of sensor technology, we now can validate the hypothesis and automate assessment 

and analysis of cognitive function. Because assessment tests designed with ecological validity are more 

effective than laboratory tests at predicting everyday functioning, researchers have designed studies to 

link behavior and cognition in home settings. Initially, many of these studies were performed in a 

simulated home environment with scripted activities, yet significant correlation was found with traditional 

neuropsychological test scores [46]–[48]. More recently, study participants were allowed to perform their 

typical uninterrupted routines at homes while sensors monitored their behavior. Behavior parameters over 

time were found to correlate with diverse health parameters including fall risk functional performance, 

cognitive function, motor function, and dyskinesia “on” states. Cook et al. validated their technology for 

84 older adults, although the study was based on scripted activities [47]. Other groups have tested these 

methods in actual homes over multiple months, although the sample size 1-2 homes [49]–[51]. 

Traditional assessment scores have occasionally been predicted from behavioral markers observed over 

months or years [52], [53]. In many of these cases, walking speed and activity regularity were reliable 

indicators of cognitive health. However, Hellmers et al. [54] and Akl et al. [55] found that time spent in 

areas of the home and daily variation in room occupancy were strong predictors of mild cognitive 

impairment. Similarly, Petersen et al. [56] discovered a link between time out of the home and cognitive 

health.  

Functional independence. Very few efforts have been made thus far to automate functional 

performance assessment in everyday settings using sensor technology. Validating functional performance 

is challenging. In partnership with an occupational therapist, Robben et al. [57] were able to link daily 

variability in room occupancy with AMPS and Kat-15 scores. However, automated detection of 

compensatory use has not yet been explored. Similarly, automatic scoring of a person’s activities based 

on sensor-observed consistency, efficiency, and completeness has not yet been designed. 

 

 



4. Prevention and Intervention 

Sensor technology is better suited to observing behavior and health state than to taking preventative or 

therapeutic actions. However, key intervention technologies have been designed using captured sensor 

data. Because sensors can detect activities such as taking medications, a natural intervention is to issue 

prompts (via a mobile device) for medication adherence. Sensor-driven automated prompts are ideal 

because they are less reliant on patients to program reminder times and contents, reducing user burden 

and increasing technology adoption. Additionally, studies have shown that prompting individuals based 

on context is more effective than timing-based prompts [58]. Clearly, a prompt to take medication at a 

person’s standard dinner time of 6:30pm will be unsuccessful if dinner is delayed until 7:00pm. Similarly, 

if the person is away from the medication dispenser or busy with an unrelated activity, the prompt may 

not even be heard, let alone be productive. The link between recognizing activity context and providing 

timely reminders was further investigated by Minor et al. [59]. Their app forecasted the next expected 

time for a key activity (e.g., take medicine), then issued a prompt if the activity was not initiated at the 

predicted time. 

Not only can sensor data inform intervention design, but they can also provide a valuable means to 

understand treatment adherence. As an example, Fallahzadeh et al. [60] captured sensor-derived 

contextual descriptions of instances when subjects followed a medication regimen and when they skipped 

a treatment dose. They found, for example, that individuals who linked their medication schedule with 

another routine activity (e.g., waking up, dinner) had higher adherence rates. These findings can help 

validate intervention theories and automate prompt timings for automated interventions. 

While prompts represent a primary sensor-driven intervention in current technologies, a few 

investigations have considered additional automated assistance for older adults. One example is 

automatically contacting a care provider if a health event or significant anomaly is detected. While 

anomaly detection from sensor data is a heavily-studied topic [61], detection of primarily irrelevant 

abnormalities is quite common. In the case of smart home data, anomalies can be reported due to sensor 

noise, an unexpected visitor, or a power outage. If the care provider receives too many alerts, they will be 



ignored. A recent project uses a clinician-in-the-loop approach to address this issue [62]. By providing a 

small number of clinically-relevant anomaly examples, this algorithm found a much higher percentage of 

anomalies that were related to health events such as falls, nocturia, depression, and weakness. 

One area that has not received much investigation is home automation assistance. Some researchers 

have automated smart homes based on anticipated actions and needs [63], [64]. However, these 

capabilities have not tested for usability by older adults. Given the observation that older adults are 

enjoying assistants such as Alexa and Google Home, and are learning to use these devices faster than in 

the past [65], this is an opportunity that can be explored by researchers and entrepreneurs. 

 

5. Barriers and Opportunities 

There has been a flurry of activity in the space of pervasive computing and machine learning-driven 

analysis of human behavior data. These advances set the stage for tremendous technological support of 

aging in place. However, there are still significant challenges that need to be addressed before the promise 

becomes a reality. Primary barriers to wide-spread use include study reproducibility, technology scaling, 

user privacy, and technology adoption. While there are significant hurdles to overcome in these areas, the 

challenges also present rich opportunities for researchers to tackle fascinating problems. 

5.1. Scale and reproducibility 

Many breakthroughs have been made in health-assistive technologies. However, most sensor-based 

health monitoring and assistance studies have not focused on result reproducibility or generalizability. 

Engineering fields focus primarily on innovation. Devoting time and resources to designing new 

technology diverts them away from ensuring study reproducibility. In the assessment and intervention 

studies we reviewed, the median sample size was 17 subjects. Additionally, only a handful of studies 

collected data continuously for multiple days, let alone months or years. While some researchers focus on 

particular population groups, the vast majority of studies use a convenience sample. Including diverse 

populations has not been a priority when showing “proof of concept” for a new technology. However, this 

step is critical to ensure that these important technologies are usable and achieve reliable results for all 



older adults. Large diverse populations are also needed to address issues of bias and fairness when 

training machine learning models [66]. 

Admittedly, difficulties in validating sensor-driven healthcare thwart attempts at scalability and 

reproducibility. First, ground truth is frequently inaccessible and erroneous. Whether the technology is 

generating value for activity, behavior markers, or health state, accurate labels are necessary to validate 

the technology. However, while sensor data can observe humans continuously, clinicians cannot. 

Traditionally, self-report is gathered when clinician data is unavailable. However, these are often error-

prone because the retrospective details of past experiences and health states cannot be consistently 

recalled. Recent work in designing apps for Ecological Momentary Assessment (EMA), or experience 

sampling, can help by collecting information on health events, current activities, and self-reported 

functioning “in the moment” [67], [68]. 

Second, sensor-driven health technologies are a sophisticated assortment of components, each of 

which represents a new, dynamic breakthrough. Each part introduces a potential for failure and thus must 

be validated separately. As a result, many technologies are tested in a laboratory or heavily-controlled 

setting, rather than “in the wild.” Using sensor technologies in actual deployments requires handling 

issues including sensor noise, missing data, and system failure. If data are available, then they need to be 

preprocessed to filter patterns of interest. Even if clean and segmented data are available, researchers have 

to contend with one of the most complex, dynamic types of processes: human behavior and its 

relationship to health. Problems with any one of these steps can propagate error downstream and 

jeopardize the reliability of the assistive technology. For this reason, many commercially-available 

packages perform a subset of the pieces described in this paper. Furthermore, commercial products are 

often driven by expert-crafted rules, to ensure their consistency and trustworthiness. Novel, machine 

learning-driven methods will need to be scaled and validated before they can be safely transferred to the 

marketplace. 

Third, sensor-driven healthcare needs to scale to multiple types of sensors, data sources, and 

population demographics. Researchers have found that there is no single “silver bullet” sensor source that 



provides all of the necessary insight to a person’s health and functional independence. As a result, 

methods including data fusion [69], transfer learning [70], and domain adaptation [71] will be essential. 

Using these procedures, sensors in a smart home can “train” a smartwatch on how to recognize classes of 

behaviors. Once the individual leaves home, the smartwatch can continue observing behavior where the 

home left off and can update the home’s models when it returns. The house can then take up the task 

while the watch is charging. Similarly, these algorithmic methods can assist in adapting data and learned 

models to new devices, new behavior categories, and new population groups. 

 

5.3 Privacy and security 

Because data acquisition and analysis form the backbone of sensor-supported aging in place, older 

adult’s privacy now increasingly depends on the ability to keep others from extracting or inferring 

sensitive information from data. Companies are eager to obtain medical information. Some employers 

dispense rewards or penalties based on fitness data; others assess consumers’ health risks to increase 

insurance rates. 

Most older adults doubt that their personal information is being kept private and feel that online safety 

is low [65]. These worries are warranted. Even after data is scrubbed of obvious identifying markers, 

observed behavior data are still linked to an individual, that person’s medical data, and a host of other 

sensitive information. Maintaining anonymity has typically consisted of removing key identifiers such as 

a person’s name, address, social security number, and other unique identifiers. However, the recent 

proliferation of high-dimensional datasets introduces the possibility of piecing together a person’s 

complete profile from seemingly disparate and anonymized pieces of information [72]. This ability has 

been confirmed by several projects in which sensitive medical data was identified from seemly-obscure 

pieces of information [73], [74]. 

The risk of re-identification is heightened when collected information is linked to ubiquitous, location-

tracking mobile devices [75]. Last year, analysts found that a commercial fitness app led to the revelation 

of remote military outpost locations [76]. De Montjoye et al. [75] found that location data does not need 



to be continuous and fine-grained to perform re-identification. They theoretically determined that four 

spatio-temporal points are enough to uniquely identify 95% of the population. Mobility traces were 

deemed unique even at 1/10 of the available resolution, highlighting the fact that coarse granularity will 

not protect anonymity. 

Even without explicit location information, sensitive features can be re-identified. Wu et al. [77] 

achieved a human identification rate of 98% from gait data for 4,007 subjects. Similarly, Na et al. [78] 

analyzed accelerometer data collected during walking periods for seven days as part of the National 

Health and Nutrition Examination Survey (NHANES). These researchers used random forest and SVM 

learning algorithms to re-identify demographic and physical activity data for 14,451 subjects. Rocher et 

al. [79] further challenge the release-and-forget approach to anonymizing and sharing datasets. Based on 

an analysis of populations within five publicly available data sets, they determine that 99.98% of 

Americans could be re-identified using 15 demographic attributes. 

Fortunately, the increasing awareness of digital exposure has sparked a similar rise in research to 

maintain the privacy of sensitive information. Privacy-preserving data mining methods are being 

proposed to combat the corresponding expansion of data exploitation methods [80]. Instead of releasing 

collected data, for example, synthetic data can be released that exhibits the same properties as collected 

data but obfuscates features of any one person [71], [81], [82]. Further developing and utilizing these 

methods can help overcome the dangers associated with collecting sensor data for health assistance. 

 

5.4 Technology adoption 

Once technology is robust and secure, an important final step is for older adults to embrace it. Again, 

several factors must be considered to improve technology adoption for this demographic. One factor is the 

cost of technology. In 2017, the reported median annual income for older adults in the US was $24,224 

[83]. This income is far less than the amount that most need to meet with their day-to-day living expenses, 

particular since annual healthcare costs for individuals with chronic conditions is up to $13,230. As a 

result, expensive smartwatches or smart homes will not be a high-priority expenditure. Unless external 



agencies support sensor technology costs or prices dramatically reduce, the demographic that needs the 

support the most will be the least likely to be able to purchase it. 

A second factor is addressing the desire for older adults to utilize health-assistive technology. While 

older adults realize that health and wellness tech should be of significant interest, they prefer to invest 

time and resources on tech that entertains, connects, and informs. Most older adults feel that sensor-based 

technologies are novelties [84]. They shy away from such mechanisms unless they are singled out by their 

physician or a family member as needing something to monitor them. At that point, being surrounded by 

such technology heightens awareness of their health status. As a result, health-related technology often 

elicits a negative response, while communication technology gets a positive response. Technology 

developers can be sensitive to this perspective. Sensor technology can serve dual purposes. In addition to 

monitoring activities, it can provide news coverage, connect older adults with friends, and entertain. 

Assistive technology should look stylish. It should also allow seniors to bring new capabilities into their 

home (e.g., control ambient music through voice commands, turn on lights when someone walks at night) 

as well as protect their well-being. 

Finally, researchers must ensure that sensor-based health technology is safe and straightforward to use. 

Many health-assistive apps require user effort to set up alerts and keep logs [85]. Additionally, individuals 

with cognitive limitations will require extended teaching time, and use of technologies may be forgotten if 

not habituated [86], [87]. Technology must take advantage of participatory design, in which feedback 

from older adults and care providers informs each step of the design process. Software interfaces and 

assistive devices need to include contrasting colors and large fonts, as well as consider communication 

difficulties due to hearing loss, when supporting older adults [88]. Through partnership with end-users, 

researchers can create sensor systems that will support, not undermine, health and functional 

independence [89]. By additionally creating machine learning models that are interpretable, users will be 

more accepting of technology. At the same time, clinicians will be informed about insights that can shape 

their own practices. 

 



6. Conclusions 

Sensors and machine learning together provide essential tools that can revolutionize aging-in-place. 

Ubiquitous ambient and mobile sensors collect large amounts of continuous data. By processing these 

data, machine learning techniques extract behavioral markers and map behavior features to clinical 

assessment scores, providing automated assessment of physical, mental, and emotional health. 

Additionally, these insights provide a basis for designing interventions that support older adults and their 

functional independence.  

Sensor-based methods are becoming increasingly reliable for unobtrusively monitoring behavior and 

measuring human factors that are related to cognitive and physical health status. Despite plentiful success 

stories, however, there still remain numerous challenges to face in providing technology strategies for 

adaptive aging. Technology changes quickly, but health-assistive hardware and software needs to be 

validating on large, diverse populations to ensure its reliability. Because these sensor data reflect daily 

lives, collecting and analyzing them in the cloud can introduce privacy and security risks. Even once these 

issues are addressed, systems must be appealing and usable by older adults for the technologies to be 

adopted. By addressing these remaining issues now, the technology will be ready to support our aging 

population when help is most needed. 
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