
IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 1

CALDA: Improving Multi-Source Time Series Domain
Adaptation with Contrastive Adversarial Learning

Garrett Wilson, Janardhan Rao Doppa, Senior Member, IEEE and Diane J. Cook, Fellow, IEEE

Abstract—Unsupervised domain adaptation (UDA) provides a strategy for improving machine learning performance in data-rich
(target) domains where ground truth labels are inaccessible but can be found in related (source) domains. In cases where
meta-domain information such as label distributions is available, weak supervision can further boost performance. We propose a novel
framework, CALDA, to tackle these two problems. CALDA synergistically combines the principles of contrastive learning and
adversarial learning to robustly support multi-source UDA (MS-UDA) for time series data. Similar to prior methods, CALDA utilizes
adversarial learning to align source and target feature representations. Unlike prior approaches, CALDA additionally leverages
cross-source label information across domains. CALDA pulls examples with the same label close to each other, while pushing apart
examples with different labels, reshaping the space through contrastive learning. Unlike prior contrastive adaptation methods, CALDA
requires neither data augmentation nor pseudo labeling, which may be more challenging for time series. We empirically validate our
proposed approach. Based on results from human activity recognition, electromyography, and synthetic datasets, we find utilizing
cross-source information improves performance over prior time series and contrastive methods. Weak supervision further improves
performance, even in the presence of noise, allowing CALDA to offer generalizable strategies for MS-UDA.

Index Terms—Transfer Learning, Domain Adaptation, Time Series, Weak Supervision, Adversarial Training, Contrastive Learning.

F

1 Introduction

Unsupervised domain adaptation can leverage labeled
data from past (source) machine learning tasks when

only unlabeled data are available for a new related (target)
task [1]. As an example, when learning a model to recognize
a person’s activities from time-series sensor data, standard
learning algorithms will face an obstacle when person A does
not provide ground-truth activity labels for their data. If
persons B through G are willing to provide these labels, then
Multi-Source Unsupervised Domain Adaptation (MS-UDA)
can create a model for the target person based on labeled
data from the source persons. When performing adaptation,
MS-UDA must bridge a domain gap. In our example, such a
gap exists because of human variability in how activities are
performed. Meta-domain information may exist for person A
that is easier to collect and can improve the situation through
weak supervision [2], such as self-reported frequencies for each
activity (e.g., “I sleep 8 hours each night”).

In this article, we develop a framework that can construct
a model for time-series MS-UDA. Our proposed approach
leverages labeled data from one or more source domains,
unlabeled data from a target domain, and optional target
class distribution. Very few domain adaptation methods han-
dle time series [1], [2], [3] and even fewer facilitate multi-
ple source domains or weak supervision [2]. We postulate
adapting multiple time-series domains is particularly critical
because many time-series problems involve multiple domains
(in our example, multiple people) [4], [5]. Furthermore, we
posit that existing approaches to adaptation do not make
effective use of meta-domain information about the target,
yet additional gains may stem from leveraging this informa-

• The authors are with the School of Electrical Engineering and
Computer Science, Washington State University, Pullman, WA,
99164. E-mail: {garrett.wilson,jana.doppa,djcook}@wsu.edu

Manuscript received April 19, 2005; revised August 26, 2015.

tion via weak supervision. We propose a novel framework
for time series MS-UDA. This framework, called CALDA
(Contrastive Adversarial Learning for Multi-Source Time
Series Domain Adaptation), improves unsupervised domain
adaptation through adversarial training, contrastive learning,
and weak supervision without relying heavily on data aug-
mentation or pseudo labeling like prior image-based methods.

First, CALDA guides adaptation through multi-source
domain-adversarial training [2], [6]. CALDA trains a multi-
class domain classifier to correctly predict the original domain
for an example’s feature representation while simultaneously
training a feature extractor to incorrectly predict the ex-
ample’s domain. Through this two-player game, the feature
extractor produces domain-invariant features. A task classifier
trained on this domain-invariant representation can poten-
tially transfer its model to a new domain because the target
features match those seen during training, thus bridging the
domain gap. CALDA utilizes adversarial training to align
the feature-level distributions between domains and utilizes
contrastive learning to leverage cross-source label information
for improving accuracy on the target domain.

Second, CALDA enhances MS-UDA through contrastive
learning across source domains. Contrastive learning moves
the representations of similar examples close together and
dissimilar examples far apart. While this technique yielded
performance gains for self-supervised [7], [8] and traditional
supervised learning [9], the method is unexplored for multi-
source time series domain adaptation. We propose to intro-
duce the contrastive learning principle within CALDA. In this
context, we will investigate three design decisions. First, we
will analyze methods to select pairs of examples from source
domains. Second, we will determine whether it is beneficial to
pseudo-label and include target data as a contrastive learning
domain despite the likelihood of incorrect pseudo-labels due
to the large domain shifts in time series data. Third, we will

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 2

Source 2
"walk"

Source 1
"walk"

Source 2
"sleep"

Source 1
"sleep"

Pull
Together

Push
Apart

(Query)

Cross-Source
Positive

Cross-Source
Negative

Within-Source
Positive

Within-Source
Negative

Fig. 1. In the space z = Z(F (x)), an illustration of the difference
between cross-source (blue) and within-source (red) pairs for contrastive
learning. Any-source uses cross-source and within-source pairs.

assess whether to randomly select contrastive learning exam-
ples or utilize the varying complexities of different domains to
select the most challenging (i.e., hard) examples.

In the case of the first decision, we hypothesize that
utilizing cross-source information to select example pairs can
improve transfer. Prior MS-UDA methods [2] ignore cross-
source label information that can provide vital insights into
how classes vary among domains (i.e., which aspects of the
data truly indicate a different class label versus the same
label from different domains). Utilizing this information can
potentially improve transfer to the target domain. If our
activity recognition class labels include “walk” and “sleep”,
we want the feature representations of two different walking
people to be close, but the representations to be far apart for
one walking person and one sleeping person. We use CALDA
to investigate whether such cross-source information aids in
transfer by explicitly making use of labeled data from each
source domain as well as the differences in data distributions
among the source domains. Furthermore, we compare this
approach with a different instantiation of our framework that
utilizes only labels within each source domain, thus explicitly
ignoring cross-domain information. The differences between
these approaches are illustrated in Figure 1.

For the second decision, we propose to utilize contrastive
learning only across source domains rather than include
pseudo-labeled target data that run the risk of being incor-
rectly labeled. Prior single-source domain adaptation methods
have integrated contrastive losses [10], [11]. Because they
utilize a single source domain with the target, they rely
on pseudo-labeling the target domain data, creating difficult
challenges when faced with large domain gaps [12]. Because
CALDA employs more than one source domain, we can
leverage a contrastive loss between source domains, thereby
avoiding incorrectly pseudo-labeled target data.

For the third decision, we note that prior contrastive
learning work has found selecting hard examples to yield
improved performance [13], [14]. However, recent theory pos-
tulates that hard examples do not need to be singled out - such
examples already intrinsically yield a greater contribution to
the contrastive loss than less-challenging examples [9]. We
hypothesize that both random and hard sampling may offer
improvements for multi-source domain adaptation, thus we
evaluate both within CALDA.

CALDA integrates all of these components. As in prior
work [2], [6], we utilize a domain adversary that aligns feature

representations across domains, yielding a domain-invariant
feature extractor. Unlike prior approaches, we further utilize
contrastive learning to pull examples from different source
domains together in the feature space that have the same
label while pushing apart examples from different domains
that have different labels, though the choice of examples to
pull and push depends on the three design decisions.

The key contribution of this paper is the development and
evaluation of the CALDA framework for time-series MS-UDA.
Specific contributions include:

• We improve upon existing time-series MS-UDA by
leveraging cross-source domain labels via contrastive
learning without requiring data augmentation or
pseudo labeling.

• We incorporate multiple contrastive learning strategies
into CALDA to analyze the impact of design choices.

• We offer an approach to time series MS-UDA that
makes use of class distribution information where
available through weak supervision.

• We demonstrate performance improvements of
CALDA over prior work with and without weak super-
vision. Improvements are shown for synthetic time se-
ries data and a variety of real-world time-series human
activity recognition and electromyography datasets.
These experiments aid in identifying the most promis-
ing CALDA instantiations, validating the importance
of the adversary and unlabeled target data, and mea-
suring the sensitivity of CALDA to noise within the
weak supervision information.1

2 Related Work
Here, we discuss related work on domain adaptation and
contrastive learning in the context of time-series MS-UDA.

2.1 Domain Adaptation
Single-source domain adaptation methods abound [1], but
little work studies multi-source domain adaptation. Zhao et
al. [15] developed an adversarial method supporting multiple
sources by including a binary domain classifier for each source.
Ren et al. [16] align the sources, merging them into one do-
main that is aligned to the target. Li et al. [17] also unify mul-
tiple source domains by updating model parameters to accom-
modate samples from each source. These approaches, how-
ever, do not take advantage of example similarities through
contrastive learning to more effectively utilize source labels.
Xie et al. [18] propose a scalable method, only requiring
one multi-class domain classifier. This approach is similar
to the adversarial learning component of our framework. As
in our approach, Yadav et al. employ contrastive learning
when combining multiple sources. Here, contrastive learning
achieves higher intra-class compactness across domains, in
the hope of yielding well-separated decision boundaries. Yet,
without models that are compatible with time-series, these
approaches cannot be used for time series MS-UDA.

Limited research has investigated time-series domain
adaptation, although these focus on a single source domain.
Numerous approaches introduce explicit linear or nonlinear
transformations to align the source and target spaces [19], [20],

1. Code and data is available at: https://github.com/floft/calda.

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 3

[21], [22]. Some of these approaches, like CALDA, leverage an
adversarial component. Liu et al. [23] introduce a hybrid spec-
tral kernel to characterize the non-stationary elements of the
time series. A drawback is they do not make effective use of ex-
ample similarity through contrastive learning. Purushotham
et al. [3] developed a domain-adversarial method for single-
source domain adaptation using a variational recurrent neural
network (RNN) as the feature extractor. However, in our prior
work [2] we found that for both single-source and multi-source
domain adaptation using a 1D convolutional neural network
outperforms RNNs on a variety of time-series datasets. Thus,
we select this network architecture for our experiments.

Domain adaptation has also been studied specifically for
electromyography (EMG)-based gesture recognition, mostly
utilizing a different type of domain adaptation. Rather than
UDA, several methods are proposed to improve supervised
domain adaptation performance [24], [25], [26], where some
labeled target data are required. One method is developed for
unsupervised domain adaptation [27], but they convert the
EMG data to images followed by using adaptive batch nor-
malization for domain adaptation [28]. This approach makes
the assumption that the domain differences are contained
primarily within the network’s normalization statistics and
not the neural network layer weights. We do not require this
assumption in our CALDA framework.

We uniquely incorporate weak supervision into domain
adaptation. Weak supervision is inspired by the posterior
regularization problem [29], but we consider this for domain
adaptation. Along a similar vein, Jiang et al. [30] use a related
regularizer for the problem where label proportions are avail-
able for the source domains but not the target domain. Hu et
al. [31] propose using a different form of weak supervision for
human activity recognition from video data, using multiple
incomplete or uncertain labels. Pathak et al. [32] develop a
method for semantic segmentation using a weaker form of
labeling than pixel-level labels. While we study weak super-
vision in a different context, the benefit of weak supervision
in these other contexts in addition to the performance gains
observed in our experiments suggests the general applicability
of this idea. Additionally, prior weak supervision work fails
to address the sensitivity of the weak supervision to noise
[2], which we may expect with self-reported data. We analyze
weak supervision in the presence of noise.

We select algorithm hyperparameters using cross-
validation, but recent work offers alternative methods. Dinu et
al. [33] proposed a theoretically-sound method by extending
weighted least squares to deep neural networks for time series
processing. The method offered by Saito et al. [34] relies on
the intuition that a good classifier trained on source domain
should embed close-by examples of the same class from the
target close to form dense neighborhoods in the learned fea-
ture space. Density is measured by computing entropy of the
similarity distribution between input examples. Furthermore,
You et al. [35] select the best model by embedding feature
representations into the validation procedure to obtain a
unbiased estimation of the target risk.

2.2 Contrastive Learning
Our framework leverages the contrastive learning principle in
addition to the adversarial learning from prior works. Early

uses include clustering [36] and dimensionality reduction [37].
More recently, numerous research efforts have incorporated
contrastive learning. These methods typically rely on data
augmentation to generate positives and negatives but some-
times use labels instead [9]. While such methods yield large
gains in other contexts [7], [8], little work has explored con-
trastive learning for time series domain adaptation.

For single-source adaptation of image domains, prior
methods [10], [11] consider a different contrastive loss. In
addition to not utilizing an adversary, which we demonstrate
is a vital component to our framework, these methods rely
on data augmentation and pseudo labeling which may be
problematic for time series. Data augmentation is standard
and key to the success for many difficult image domain adap-
tations [38], but is still being explored for time series [39] and
is not required for CALDA. Second, prior methods perform
contrastive learning on the combined (single) source domain
and target domain. This critically depends on accurate target
domain pseudo-labeling. However, pseudo-labeling remains a
challenging problem that is particularly difficult when faced
with the large domain gaps [12], that frequently occur in
time series data. Because we support multiple source domains,
in CALDA we avoid pseudo-labeling and instead leverage
the contrastive loss across source domains. Other contrastive
domain adaptation work focus on different problems: label-
less transferable representation learning for image data [40]
and image adaptation to a sequence of target domains [41]. As
with the other prior work, these too rely on data augmentation
[40], [41] and typically pseudo labeling [41].

CALDA’s final component is hard sampling, which is
beneficial in some contrastive learning contexts. Schroff et
al. [13] found it necessary for the triplet loss, a special case
of contrastive learning [9]. Similarly, Cai et al. [14] found
including the top hard negatives to be both necessary and
sufficient. While Khosla et al. [9] state that sampling is not
necessary since hard examples contribute more to the loss,
this impact depends on having a large number of positives
and negatives, which may not be optimal on all datasets, as
demonstrated in our experimental results.

3 Problem Setup
Here, we formalize Multi-Source Unsupervised Domain Adap-
tation (MS-UDA) without and with weak supervision.

3.1 Multi-Source Unsupervised Domain Adaptation
MS-UDA assumes that labeled data are available from multi-
ple sources and unlabeled data are available from the target
[42] to achieve the goal of creating a model that performs
well on the target domain. Formally, given n > 1 source
domain distributions DSi

for i ∈ {1, 2, . . . , n} and a target
domain distribution DT , we draw si labeled training examples
i.i.d. from each source distribution DSi

and ttrain unlabeled
training instances i.i.d. from the marginal distribution DX

T :

Si = {(xj , yj)}sij=1 ∼ DSi ∀i ∈ {1, 2, . . . , n} (1)

Ttrain = {(xj)}ttrain
j=1 ∼ DX

T (2)

Here, each domain is distributed over the space X × Y ,
where X is the input data space and Y is the label space

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 4

Fig. 2. CALDA incorporates adversarial learning via a domain classifier
and contrastive learning via a contrastive loss on an additional con-
trastive head in the network. Through the CALDA instantiations, we
determine how to best utilize contrastive learning for MS-UDA.

Y = {1, 2, . . . , L} for L classification labels. After training a
MS-UDA model f : X → Y using Si and Ttrain, we test the
model using a holdout set of ttest labeled testing examples
(input and ground-truth label pairs) drawn i.i.d. from the
target distribution DT :

Ttest = {(xj , yj)}ttestj=1 ∼ DT (3)

In the case of time series domain adaptation, X =
[X1, X2, . . . , XK] for K time series variables or channels.
Each variable Xi for i ∈ {1, 2, . . . ,K} consists of a time
series Xi = [x1, x2, . . . , xH] containing a sequence of real
values observed at equally-spaced time steps 1, 2, . . . H [43].

3.2 MS-UDA with Weak Supervision
When MS-UDA is guided by weak supervision [2], the target-
domain label proportions are additionally available during
training, which we can utilize to guide the neural network’s
representation. Formally, these proportions represent P (Y =
y) for the target domain, i.e., the probability py that each
example will have label y ∈ {1, 2, . . . , L}:

Ytrue(y) = P (Y = y) = py (4)

4 CALDA Framework
We introduce CALDA, a MS-UDA framework that blends
adversarial learning with contrastive learning. First, we mo-
tivate CALDA from domain adaptation theory. Second, we
describe the key components: source domain error minimiza-
tion, adversarial learning, and contrastive learning. Finally,
we describe framework alternatives to investigate how to best
construct the example sets used in contrastive loss.

4.1 Theoretical Motivation
Zhao et al. [15] offer an error bound for multi-source domain
adaptation. Given a hypothesis space H with VC-dimension
v, n source domains, empirical risk ε̂Si(h) of the hypothesis
on source domain Si for i ∈ {1, 2, . . . , n}, empirical source
distributions D̂Si

for i ∈ {1, 2, . . . , n} generated by m labeled

samples from each source domain, empirical target distribu-
tion D̂T generated by mn unlabeled samples from the target
domain, optimal joint hypothesis error λα on a mixture of
source domains

∑
i∈[n] αiSi, and target domain T (average

case if αi = 1/n ∀i ∈ {1, 2, . . . n}), the target classification
error bound εT (h) with probability at least 1−δ for all h ∈ H
can be expressed as:

εT (h) ≤
n∑

i=1

αi

((1) source errors︷ ︸︸ ︷
ε̂Si

(h) +
1

2
dH∆H(D̂T ; D̂Si

)︸ ︷︷ ︸
(2) divergences

)

+

(3) opt. joint hyp.︷︸︸︷
λα +O

(√
1

nm

(
log

1

δ
+ v log

nm

v

))
︸ ︷︷ ︸

(4) due to finite samples

(5)

In Equation 5, term (1) is the sum of source domain
errors, (2) is the sum of the divergences between each source
domain and the target, (3) is the optimal joint hypothesis on
the mixture of source domains and the target domain, and
(4) addresses the finite sample sizes. Note that the first two
terms are the most relevant for informing multi-source domain
adaptation methods since they can be optimized. In contrast,
given a hypothesis space (e.g., a neural network of a particular
size and architecture), (3) is fixed. Similarly, (4) regards finite
samples from all domains, which depends on the number of
samples and for a given dataset cannot increase.

We introduce CALDA to minimize this error bound as
illustrated in Figure 2. First, we train a Task Classifier to
correctly predict the labeled data from the source domains,
thus minimizing (1). To minimize (2), we better align domains
based on adversarial learning and contrastive learning. As
in prior works, we use feature-level domain invariance via
domain adversarial training to align the sources and unlabeled
data from the target domain. We train a Domain Classifier
to predict which domain originated a representation while
simultaneously training the Feature Extractor to generate
domain-invariant representations that fool the Domain Classi-
fier. Additionally, we propose a supervised contrastive loss to
align the representations of same-label examples among the
multiple source domains. The new loss aids in determining
which aspects of the data correspond to differences in the
class label (the primary concern) versus differences in the
domain (e.g., person) where the data originated (which can
be ignored). The new loss definition leverages both the la-
beled source domain data and cross-source information. This
contrastive loss is applied to an additional Contrastive Head
in the model. To address term (3), we consider an adequately-
large hypothesis space by using a neural network of sufficient
size and incorporating an architecture previously shown to
handle time-series data [2], [44].

4.2 Adaptation Components
CALDA’s adaptation architecture is shown in Figure 3. The
architecture includes a feature extractor, task classifier, do-
main classifier, and contrastive head. As illustrated in the
figure, the feature extractor consists of a fully convolutional
network, where the dense last layer acts as the task classifier.
The domain classifier, consisting of a multi-layer percep-
tron, performs the adversary role during training. To handle
variable-length time series data, the CNN includes a global

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 5

Feature Extractor

Input

Conv1D f128,
k8, s1

BN+ReLU

Conv1D f256,
k5, s1

BN+ReLU

Conv1D f128,
k3, s1

BN+ReLU

Global Avg. Pool.

Dense, L units
Softmax

Task
Classifier

Domain
Classifier

Dense, 500 units

Dense, 500 units

Dropout, 0.3

Dropout, 0.3

Dense, n+1 units
Softmax

Dense, 128 units

Contrastive
Head

BN+ReLU

BN+ReLU

Gradient Reversal

Fig. 3. The CALDA model architecture consists of a CNN task classifier,
multi-layer perceptron domain classifier with global average pooling, and
a contrastive head.

average pooling layer. Finally, CALDA includes an additional
contrastive head to support the contrastive loss.

We describe source domain errors and feature-level domain
invariance before moving onto our novel contrastive loss for
multi-source domain adaptation, optionally with weak super-
vision, and the corresponding design choices.

4.2.1 Minimize Source Domain Errors
We minimize classification error on the source domains by
feeding the outputs of feature extractor F (·; θf) to a task clas-
sifier C(·; θc) having a softmax output. Then, we update the
parameters θf and θc to minimize a categorical cross-entropy
loss Ly(y, p) using one-hot encoded true label y and softmax
probabilities p. To handle multiple sources, we compute this
loss over a mini-batch of examples drawn from each of the
source domain distributions DSi

for i ∈ {1, 2, . . . n}:

arg min
θf ,θc

n∑
i=1

E
(x,y)∼DSi

[Ly(y, C(F (x)))] (6)

We employ the categorical cross-entropy loss, where yi and
pi represent the ith components of y’s one-hot encoding and
the softmax probability output vector, respectively:

Ly(y, p) = −
L∑

i=1

yi log pi (7)

4.2.2 Adversarial Learning
If we rely on only minimizing source domain error, we will ob-
tain a classifier that likely does not transfer well to the target
domain. One reason for this is that the extractor’s selected
feature representations may differ widely between source do-
mains and the target domain. To remedy this problem, we
invite a domain adversary to produce feature-level domain
invariance. In other words, we align the feature extractor’s
outputs across domains. We achieve alignment by training a
domain classifier (the “adversary”) to correctly predict each
example’s domain labels (i.e., predict which domain each
example originated from) while simultaneously training the
feature extractor to make the domain classifier predict that
the example is from a different domain.

We define a multi-class domain classifier with a softmax
output as the adversary [2]. The domain classifier D(·; θd)
follows the feature extractor F in the network. However,
we place a gradient reversal layer R(·) between F and D,
which multiplies the gradient during backpropagation by a
negative constant −λd, yielding adversarial training [6]. Given
domain labels d ∈ {0, 1, . . . , n}, that map target examples to

label dT = 0 and source i examples to label dSi
= i for

i ∈ {1, 2, . . . n}, we update the model parameters θf and θd:

arg min
θf ,θd

n∑
i=1

E
(x,y)∼DSi

[Ld(dSi , D(R(F (x))))]

+ E
x∼DX

T

[Ld(dT , D(R(F (x))))]
(8)

This objective incorporates a categorical cross-entropy loss
Ld similar to Ly that uses domain labels instead of class labels.
Given the one-hot encoded representation of the true domain
label d and the domain classifier’s softmax probability output
vector p, we compute the loss:

Ld(d, p) = −
n∑

i=1

di log pi (9)

4.2.3 Contrastive Learning
The above domain invariance adversarial loss does not lever-
age labeled data from the source domains. Prior work [2]
only indirectly leverages labeled source domain data through
jointly training the adversarial loss and task classifier loss on
the labeled source domains. To better utilize source labels,
we propose employing a supervised contrastive loss [9] to pull
same-labeled examples together in the embedding space and
push apart different-labeled examples, thereby making use of
both positive and negative cross-source label information.

While the exact details vary based on the design decisions
we will discuss in the next section, in general, contrastive
learning has two roles: (1) pull same-label examples together
and (2) push different-label examples apart. This process
operates on pairs of representations z of examples (z1, z2). We
call the first z1 the “query” or “anchor”, i.e., z1 = q, where
q ∈ Q is drawn from the set of all example representations.
To pull examples together, we create a pair (q, p), where
the “positive” p ∈ P is drawn from the set of all example
representations having the same label as q. To push examples
apart, we create another pair (q, n), where “negative” n ∈ N
is drawn from the set of example representations that have a
different label than q. CALDA allows additional constraints to
be placed on how positives and negatives are selected, such as
selecting examples from the same domain, a different domain,
or any domain. Figure 1 illustrates one query positive pair
(q, p) and negative pair (q, n) for the cross-source and within-
source cases. We may create additional positive and negative
pairs for each query similarly.

We propose using a supervised contrastive loss based on a
multiple-positive InfoNCE loss [9], [45]. Given the projected
representation z of a query, the corresponding positive and
negative sets P and N , a temperature hyperparameter τ , and
cosine similarity sim(z1, z2) =

zT
1 z2

‖z1‖‖z2‖ , we obtain:

Lc(z, P,N) =

1

|P |
∑
zp∈P

− log

 exp
(

sim(z,zp)
τ

)
∑

zk∈N∪{zp} exp
(

sim(z,zk)
τ

)
 (10)

Conceptually, for a given query, Equation 10 sums over
each positive and normalizes by the number of positives.
Inside of this sum, we compute what is mathematically equiv-
alent to a log loss for a softmax-based classifier that classifies
the query as the positive [8]. The denominator sums over both

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 6

the positive and also all the negatives corresponding to the
query. Note, alternatively, the sum over the positive set could
be moved inside the log, but keeping this sum outside has been
found to perform better in prior works using InfoNCE [9].

Finally, we update weights by summing over the queries for
each source domain and normalizing by the number of queries.
In some framework instantiations, we similarly compute this
loss over queries from the pseudo-labeled target domain data.
Formally, given the source domain queries QSi , the pseudo-
labeled target domain queries QT , positive and negative sets
Pd,y and Nd,y (construction depends on the instantiation of
our method, discussed next), and the indicator function 1, we
can update the model parameters θf and θz:

arg min
θf ,θz

n∑
i=1

 1

|QSi
|

∑
(zq,yq)∈QSi

Lc(zq, PdSi
,yq , NdSi

,yq)

+1PL=True

1

|QT |
∑

(zq,ŷq)∈QT

Lc(zq, PdT ,ŷq , NdT ,ŷq)

(11)

4.2.4 Total Loss and Weak Supervision Regularizer
We jointly train each of these three adaptation components.
Thus, the total loss that we minimize during training is a
sum of each loss: source domain errors from Equation 6,
adversarial learning from Equation 8, and contrastive learning
from Equation 11. We further add a weighting parameter
λc for the contrastive loss and note that the λd multiplier
included in the gradient reversal layer R(·) can be used as a
weighting parameter for the adversarial loss.

Additionally, for the problem of MS-UDA with weak
supervision, we include the weak supervision regularization
term described in our prior work [2]. While individual labels
for the unlabeled target domain data are unknown, this KL-
divergence regularization term guides training toward learn-
ing model parameters that produce a class label distribution
approximately matching the given label proportions on the
unlabeled target data. This allows us to leverage target-
domain label distribution information, if available.

arg min
θf ,θc

[
DKL

(
Ytrue

∥∥∥ Ex∼DX
T

[
C(F (x))

])]
(12)

4.3 Design Decisions for Contrastive Learning
The contrastive losses used in Equation 11 require positive
and negative pairs for each query. CALDA supports multi-
ple options for selecting these pairs. Here, we formalize the
CALDA instantiations along the dimensions of 1) how to
select example pairs across multiple domains, 2) whether to
include a pseudo-labeled target domain in contrastive learn-
ing, and 3) whether to select examples randomly or based on
difficulty.

4.3.1 Multiple Source Domains
When selecting pairs of examples for MS-UDA, we may choose
to select two examples within a single domain, from two
different domains, or a combination. We term these vari-
ations Within-Source, Cross-Source, and Any-Source Label-
Contrastive learning. Note that similar terms apply if includ-
ing the pseudo-labeled target domain. Recall that the mo-
tivation behind contrastive-learning MS-UDA is to leverage
cross-source information. Because cross-source information
is excluded in the Within-Source case, we hypothesize that
Within-Source will perform poorly, whereas Any-Source and

Cross-Source, which leverage the cross-source information,
will yield improved results.

Formally, we define the sets of queries, positives, and
negatives for each of these cases using set-builder notation. To
simplify constructing these sets, we first create the auxiliary
set K, which contains input x, class label y (or in the
case of the target domain, the pseudo-label ŷ), and domain
label d for all examples. Given a set of labeled examples
Si ∼ DSi

from each source domain i ∈ {1, 2, . . . , n}, a set
of unlabeled instances from the target domain Ttrain ∼ DT ,
and a projected representation defined as the feature-level
representation passed through an additional contrastive head
Z(·; θz) in the model z = Z(F (x)) (e.g., an additional fully-
connected layer), we define a set KS including both the (x, y)
pair and the domain label d = dSi

(as defined in the previous
section) of all source domains, a set KT including both the
(x, ŷ) pseudo-labeled pair and the domain label d = dT of the
target domain, and set K, which is the union of KS and KT :

KS = {(x, y, d) | (x, y) ∈ Si, i ∈ {1, 2, . . . , n}, d = dSi} (13)

KT = {(x, ŷ, d) | x ∈ Ttrain, ŷ = arg maxC(F (x)), d = dT }
(14)

K = KS ∪KT (15)

Using K, we define the query set QSi
for each source domain

and the query set QT for the target domain:

QSi = {(z, y) | (x, y, d) ∈ K, z = Z(F (x)), d = dSi} (16)

QT = {(z, ŷ) | (x, ŷ, d) ∈ K, z = Z(F (x)), d = dT } (17)

Next, we define the positive and negative sets for each
framework instantiation.

(a) Within-Source Label-Contrastive learning: Pos-
itives for each query are selected from the same domain as the
query with the same label. Negatives are selected that from
the same domain as the query with a different label. Formally,
we define the positive and negative sets Pdq,yq

and Ndq,yq
for

each query of domain dq and label yq as follows:

Pdq,yq = {z | (x, y, d) ∈ K, z = Z(F (x)), d = dq, y = yq} (18)

Ndq,yq = {z | (x, y, d) ∈ K, z = Z(F (x)), d = dq, y 6= yq} (19)

(b) Any-Source Label-Contrastive learning: Posi-
tives for each query are selected having the same label and
coming from any domain. Negatives are selected with a differ-
ent label and from any domain:

Pdq,yq = {z | (x, y, d) ∈ K, z = Z(F (x)), y = yq} (20)

Ndq,yq = {z | (x, y, d) ∈ K, z = Z(F (x)), y 6= yq} (21)

(c) Cross-Source Label-Contrastive learning: Posi-
tives for each query are selected from a different domain with
the same label. Negatives are selected from a different domain
with a different label:

Pdq,yq = {z | (x, y, d) ∈ K, z = Z(F (x)), d 6= dq, y = yq} (22)

Ndq,yq = {z | (x, y, d) ∈ K, z = Z(F (x)), d 6= dq, y 6= yq} (23)

Note that these cases are distinguished based on whether
d = dq (Within-Source), d 6= dq (Cross-Source), or there is no
constraint (Any-Source).

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 7

4.3.2 Pseudo-Labeled Target Domain
Prior contrastive learning work for single-source domain adap-
tation utilizes a supervised contrastive loss on the combined
single source domain and the target domain. However, since
this loss depends on labels, such methods require pseudo-
labeling the target domain data. The methods rely on the
classifier producing correct class labels, which can then be
used in the supervised contrastive loss. Unfortunately, pseudo-
labeling the target domain is a challenging problem, and
classification errors are likely [12]. If the pseudo-labels are
incorrect, then this may hurt contrastive learning perfor-
mance. Because US-MDA utilizes multiple domains, instead
of performing contrastive learning between the source and
target domains, we may perform contrastive learning among
the source domains, which we may improve performance.
We include whether to utilize pseudo-labeled target domain
data during training as an additional CALDA dimension. If
pseudo-labeled target domain data is included during con-
trastive learning, PL = True in the contrastive learning
objective (Equation 11), otherwise PL = False.

4.3.3 Pair Selection by Difficulty
Outside of domain adaptation, selecting hard examples has
been found beneficial for contrastive learning [13], [14]. How-
ever, recent theoretical work suggests that hard examples
implicitly contribute more to the loss, thus mitigating the
need for explicitly selecting hard examples in contrastive
learning [9]. To determine if explicitly selecting hard examples
is beneficial in multi-source domain adaptation, we propose
a method for hard sampling in CALDA and compare it
with random sampling – the final dimension of our CALDA
framework. For brevity, we give the equations for Cross-Source
Label-Contrastive learning, but the other variations can be
constructed by changing the domain constraint of each set.

For hard sampling, we select a subset of hard positive and
negative examples. This necessitates that we define “hard
examples.” In each case, the domain constraint is the same
for both positives and negatives, thus the key difference is
whether they have the same label as the query or not. The
examples that would most help the model learn this decision
boundary are those that are predicted to be on the wrong
side. Thus, we select hard examples as examples that are
currently predicted to be on the wrong side of this deci-
sion boundary. We define hard positives as examples with
the query’s label but with a different predicted label (with
respect to the current model predictions) and hard negatives
as examples of a class other than the query’s label but that are
predicted to have the query’s label. Both are from a different
domain than the query (in the Cross-Source case). Focusing
on the Cross-Source Label-Contrastive case, for a query with
domain dq and true label yq and the current model prediction
ŷ = arg maxC(F (x)), we define hard positive and negative
sets P̄ and N̄ :

P̄dq,yq
= {z |(x, y, d) ∈ K, z = Z(F (x)),

d 6= dq, y = yq, ŷ 6= yq}
(24)

N̄dq,yq = {z |(x, y, d) ∈ K, z = Z(F (x)),

d 6= dq, y 6= yq, ŷ = yq}
(25)

However, there is no guarantee there will always be
positives and negatives that are misclassified. For example,

the task classifier likely makes accurate predictions later on
during training. Instead, we propose using a relaxed version
of hardness: take the top-k1 hardest positives and top-k2
hardest negatives in terms of a softmax cross-entropy loss.
To obtain a relaxation of ŷ 6= yq for the positives, we can
find positive examples with a high task classification loss for
that example via Ly. This is because a positive is defined as
having the same label as the query, so having a high task loss
for the positive corresponds to being on the wrong side of the
positive-negative decision boundary. To obtain a relaxation of
ŷ = yq for the negatives, we can find negative examples with
a low task classification loss where we replace the true class
label y with the query’s class label yq. This finds the negatives
that are most easily misclassified as having the query’s class
label, i.e., those on the wrong side of the decision boundary.

Thus, we define the relaxed hard positive and negative sets
P̃ and Ñ in terms of the softmax-based cross-entropy loss Ly,
with loss thresholds hp and hn chosen such that we have k1
positives and k2 negatives (i.e, |P | = k1 and |N | = k2):

P̃dq,yq = {z |(x, y, d) ∈ K, z = Z(F (x)), d 6= dq, y = yq,

Ly(y, C(F (x))) > hp}
(26)

Ñdq,yq = {z |(x, y, d) ∈ K, z = Z(F (x)), d 6= dq, y 6= yq,

Ly(yq, C(F (x))) < hn}
(27)

The contrastive weight update in Equation 11 can now be
adjusted to use the relaxed hard positive and negative sets P̃
and Ñ . As an alternative to hard sampling, we may instead
use random sampling, to select a random subset of positives
and negatives that pair with each query.

5 Experimental Validation
We validate our hypothesis that CALDA will improve time-
series MS-UDA through contrastive learning based on experi-
mental analysis. We also apply CALDA to synthetic and real-
world datasets to address the three design decisions, with and
without weak supervision. Finally, we validate the impact of
the adversary and unlabeled target domain data.

5.1 Datasets
We construct several synthetic time series that vary in com-
plexity to aid in comparing alternative adaptation frame-
works. He et al. [46] observe that adapting models to new
domains becomes more challenging as the data become more
complex. We therefore generate synthetic data of varying com-
plexity to examine corresponding differences in adaptation
performance. In the first scenario (SW), we generate a 2D
normal distribution for each domain that represents a sum of
two sine waves with frequencies fi,1 and fi,2 (Hz), obtaining
a time series example (xi, yi), where xi is a vector. In this
sine wave scenario, inter-domain or intra-domain separation is
created through translating or rotating the class distributions
by a fixed amount (examples are illustrated in the Supple-
mentary Material). In the second scenario, the synthetic data
more closely resemble the complexities found in the real-
world datasets. We generate multivariate (9 dimensions) data
created from a mixture of Gaussians. Separation between
domains is created by varying the Gaussian parameters for
each dimension. We repeat this scenario for 1, 2, and 3

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 8

Gaussians (scenarios 1GMM, 2GMM, and 3GMM) to vary
the corresponding complexity of the data distributions and
domain-invariant features that must be learned. Note that for
both scenarios, as the number of source domains n increases,
the source domains cover a larger region of the space compared
to the target domain.

We also evaluate the real-world efficacy of the CALDA
framework using six real-world multi-variate time series
datasets. These include four human activity recognition
datasets (UCI HAR [4], UCI HHAR [47], WISDM AR [48],
and WISDM AT [49]) and two multivariate EMG datasets
collected using a Myo armband (Myo EMG [26] and NinaPro
Myo [50]). The Supplemental Material contain details about
dataset pre-processing and hyperparameter tuning.

5.2 Ablation Studies
Using a set of ablation studies, we identify the appropriate
instantiations of our CALDA framework to compare with
the baseline methods. We compare instantiations across each
component of our framework: (1) including the pseudo-labeled
target domain (P), (2) using within-source (CALDA-In), any-
source (CALDA-Any), or cross-source (CALDA-XS) exam-
ples for each query, and (3) random sampling (R) versus hard
sampling (H). A one-sided paired student’s t-test indicates
whether accuracy improvements are statistically significant.

5.2.1 Pseudo-Labeled Target Domain
To determine whether to include pseudo-labeled target do-
main data or not, we compare experimental results with
and without pseudo labeling, respectively. Comparing Ta-
bles 1 and 2, we find that regardless of the choices for the
other components in our framework, pseudo labeling gen-
erally performs worse than without pseudo-labeling on the
real-world datasets, i.e., the corresponding values in Table 1
are significantly lower than those in Table 2 (p < 0.01).
Interestingly, random sampling typically performs better than
hard sampling when using pseudo labels. This is likely because
incorrectly pseudo-labeled target data may often be selected
during hard sampling and thereby degrade contrastive learn-
ing performance. Random sampling helps to partially reduce
this performance degradation by reducing the likelihood that
the pseudo-labeled target domain is used in contrastive learn-
ing. However, we obtain even better performance by explicitly
excluding the target domain in contrastive learning, as shown
in Table 2. Thus, in subsequent experiments, we exclude
pseudo-labeling. Future work is required to determine which
pseudo labeling techniques perform well in a time series con-
text. For the synthetic datasets, we do not observe significant
differences between pseudo labeling and not pseudo labeling
(see Supplemental Material).

5.2.2 Multiple Source Domains
We next analyze the results in Table 2 to determine whether
to use within-source, any-source, or cross-source examples.
Starting with the results on real-world datasets, the best
method is consistently among the CALDA-Any and CALDA-
XS variants. In particular, CALDA-Any,R is the best-
performing instantiation on average with the two CALDA-
XS variants ranking second, though no variation offers sta-
tistically significant improvement. Thus, we construct and

1 2 3 4 5 6 7 8
P&N Multiplier

−4

−2

0

2

4

Ha
rd

 S
am

pl
in

g
Ac

cu
ra

cy
 G

ai
n

(H
−
R

%
)

Least Sq.
n= 2
n= 8
n= 14
n= 20
n= 26

Fig. 4. Comparing hard vs. random sampling as |P | and |N | increase.

include results on the additional synthetic datasets. As ex-
pected, all methods perform almost identically for no domain
shift. However, when we include various types of synthetic
domain shifts, we see significant differences. CALDA-Any,H
and CALDA-XS,H are the best methods on average and are
both significantly better than CALDA-In,R and CALDA-In,H
(p < 0.01). Thus, a similar trend emerges from both the real-
world data and synthetic data: CALDA-Any and CALDA-XS
instantiations outperform CALDA-In. Since CALDA-In ig-
nores cross-source information by only utilizing within-source
examples, the other instantiations performing better validates
our hypothesis that leveraging cross-source information can
yield improved transfer. Thus, we conclude that CALDA-Any
and CALDA-XS, which both leverage cross-source informa-
tion, are the two most promising methods of selecting source
domain examples for our framework.

5.2.3 Pair Selection by Difficulty
The choice between selecting examples by hard or random
sampling is more variable than the above design decisions.
Comparing hard sampling with random sampling on the
real datasets in Table 2, we observe random sampling for
CALDA-Any to perform significantly better than hard sam-
pling (p < 0.05). However, random vs. hard sampling differ-
ences for the other methods are not statistically significant.
On the synthetic datasets with domain shifts, we observe
the opposite: hard sampling versions of CALDA-Any and
CALDA-XS are significantly better than random sampling
(p < 0.01). This may indicate this design choice depends on
the type of data and domain shift.

We further investigate hard vs. random sampling by run-
ning an additional set of experiments for CALDA-XS on
WISDM AR, the dataset where CALDA-XS,H performed
better than all other instantiations, and specifically, where
it outperformed CALDA-XS,R. The results as we increase the
number of positives and negatives (two of the hyperparame-
ters) via a positive/negative multiplier are shown in Figure 4.
On the left, we observe CALDA-XS,H outperforms CALDA-
XS,R. Moving to the right, the performance gain from hard
sampling reduces, which is expected since hard and random
sampling are no different in the limit of using all positive and
negative examples in each mini-batch. We conclude that hard
sampling may yield an improvement over random sampling
in some situations, particularly those for which the optimal
hyperparameters for a dataset include relatively few positives
and negatives (such as is the case on the WISDM AR dataset).

Finally, because CALDA-Any,R performed best on the
real-world data and CALDA-XS,H was tied for second best

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 9

TABLE 1
Ablation study of CALDA instantiations that include the target-domain data via pseudo labeling.

Dataset CALDA-In,R,P CALDA-In,H,P CALDA-Any,R,P CALDA-Any,H,P CALDA-XS,R,P CALDA-XS,H,P

UCI HAR 92.3 ± 2.5 92.0 ± 3.0 92.6 ± 2.6 91.9 ± 3.3 92.1 ± 3.0 92.4 ± 3.3
UCI HHAR 89.2 ± 4.2 89.0 ± 4.5 88.8 ± 4.7 86.2 ± 5.8 89.4 ± 4.3 87.4 ± 5.6
WISDM AR 72.5 ± 9.1 71.1 ± 8.0 74.7 ± 8.3 71.3 ± 9.1 74.5 ± 8.4 73.5 ± 8.3
WISDM AT 68.6 ± 8.7 68.5 ± 7.2 61.6 ± 12.9 63.3 ± 9.8 62.0 ± 10.9 60.2 ± 12.3
Myo EMG 83.4 ± 5.5 82.4 ± 5.4 83.7 ± 5.5 82.9 ± 6.2 84.2 ± 5.3 82.0 ± 6.4

NinaPro Myo 52.0 ± 5.3 52.6 ± 4.5 51.0 ± 4.6 52.4 ± 4.1 51.5 ± 5.3 52.3 ± 4.6
Average 77.2 ± 5.9 76.7 ± 5.5 76.2 ± 6.5 75.4 ± 6.5 76.5 ± 6.2 75.4 ± 6.8

TABLE 2
Ablation study comparing hard and random sampling for each CALDA instantiation. Bold denotes highest accuracy in each row.

Dataset CALDA-In,R CALDA-In,H CALDA-Any,R CALDA-Any,H CALDA-XS,R CALDA-XS,H

UCI HAR 93.5 ± 2.0 93.6 ± 2.2 93.1 ± 2.3 93.7 ± 2.1 93.4 ± 2.1 93.4 ± 2.5
UCI HHAR 89.3 ± 3.9 89.4 ± 3.9 89.8 ± 3.7 88.7 ± 4.6 89.8 ± 3.9 89.4 ± 4.0
WISDM AR 79.0 ± 6.9 79.4 ± 7.7 80.2 ± 7.1 80.3 ± 6.9 80.0 ± 6.3 81.4 ± 7.9
WISDM AT 71.4 ± 8.2 71.0 ± 8.3 72.1 ± 7.5 71.2 ± 8.4 70.7 ± 6.5 71.0 ± 8.6
Myo EMG 83.0 ± 5.3 82.7 ± 6.1 83.8 ± 5.6 83.6 ± 5.4 83.4 ± 5.6 83.3 ± 5.3

NinaPro Myo 57.3 ± 3.6 56.9 ± 3.6 57.7 ± 3.8 55.9 ± 4.2 58.0 ± 3.8 56.0 ± 3.9
Synth InterT 0 93.7 ± 0.2 93.7 ± 0.1 93.8 ± 0.2 93.7 ± 0.2 93.7 ± 0.3 93.9 ± 0.1
Synth InterR 0 94.2 ± 0.2 94.2 ± 0.1 94.1 ± 0.1 94.1 ± 0.2 94.1 ± 0.1 94.0 ± 0.2
Synth IntraT 0 93.7 ± 0.2 93.8 ± 0.2 93.8 ± 0.3 93.9 ± 0.2 93.7 ± 0.3 93.6 ± 0.3
Synth IntraR 0 94.1 ± 0.2 94.1 ± 0.2 94.1 ± 0.2 94.0 ± 0.1 94.1 ± 0.2 93.9 ± 0.2
Synth InterT 10 69.8 ± 17.0 70.8 ± 15.8 69.4 ± 17.0 70.7 ± 15.0 68.4 ± 14.2 70.5 ± 14.5
Synth InterR 1.0 67.5 ± 12.5 69.9 ± 12.6 63.4 ± 10.2 77.4 ± 8.1 63.8 ± 10.3 76.3 ± 8.9
Synth IntraT 10 74.9 ± 6.4 73.6 ± 6.6 75.6 ± 8.4 75.9 ± 8.9 77.9 ± 8.9 76.2 ± 8.3
Synth IntraR 1.0 74.9 ± 8.3 74.3 ± 7.6 77.5 ± 7.0 76.0 ± 6.7 75.0 ± 7.9 76.9 ± 6.1

Real-World Avg. 79.7 ± 5.0 79.6 ± 5.4 80.2 ± 5.0 79.7 ± 5.3 79.9 ± 4.7 79.9 ± 5.4
Synth (No Shift) Avg. 93.9 ± 0.2 93.9 ± 0.1 94.0 ± 0.2 93.9 ± 0.2 93.9 ± 0.2 93.9 ± 0.2

Synth Avg. 71.8 ± 11.0 72.2 ± 10.7 71.5 ± 10.7 75.0 ± 9.7 71.3 ± 10.3 75.0 ± 9.4

on the real-world data and tied for best on the synthetic
datasets, we select these two methods as the most-promising
instantiations of our framework for subsequent experiments.

5.3 MS-UDA: CALDA vs. Baselines
To measure the CALDA’s performance improvement, we
compare the two most promising instantiations, CALDA-
Any,R and CALDA-XS,H, with baselines and prior work. We
include an approximate domain adaptation lower bound that
performs no adaptation during training (No Adaptation). This
allows us to see how much improvement results from utilizing
domain adaptation. We include an approximate domain adap-
tation upper bound showing the performance achievable if we
did have labeled target domain data available (Train on Tar-
get). For a contrastive domain adaptation baseline, we include
the Contrastive Adaptation Network (CAN) [11] modified to
employ a time-series compatible feature extractor. Finally, we
include CoDATS [2] to see if our CALDA framework improves
over prior multi-source time series domain adaptation work.
The results are presented in Table 3.

We first examine the No Adaptation and Train on Target
baselines, which train only on the source domain data or
train directly on the target domain data respectively. The
performance of the No Adaptation baseline can be viewed

as an approximate measure of domain adaptation difficulty,
where lower No Adaptation performance indicates a more
challenging problem, i.e., with a larger domain gap between
the source domains and the target domain. Accordingly,
we can identify WISDM AR and WISDM AT as the most
challenging activity recognition datasets and NinaPro Myo
as the most challenging EMG dataset. In contrast, Train on
Target performs well on all but one dataset. It does this well
by “cheating”, i.e., looking at the target domain labels and
thereby eliminating the domain gap. However, the NinaPro
Myo dataset is challenging enough that even with no domain
gap, we cannot obtain near-perfect accuracy.

Next, we compare CALDA-Any,R and CALDA-XS,H
with the No Adaptation and CoDATS baselines. One of the
two CALDA instantiations always performs best. Similarly,
CALDA-Any,R and CALDA-XS,H significantly outperform
both No Adaptation and CoDATS across all datasets (p <
0.01). On the real-world datasets, the largest improvement
over CoDATS is 2.4% on WISDM AT for CALDA-Any,R
and 3.4% on WISDM AR for CALDA-XS,H. The largest
improvement over No Adaptation is 12.9% and 12.5%, re-
spectively, on UCI HHAR. On average, we observe a 1.6%
and 1.3% improvement of these two CALDA instantiations
over CoDATS and a 6.3% and 6.0% improvement over No
Adaptation, respectively. On the synthetic datasets, these

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 10

TABLE 3
Comparing target domain accuracy of the most-promising CALDA instantiations with baselines. Bold denotes CALDA outperforming baselines.

Underline denotes highest accuracy in each row.

Dataset No Adaptation CAN CoDATS CALDA-Any,R CALDA-XS,H Train on Target

UCI HAR 88.8 ± 4.2 89.0 ± 3.7 92.8 ± 3.3 93.1 ± 2.3 93.4 ± 2.5 99.6 ± 0.1
UCI HHAR 76.9 ± 6.3 77.5 ± 5.3 88.6 ± 3.9 89.8 ± 3.7 89.4 ± 4.0 98.9 ± 0.2
WISDM AR 72.1 ± 8.0 61.3 ± 7.5 78.0 ± 8.4 80.2 ± 7.1 81.4 ± 7.9 96.5 ± 0.1
WISDM AT 69.9 ± 7.1 66.2 ± 9.6 69.7 ± 6.6 72.1 ± 7.5 71.0 ± 8.6 98.8 ± 0.1
Myo EMG 77.4 ± 5.2 74.1 ± 6.3 82.2 ± 5.4 83.8 ± 5.6 83.3 ± 5.3 97.7 ± 0.1

NinaPro Myo 54.8 ± 3.6 56.8 ± 3.2 55.9 ± 5.0 57.7 ± 3.8 56.0 ± 3.9 77.8 ± 1.3
Synth SW 62.2 ± 11.0 78.2 ± 7.7 63.8 ± 10.6 71.5 ± 10.7 75.0 ± 9.5 93.7 ± 0.2

Synth 1GMM 88.5 ± 3.4 90.1 ± 4.2 91.4 ± 2.8 92.3 ± 3.7 91.4 ± 3.4 98.4 ± 0.5
Synth 2GMM 86.3 ± 6.5 89.4 ± 5.7 91.8 ± 7.8 93.6 ± 5.1 94.0 ± 4.7 100.0 ± 0.0
Synth 3GMM 80.1 ± 9.0 83.8 ± 9.1 91.3 ± 8.1 91.4 ± 6.9 92.2 ± 7.2 100.0 ± 0.0

Real-World Avg. 73.9 ± 5.8 71.3 ± 6.0 78.6 ± 5.4 80.2 ± 5.0 79.9 ± 5.4 94.9 ± 0.3
Synth Avg. 79.3 ± 7.5 85.4 ± 6.7 84.6 ± 7.3 87.2 ± 6.6 88.2 ± 6.2 98.0 ± 0.2

improvements are even larger: 7.7% and 11.2% improvement
over CoDATS and 9.3% and 12.8% improvement over no
Adaptation. These experimental results across a variety of real
world and synthetic time-series datasets confirm the benefit
of utilizing cross-source information through the CALDA
framework for time-series multi-source domain adaptation.

Finally, we compare CALDA-Any,R and CALDA-XS,H
with the contrastive domain adaptation baseline CAN. Both
CALDA instantiations significantly outperform CAN on all
of the real-world time series datasets (p < 0.01). The largest
improvements over CAN on the real-world datasets are 18.9%
for CALDA-Any,R and 20.1% for CALDA-XS,H on WISDM
AR. On average, we observe an 8.9% and 8.6% improvement
in the two CALDA instantiations over CAN. On the synthetic
datasets, CAN yields the strongest results on the simple
synthetic data (SW). CAN relies on clustering for pseudo-
labeling target domain data, which works well for the sim-
ple, synthetically-generated Gaussian domain shifts. CALDA
outperforms the other methods for the more complex GMM
scenarios (p < 0.05), and the amount of improvement grows
with the data complexity. These results indicate that while
CAN may be successful with some types of domain shifts such
as those found in image datasets or clustered synthetic time
series, we find that CALDA better handles the domain shifts
found in complex real-world time series datasets.

5.4 MS-UDA with Weak Supervision
We additionally study whether our framework yields im-
proved results for domain adaptation with weak supervision.
First, we simulate obtaining target domain label proportions
by estimating these proportions on the target domain training
set and incorporate our weak supervision regularizer into each
method to leverage this additional information. Following
this, we determine the sensitivity of each method to noise in
the estimated label proportions since, for example, if these
label proportions are acquired from participants’ self-reports,
there will be some error in the reported proportions.

5.4.1 CALDA with Weak Supervision
We compare the two most promising instantiations of
CALDA-WS (CALDA-XS,H,WS and CALDA-Any,R,WS)

with CoDATS-WS. The results are shown in Table 4. Similar
to no weak supervision, CALDA-Any,R,WS improves over
both No Adaptation and CoDATS-WS across all datasets
and CALDA-XS,H,WS in all except one case (p < 0.01).
On average we observe a 4.1% and 3.6% improvement of
the two CALDA instantiations over CoDATS-WS and a 9.8%
and 9.3% improvement over No Adaptation on the real-world
datasets. On the synthetic datasets, we observe a 12.3% and
16.5% improvement of CALDA over both CoDATS-WS and
No Adaptation. These results demonstrate the efficacy of
CALDA for the domain adaptation when incorporating weak
supervision.

By comparing Table 3 with 4, we can measure the benefit
of weak supervision. In all cases, the CALDA instantiations
with weak supervision significantly improve over CALDA
without weak supervision (p < 0.01). On the real-world
datasets, this is also the case with CoDATS: CoDATS-WS im-
proves over CoDATS (p < 0.05). On the real-world datasets,
we observe a 3.5% and 3.3% improvement for the CALDA
instantiations by including weak supervision. On the synthetic
datasets, these differences are 3.0% and 3.7%. We observe the
largest performance gains from utilizing weak supervision on
the two unbalanced datasets: 5.0% and 3.3% improvements of
the two instantiations on WISDM AR and 10.8% and 12.3%
improvements on WISDM AT. Because these datasets are
unbalanced, larger differences on these datasets are expected
since our weak supervision regularization term capitalizes on
label distribution differences among the domains. These gains
demonstrate: (1) the benefit of leveraging weak supervision for
domain adaptation when available, and (2) the observation
that CALDA yields improvements over prior work, even for
this related problem setting.

5.4.2 Sensitivity of Weak Supervision to Noise
By leveraging weak supervision, we were able to improve per-
formance. However, in the above experiments, we simulated
obtaining target domain label proportions by estimating those
proportions exactly on the target domain training dataset.
Now we perform additional experiments to determine how
robust these methods are to noise in the estimated label
proportions. Since weak supervision has the greatest effect
when label distributions differ among domains, we compare

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 11

TABLE 4
Comparing target domain accuracy for domain adaptation methods utilizing weak supervision. Bold denotes CALDA outperforming baselines.

Underline denotes highest accuracy in each row.

Dataset No Adaptation CoDATS-WS CALDA-Any,R,WS CALDA-XS,H,WS Train on Target

UCI HAR 88.8 ± 4.2 92.9 ± 3.2 94.8 ± 1.8 95.5 ± 2.1 99.6 ± 0.1
UCI HHAR 76.9 ± 6.3 88.2 ± 4.6 90.2 ± 3.8 89.8 ± 4.1 98.9 ± 0.2
WISDM AR 72.1 ± 8.0 84.9 ± 7.2 85.2 ± 6.9 84.7 ± 7.0 96.5 ± 0.1
WISDM AT 69.9 ± 7.1 72.1 ± 10.3 82.9 ± 7.3 83.3 ± 7.1 98.8 ± 0.1
Myo EMG 77.4 ± 5.2 79.5 ± 5.7 85.1 ± 4.6 84.7 ± 4.6 97.7 ± 0.1

NinaPro Myo 54.8 ± 3.6 54.9 ± 4.2 58.8 ± 3.8 56.0 ± 4.5 77.8 ± 1.3
Synth SW 62.2 ± 11.0 62.2 ± 11.6 74.5 ± 11.3 78.8 ± 9.2 93.7 ± 0.1

Synth 1GMM 88.5 ± 3.4 90.4 ± 3.0 91.7 ± 2.5 90.8 ± 3.7 98.4 ± 0.5
Synth 2GMM 86.3 ± 6.5 86.4 ± 12.9 92.3 ± 7.3 93.7 ± 7.2 100.0 ± 0.0
Synth 3GMM 80.1 ± 9.0 87.7 ± 9.2 84.1 ± 13.5 89.1 ± 10.9 100.0 ± 0.0

Real-World Avg. 73.9 ± 5.8 79.6 ± 5.9 83.7 ± 4.7 83.2 ± 4.9 94.9 ± 0.3
Synth Avg. 62.2 ± 11.0 62.2 ± 11.6 85.7 ± 8.7 88.1 ± 7.8 93.7 ± 0.2

these methods with various noise budgets on the unbalanced
WISDM datasets. A noise budget of 0.1 indicates that ap-
proximately 10% of the class labels can be redistributed. In
the case of human activity recognition, if all hours of the
day correspond with an activity, then this represents 10%
of the day being attributed to an incorrect activity when
self-reporting label proportions for weak supervision. The
results are shown in Table 5. Note that label proportions
are redistributed according to the noise budget and then re-
normalized so the proportions remain a valid distribution. In
the table we provide the True Post-Norm. Noise column to
validate that the true post-normalized noise on average is close
to the desired noise budget.

CALDA typically outperforms CoDATS both with and
without weak supervision on the WISDM AR dataset (the
final row corresponds to methods without weak supervision).
Similarly, the best method in each row is always one of the
two CALDA instantiations. We observe that even with a noise
budget of 0.1, CALDA-WS and CoDATS-WS perform better
than CALDA and CoDATS without weak supervision. How-
ever, beyond this threshold, we find additional noise degrades
performance on WISDM AR. From these results, we conclude
the maximum acceptable noise level for weak supervision on
WISDM AR is between 0.1 and 0.2. In the case of WISDM
AT, the two CALDA instantiations outperform CoDATS both
without weak supervision and with weak supervision regard-
less of the amount of noise. We find that it takes a noise budget
of 0.1 before CoDATS-WS degrades to the performance of
CoDATS without weak supervision. However, for CALDA-
WS, the noise budget can be as large as 0.4 before it degrades
to the performance of CALDA without weak supervision.

Overall, on these two datasets, we find that leveraging
both weak supervision and cross-source label information can
yield improved domain adaptation performance, even with
some noise in the weak supervision label information. Though,
the acceptable amount of noise depends on the dataset. On
both datasets, CoDATS-WS requires a noise level of no more
than approximately 0.1, and both CALDA-WS instantiations
have similar limits on WISDM AR. However, on WISDM AT,
the noise budget for either CALDA-WS instantiation can be
as high as 0.4 – four times that of CoDATS-WS. Thus, we

conclude that our CALDA framework improves over CoDATS
with and without weak supervision and also that our CALDA
framework can yield higher robustness to noise in the weak
supervision label information on some datasets.

5.5 Validating Assumptions
Now we examine the validity of two key assumptions.

5.5.1 Importance of the Adversary
Using the CALDA framework, we investigated various de-
sign choices for how to use contrastive learning for domain
adaptation. However, we made the assumption that adver-
sarial learning is an important component for each of these
instantiations. Here we illustrate why. For the two most-
promising instantiations, we run experiments when excluding
the adversary. The results on the real-world datasets are
shown in Table 6. The methods with an adversary are far
superior to those when we exclude the adversary (p < 0.01).
This justifies our inclusion of the adversary.

5.5.2 Importance of Unlabeled Target Domain Data
Finally, in the problem of unsupervised domain adaptation,
we have unlabeled target domain data available for use during
training. Unsupervised domain adaptation methods typically
make the assumption that these data are useful for improv-
ing target-domain performance. Here, both CoDATS and
CALDA leverage this data via adversarial learning, which as
observed above is vital to domain adaptation performance.
However, another alternative is to only perform adversarial
learning among the multiple source domains and exclude the
target-domain unlabeled data, i.e., promote domain-invariant
features among only the multiple source domains through
the adversarial loss. This is related to the problem of do-
main generalization [51]. The results for the corresponding
CoDATS-DG, CALDG-XS,H, and CALDG-Any,R methods
are shown in Table 7. For comparison, we also include two
domain generalization methods Sleep-DG [5] and AFLAC-DG
[52]. Comparing Tables 3 and 7, on the real-world datasets
we observe including the unlabeled data yields significantly
higher accuracy of CoDATS, CALDA-Any,R, and CALDA-
XS,H (p < 0.01). This is similarly true on the synthetic data,

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 12

TABLE 5
Weak supervision sensitivity to noise. Bold denotes higher accuracy than CoDATS. Underlining denotes best method in each row.

Dataset Weak Supervision Noise Budget True Post-Norm. Noise CoDATS CALDA-XS,H CALDA-Any,R

WISDM AR Yes

0.0 0.0 84.9 ± 7.2 84.7 ± 7.0 85.2 ± 6.9
0.05 0.06 82.9 ± 7.4 83.4 ± 6.2 84.0 ± 6.0
0.1 0.12 79.1 ± 8.4 83.1 ± 7.7 81.8 ± 6.8
0.2 0.22 74.6 ± 8.8 78.9 ± 6.7 78.4 ± 8.1
0.4 0.38 64.9 ± 9.7 68.9 ± 8.8 69.9 ± 9.2

WISDM AR No N/A N/A 78.0 ± 8.4 81.4 ± 7.9 80.2 ± 7.1

WISDM AT Yes

0.0 0.0 72.1 ± 10.3 83.3 ± 7.1 82.9 ± 7.3
0.05 0.07 71.0 ± 11.9 81.8 ± 6.6 82.4 ± 7.3
0.1 0.13 69.9 ± 14.3 81.1 ± 7.9 82.7 ± 7.4
0.2 0.23 65.6 ± 11.4 78.3 ± 8.3 79.2 ± 7.8
0.4 0.40 56.3 ± 12.8 72.0 ± 8.6 71.3 ± 8.3

WISDM AT No N/A N/A 69.7 ± 6.6 71.0 ± 8.6 72.1 ± 7.5

TABLE 6
Ablation study comparing CALDA with or without an adversary. Bold denotes highest accuracy in each row.

Dataset CALDA-Any,R,NoAdv CALDA-XS,H,NoAdv CALDA-Any,R CALDA-XS,H

UCI HAR 89.9 ± 3.4 89.8 ± 3.5 93.1 ± 2.3 93.4 ± 2.5
UCI HHAR 74.0 ± 7.2 74.7 ± 6.8 89.8 ± 3.7 89.4 ± 4.0
WISDM AR 70.9 ± 6.8 72.1 ± 6.2 80.2 ± 7.1 81.4 ± 7.9
WISDM AT 70.9 ± 7.7 70.2 ± 7.9 72.1 ± 7.5 71.0 ± 8.6
Myo EMG 76.2 ± 5.2 76.2 ± 5.0 83.8 ± 5.6 83.3 ± 5.3

NinaPro Myo 53.4 ± 4.0 51.4 ± 4.4 57.7 ± 3.8 56.0 ± 3.9
Average 73.2 ± 5.8 73.1 ± 5.7 80.2 ± 5.0 79.9 ± 5.4

TABLE 7
Comparing domain adaptation performance excluding unlabeled target domain data during training. Bold denotes methods outperforming

CoDATS-DG and No Adaptation baselines. Underline denotes highest accuracy.

Dataset No Adaptation CoDATS-DG Sleep-DG AFLAC-DG CALDG-Any,R CALDG-XS,H Train on Target

UCI HAR 88.8 ± 4.2 88.4 ± 3.7 87.0 ± 4.8 89.3 ± 4.6 89.5 ± 3.8 90.0 ± 3.7 99.6 ± 0.1
UCI HHAR 76.9 ± 6.3 76.0 ± 6.1 75.4 ± 6.7 76.6 ± 6.4 76.6 ± 6.4 76.2 ± 6.9 98.9 ± 0.2
WISDM AR 72.1 ± 8.0 66.9 ± 8.7 66.9 ± 8.9 70.9 ± 7.8 68.9 ± 8.8 70.2 ± 7.8 96.5 ± 0.1
WISDM AT 69.9 ± 7.1 69.7 ± 7.8 68.3 ± 8.9 69.7 ± 6.6 70.7 ± 7.4 70.7 ± 7.7 98.8 ± 0.1
Myo EMG 77.4 ± 5.2 73.0 ± 5.3 73.9 ± 5.9 74.3 ± 5.5 78.4 ± 4.8 76.8 ± 5.8 97.7 ± 0.1

NinaPro Myo 54.8 ± 3.6 50.6 ± 4.3 50.4 ± 4.7 51.1 ± 3.5 55.1 ± 3.7 49.8 ± 4.6 77.8 ± 1.3
Synth InterT 10 62.6 ± 18.8 68.4 ± 13.9 68.7 ± 13.9 67.6 ± 13.4 69.8 ± 16.6 71.2 ± 15.9 93.4 ± 0.2
Synth InterR 1.0 52.4 ± 7.8 53.3 ± 8.0 53.7 ± 7.0 66.6 ± 7.7 65.4 ± 10.5 75.5 ± 8.1 94.0 ± 0.0
Synth IntraT 10 70.6 ± 8.5 66.5 ± 10.8 68.2 ± 10.2 68.5 ± 7.5 73.2 ± 8.7 74.5 ± 8.7 93.7 ± 0.2
Synth IntraR 1.0 63.3 ± 9.0 59.9 ± 7.1 62.4 ± 6.3 64.0 ± 7.8 77.3 ± 8.0 76.6 ± 6.1 93.6 ± 0.2

Real-World Avg. 73.9 ± 5.8 71.4 ± 6.1 71.0 ± 6.7 72.7 ± 5.8 73.8 ± 5.9 73.1 ± 6.1 94.9 ± 0.3
Synth Avg. 62.2 ± 11.0 62.0 ± 9.9 63.3 ± 9.3 66.7 ± 9.1 71.4 ± 11.0 74.5 ± 9.7 93.7 ± 0.2

but the differences are not large enough to be significant.
However, on both real and synthetic datasets, CALDG-Any,R
and CALDG-XS,H are significantly better than CoDATS-
DG, Sleep-DG, and AFLAC-DG (p < 0.01). On the syn-
thetic datasets, they are similarly better than No Adaptation
(p < 0.01). In contrast, on the real-world datasets, No Adap-
tation performs the best on average, though not significantly
different than CALDG-Any,R. From these experiments, we
conclude that the unlabeled target domain data makes a
significant contribution to our proposed CALDA method. In
addition, contrastive learning appears to benefit the prob-

lem of domain generalization as well as domain adaptation,
though we leave a more detailed investigation to future work.

6 Conclusions and Future Work
We propose a novel time series MS-UDA framework CALDA,
drawing on the principles of both adversarial and contrastive
learning. This approach seeks to improve transfer by leverag-
ing cross-source information, which is ignored by prior work
time series work. We investigate design decisions for incorpo-
rating contrastive learning into multi-source domain adapta-
tion, including how to select examples from multiple domains,

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 13

whether to include the target domain, and whether to utilize
example difficulty. We observe that CALDA improves perfor-
mance over prior work on a variety of real-world and synthetic
time-series datasets both with and without weak supervision.
In the weak supervision case, we additionally find the method
is robust to label proportion noise. We also validated that
both the adversary and unlabeled target domain data yield
significant contribution to domain adaptation performance.

We observe the influence of hyperparameters on CALDA’s
performance. In a UDA setting, we do not rely on labeled
source data to guide hyperparameter selection. Instead, meth-
ods such as those proposed by Saito et al. [34] and You et al.
[35] can be leveraged to fine-tune CALDA’s learned features
toward a source density that maximizes discriminability.

In Section 3.1, we define time series as containing values
that appear at uniform time intervals. In situations where
time series data are unevenly spaced, such as electronic health
record analysis or harmonizing multi-source data, data can
be preprocessed to achieve uniformity [53]. Alternatively, the
model can reason about the non-uniform time delays by
incorporating them into the model as a separate parameter
[54], [55].

Additional future work includes examining the use of
CALDA for cross-modality adaptation [56]. We will also de-
velop data augmentation compatible with time series domain
adaptation and pseudo labeling techniques viable for the large
domain gaps observed in time series to see if these yield further
improvements in transfer.

Acknowledgments
This material is based upon work supported by the National
Science Foundation under Grant No. 1543656 and by the
National Institutes of Health under Grant No. R01EB009675.

References
[1] G. Wilson and D. J. Cook, “A survey of unsupervised deep

domain adaptation,” ACM Trans. Intell. Syst. Technol., vol. 11,
no. 5, Jul. 2020.

[2] G. Wilson, J. R. Doppa, and D. J. Cook, “Multi-source deep
domain adaptation with weak supervision for time-series sensor
data,” in KDD, 2020, p. 1768–1778.

[3] S. Purushotham, W. Carvalho, T. Nilanon, and Y. Liu, “Varia-
tional adversarial deep domain adaptation for health care time
series analysis,” in ICLR, 2017.

[4] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
“A public domain dataset for human activity recognition using
smartphones.” in ESANN, 2013.

[5] M. Zhao et al., “Learning sleep stages from radio signals: A
conditional adversarial architecture,” in ICML, vol. 70, 2017, pp.
4100–4109.

[6] Y. Ganin, E. Ustinova et al., “Domain-adversarial training of
neural networks,” JMLR, vol. 17, no. 59, pp. 1–35, 2016.

[7] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple
framework for contrastive learning of visual representations,” in
ICML, 2020, pp. 1597–1607.

[8] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum
contrast for unsupervised visual representation learning,” in
CVPR, 2020, pp. 9729–9738.

[9] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian,
P. Isola, A. Maschinot et al., “Supervised contrastive learning,”
arXiv:2004.11362, 2020.

[10] C. Park, J. Lee, J. Yoo, M. Hur, and S. Yoon, “Joint
contrastive learning for unsupervised domain adaptation,”
arXiv:2006.10297, 2020.

[11] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive
adaptation network for unsupervised domain adaptation,” in
CVPR, 2019, pp. 4893–4902.

[12] J. Choi, M. Jeong, T. Kim, and C. Kim, “Pseudo-
labeling curriculum for unsupervised domain adaptation,”
arXiv:1908.00262, 2019.

[13] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in CVPR, 2015,
pp. 815–823.

[14] T. Cai, J. Frankle, D. J. Schwab et al., “Are all nega-
tives created equal in contrastive instance discrimination?”
arXiv:2010.06682, 2020.

[15] H. Zhao, S. Zhang, G. Wu, J. M. F. Moura, J. P. Costeira, and
G. J. Gordon, “Adversarial multiple source domain adaptation,”
in NeurIPS, 2018, pp. 8559–8570.

[16] C.-X. Ren, Y.-H. Liu et al., “Multi-source unsupervised domain
adaptation via pseudo target domain,” IEEE Transactions on
Image Processing, vol. 31, pp. 2122–2135, 2022.

[17] Y. Li, L. Yuan, Y. Chen, P. Wang, and N. Vasconcelos, “Dynamic
transfer for multi-source domain adaptation,” in Computer Vi-
sion and Pattern Recognition, 2021.

[18] Q. Xie, Z. Dai, Y. Du, E. Hovy, and G. Neubig, “Controllable
invariance through adversarial feature learning,” in NeurIPS,
2017, pp. 585–596.

[19] F. Ott, D. Rugamer et al., “Domain adaptation for time-series
classification to mitigate covariate shift,” in ACM International
Conference on Multimedia, 2022, pp. 5934–5943.

[20] Y. Shi, X. Ying, and J. Yang, “Deep unsupervised domain
adaptation with time series sensor data: A survey,” Sensors,
vol. 22, p. 5507, 2022.

[21] R. Cai, J. Chen, Z. Li, W. Chen, K. Zhang, J. Ye, Z. Li,
X. Yang, and Z. Zhang, “Time series domain adaptation via
sparse associative structure alignment,” in AAAI Conference on
Artificial Intelligence, vol. 35, no. 8, 2021, pp. 6859–6867.

[22] A. Hussein and H. Hajj, “Domain adaptation with represen-
tation learning and nonlinear relation for time series,” ACM
Transactions on Internet of Things, vol. 3, no. 2, p. 12, 2022.

[23] Q. Liu and H. Xue, “Adversarial spectral kernel matching for
unsupervised time series domain adaptation,” in International
Joint Conference on Artificial Intelligence, 2021, pp. 2744–2750.

[24] I. Ketykó, F. Kovács, and K. Varga, “Domain adaptation for
sEMG-based gesture recognition with recurrent neural net-
works,” in IJCNN, 2019, pp. 1–7.

[25] A. Ameri, M. A. Akhaee et al., “A deep transfer learning ap-
proach to reducing the effect of electrode shift in emg pattern
recognition-based control,” IEEE NSRE, vol. 28, no. 2, pp.
370–379, 2019.

[26] U. Côté-Allard, C. L. Fall et al., “Deep learning for electromyo-
graphic hand gesture signal classification using transfer learn-
ing,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 27, no. 4, pp. 760–771, 2019.

[27] Y. Du, W. Jin et al., “Surface emg-based inter-session gesture
recognition enhanced by deep domain adaptation,” Sensors,
vol. 17, no. 3, p. 458, 2017.

[28] Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu, “Adaptive batch
normalization for practical domain adaptation,” Pattern Recog-
nition, vol. 80, pp. 109 – 117, 2018.

[29] K. Ganchev, J. Gillenwater, B. Taskar et al., “Posterior regular-
ization for structured latent variable models,” JMLR, vol. 11, no.
Jul, pp. 2001–2049, 2010.

[30] W. Jiang, C. Miao, F. Ma, S. Yao, Y. Wang, Y. Yuan et al.,
“Towards environment independent device free human activity
recognition,” in MobiCom, 2018, pp. 289–304.

[31] N. Hu, G. Englebienne, Z. Lou, and B. Kröse, “Learning to rec-
ognize human activities using soft labels,” IEEE PAMI, vol. 39,
no. 10, pp. 1973–1984, Oct 2017.

[32] D. Pathak, P. Krahenbuhl, and T. Darrell, “Constrained convo-
lutional neural networks for weakly supervised segmentation,” in
ICCV, Dec 2015.

[33] M.-C. Dinu, M. Holzleitner et al., “Addressing parameter choice
issues in unsupervised domain adaptation by aggregation,” in
International Conference on Learning Representations (ICLR),
2023.

[34] K. Saito, D. Kim et al., “Tune it the right way: Unsupervised
validation of domain adaptation via soft neighborhood density,”
in ICCV, 2021.

[35] K. You, X. Wang, M. Long, and M. I. Jordan, “Towards accurate
model selection in deep unsupervised domain adaptation,” in
ICML, 2019.

IEEE TRANSACTIONS ON PATTERN ANALYSIS OF MACHINE INTELLIGENCE, VOL. 0, NO. 0, AUGUST 2015 14

[36] E. P. Xing, A. Y. Ng et al., “Distance metric learning with
application to clustering with side-information,” in NeurIPS,
vol. 15, no. 505–512, 2002, p. 12.

[37] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in CVPR, vol. 2, 2006, pp.
1735–1742.

[38] G. French et al., “Self-ensembling for visual domain adaptation,”
in ICLR, 2018.

[39] B. K. Iwana and S. Uchida, “An empirical survey of data aug-
mentation for time series classification with neural networks,”
Plos one, vol. 16, no. 7, p. e0254841, 2021.

[40] M. Thota and G. Leontidis, “Contrastive domain adaptation,”
in CVPR, 2021, pp. 2209–2218.

[41] P. Su, S. Tang, P. Gao, D. Qiu, N. Zhao, and X. Wang, “Gradient
regularized contrastive learning for continual domain adapta-
tion,” arXiv preprint arXiv:2007.12942, 2020.

[42] J. Guo, D. Shah, and R. Barzilay, “Multi-source domain adapta-
tion with mixture of experts,” in EMNLP, 2018, pp. 4694–4703.

[43] H. I. Fawaz, G. Forestier et al., “Deep learning for time series
classification: a review,” DMKD, vol. 33, no. 4, pp. 917–963,
2019.

[44] Z. Wang, W. Yan, and T. Oates, “Time series classification
from scratch with deep neural networks: A strong baseline,” in
IJCNN, 2017, pp. 1578–1585.

[45] A. Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” arXiv:1807.03748, 2018.

[46] H. He, O. Queen, T. Koker, C. Cuevas, T. Tsiligkaridis,
and M. Zitnik, “Domain adaptation for time series under
feature and label shifts,” 2023. [Online]. Available: https:
//arxiv.org/abs/2302.03133

[47] A. Stisen et al., “Smart devices are different: Assessing and mit-
igating mobile sensing heterogeneities for activity recognition,”
in SenSys, 2015, pp. 127–140.

[48] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recogni-
tion using cell phone accelerometers,” SIGKDD Explor. Newsl.,
vol. 12, no. 2, pp. 74–82, 2011.

[49] J. W. Lockhart, G. M. Weiss, J. C. Xue et al., “Design con-
siderations for the wisdm smart phone-based sensor mining
architecture,” in SensorKDD, 2011, pp. 25–33.

[50] S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani,
H. Müller, and M. Atzori, “Comparison of six electromyography
acquisition setups on hand movement classification tasks,” PloS
one, vol. 12, no. 10, 2017.

[51] G. Blanchard, G. Lee, and C. Scott, “Generalizing from sev-
eral related classification tasks to a new unlabeled sample,” in
NeurIPS, 2011, pp. 2178–2186.

[52] K. Akuzawa, Y. Iwasawa, and Y. Matsuo, “Adversarial invariant
feature learning with accuracy constraint for domain generaliza-
tion,” arXiv:1904.12543, 2019.

[53] A. Bharambe and D. Kalbande, “Self-organizing data processing
for time series using spark,” Mobile Computing and Sustainable
Informatics, vol. 534, pp. 239–248, 2021.

[54] T. Braun, C. N. Fernandez, D. Eroglu, A. Hartland, S. F. M.
Breitenbach, and N. Marwan, “Sampling rate-corrected analysis
of irregularly sampled time series,” Physical Review E, vol. 105,
no. 024206, 2022.

[55] J. Koss, S. Tinaz, and H. D. Tagare, “Hierarchical denoising of
ordinal time series of clinical scores,” IEEE Journal of Biomedi-
cal and Health Informatics, vol. 26, no. 7, pp. 3507–3516, 2022.

[56] S. Deldari, H. Xue, A. Saeed, D. V. Smith, and F. D. Salim,
“Cocoa: Cross modality contrastive learning for sensor data,”
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 6, pp. 1–28, 2022.

Garrett Wilson received his BS in Engineering from Walla Walla Univer-
sity in 2016. He received a PhD in Computer Science from Washington
State University. His research interests include transfer learning, gener-
ative adversarial networks, and time series.

Janardhan Rao Doppa is a Huie-Rogers Endowed Chair Associate
Professor at Washington State University. He received his PhD from
Oregon State University. His research interests include machine learning
with a focus on small-data setting and robustness.

Diane J. Cook is a Regents and Huie-Rogers Professor at Washington
State University. She received her PhD from the University of Illinois. Her
research interests include machine learning, pervasive computing, and
design of automated strategies for health monitoring and intervention.

1

CALDA: Improving Multi-Source Time Series Domain
Adaptation with Contrastive Adversarial Learning

Garrett Wilson, Janardhan Rao Doppa, Senior Member, IEEE and Diane J. Cook, Fellow, IEEE

F

1 Supplemental Material

Here we further document the dataset pre-processing,
model architecture, hyperparameter tuning, and train-

ing algorithm for the CALDA framework and experiments
from the main paper. We also provide a few additional tables
which could not be included in the main paper due to space
constraints, further corroborating the conclusions given in the
main paper.

2 Experimental Setup
2.1 Hyperparameter Tuning
For CALDA, CoDATS, and No Adaptation, we performed hy-
perparameter tuning with a random search over the following
space: learning rate lr ∈ {0.00001, 0.0001, 0.001}, max num-
ber of positives selected |P | ∈ {5, 10}, max number of nega-
tives selected |N | = r · |P | with the negative to positive ratio
r ∈ {2, 4}, contrastive loss weight λc ∈ {1.0, 10.0, 100.0},
and contrastive loss temperature τ ∈ {0.01, 0.05, 0.1, 0.5}.
Tuning was performed on a limited number of adaptation
problems from each dataset: 5 target users with 3 random sets
of sources for each of two values of n (the lowest and highest
values of n for each dataset). The best hyperparameters were
selected based on highest accuracy on the validation set – no
method ever saw the true test set during tuning or model
selection. For each dataset, the CALDA variants each use the
same hyperparameters to verify the differences in results are
due to the design choices rather than tuning.

For the CAN baseline, we follow the same procedure as for
CALDA, but the set of hyperparameters differs. We perform a
search over: base learning rate ∈ {0.0001, 0.001}, source/tar-
get batch size ∈ {30, 60}, alpha ∈ {0.0001, 0.0005, 0.001},
beta ∈ {0.75, 1, 1.5, 2, 2.25, 2.5, 2.75, 3}, and loss weight
∈ {0.1, 0.2, 0.3, 0.4, 0.5}. These values are inclusive of the
best parameters found in the original CAN experiments, but
we extend the search space for these neural network hyperpa-
rameters since the time series feature extractor is sufficiently
different from the image neural network. For CAN clustering,
we retain the same hyperparameters as in the CAN paper:
source/target clustering batch size of 600, clustering budget
of 1000, and max loops of 50.

When examining the results of the hyperparameter search,
we observe some trends. In the case of No adaptation, Co-

• The authors are with the School of Electrical Engineering and
Computer Science, Washington State University, Pullman, WA,
99164. E-mail: {garrett.wilson,jana.doppa,djcook}@wsu.edu

DATS, and the Train on Target upper bound, the methods
achieved a similar performance for each set of hyperparameter
choices, although the smallest learning rate yielded slightly
improved results for these methods. In the case of CAN, the
larger learning rates and lower loss weights performed best.
However, other hyperparameters did not show clear trends.
For CALDA, a larger learning rate and lower similarity weight
performed best. Other hyperparameters had less impact on
performance for CALDA.

We performed an additional analysis to determine how
sensitive each of the d datasets was to hyperparameter choices.
In this experiment, we performed leave-one-dataset-out val-
idation, selecting hyperparameters for d − 1 datasets and
observing performance for the held-out case. We observed
stability for the leave-one-out tuning with the exception of
UCI HAR, the simplest of the real-world datasets (evidenced
by the strong No Adaptation performance). For this held-out
dataset, CoDATS outperformed the other methods.

2.2 Neural Network Model and Training
We employ a neural network previously demonstrated to work
well on time-series data [1], [2]. To add support for contrastive
learning, we include an additional contrastive head [3], [4],
consisting of a single 128-unit fully-connected layer added to
the model following the feature extractor. We apply the con-
trastive loss to the representations output by this additional
layer.

Following the setup for CoDATS [1], each model was
trained for 30,000 iterations with the Adam optimizer, a
batch size of 128, and the λd domain-adversarial learning
rate schedule from Ganin et al. [5]. Because weak supervision
depends on a sufficient number of unlabeled target domain
data to estimate the predicted label proportions in each batch,
for weak supervision we divide the batch size equally between
source domains (further split among source domains equally)
and the target domain [1]. Without weak supervision, an
evenly-split batch division between domains was used. For
the additional hard vs. random experiment, we instead used
a batch of size 64 because, while the same trend holds for a
batch of size 128, it is less visible.

For a contrastive domain adaptation baseline, we include
the CAN method [6]. However, CAN was designed for use
with image datasets. To make it compatible with time series
datasets, we replace the image neural network with the same
time series feature extractor used in CoDATS and CALDA.

2

This facilitates comparing the CAN method with CALDA on
time series data.

2.3 Evaluation Metrics
To evaluate each method, we follow the MS-UDA evaluation
protocol from prior work [1]. We select 5 different values of
n to determine how well each method works across various
numbers of source domains. These numbers of source do-
mains are as follows: n ∈ {2, 8, 14, 20, 26} for UCI HAR,
n ∈ {2, 3, 4, 5, 6} for UCI HHAR, n ∈ {2, 8, 14, 20, 26}
for WISDM AR, n ∈ {2, 12, 22, 32, 42} for WISDM AT,
n ∈ {2, 10, 18, 26, 34} for Myo EMG, n ∈ {2, 4, 6, 8} for
NinaPro Myo, and n ∈ {2, 4, 6, 8, 10} for Synth. However, to
better observe overall trends across various numbers of source
domains and due to space constraints, we average over these
multiple values of n for each dataset.

For each value of n, we select 10 random target domains
and 3 random sets of n source domains for each of those
target domains. Finally, we compute the average classification
accuracy of each method on the hold-out target domain test
sets. Thus, each point in the results of the main paper is an
average of approximately 150 experiments (30 for each value of
n), though results for each individual value of n are provided
below in Tables 5 and 6. The error given for each experiment
is the average of the standard deviation over each set of 3
random sets of source domains, i.e., this error indicates the
variation of each method to the 3 different source domain
selections and also the 3 different random initializations of
the networks. This is in contrast to typical variances given
outside a multi-source domain adaptation context, where
the variances only indicate variation over several random
initializations since they do not have multiple source domain
choices available. Overall, this evaluation procedure allows
us to compare each method across a wide array of MS-UDA
adaptation problems.

2.4 Dataset Preprocessing
Figure 1 illustrates the synthetic datasets that were used for
our experiments. The synthetic datasets were generated with
12 domains and 3 classes for each domain. The 12 domains
allows for n ∈ {2, 4, 6, 8, 10} with exactly 3 random sets of
source domains for the largest number of source domains n =
10. The time series signals were generated at 250 Hz with a
window length of 0.2 seconds, yielding a window of 50 samples.
Each sine wave had uniform amplitude and no phase shift.

The UCI HAR dataset contains accelerometer x, y, and
z, gyroscope x, y, and z, and estimated body acceleration
x, y, and z for 30 participants [7]. This data was collected
at 50 Hz and is segmented into 2.56 second windows (i.e.,
each window contains 128 time steps). This dataset contains 6
activity labels: walking, walking upstairs, walking downstairs,
sitting, standing, and laying.

The UCI HHAR dataset contains both accelerometer and
gyroscope data [8]. However, the authors only utilize one of
these sensor modalities at a time and find accelerometer data
to be the superior choice for human activity recognition. Thus,
on this dataset, we similarly use the three-axis accelerometer
data in our experiments. We include the data from the 31
participants carrying smartphones, each of which was sampled
at the highest-supported sampling rate, and segment this into

(a) Inter-domain translation (b) Intra-domain translation

(c) 1 GMM (d) 3 GMM

Fig. 1. SW synthetic data are generated by summing sine waves of
different frequencies for each domain and class label. Each source
domain is generated with a) inter-domain or b) intra-domain translation
or rotation shifts. GMM synthetic data are generated by sampling from
from 1, 2, or 3 Gaussians for each domain, dimension, and class label.

windows of 128 time steps. This dataset includes data from the
following activities: biking, sitting, standing, walking, walking
upstairs, and walking downstairs.

The WISDM AR dataset contains accelerometer x, y, and
z data collected from a large number of participants [9]. How-
ever, many of these participants have very little data. Thus,
we only include data from the 33 participants with sufficient
data. The accelerometer data is collected at 20 Hz, and we
segment this into non-overlapping windows of 128 time steps.
The activity labels for WISDM AR are: walking, jogging,
sitting, standing, walking upstairs, and walking downstairs.

The WISDM AT dataset similarly contains accelerometer
data [10]. Like WISDM AR, the amount of data collected
from each participant varies widely, so we only include data
from the 51 participants with a sufficient amount of labeled
data. The accelerometer is sampled at 20 Hz. We segment
this data into non-overlapping windows of 128 time steps.
WISDM AT contains the following activity labels: walking,
jogging, ascending/descending stairs, sitting, standing, and
lying down.

The Myo EMG dataset [11] contains 8-channel EMG data
from a Myo armband collected at 200 Hz while different
people performed various hand gestures. This dataset consists
of 7 hand gestures: neutral, radial deviation, wrist flexion,
ulnar deviation, wrist extension, hand close, and hand open.
Data was collected from 40 people, but the authors of the
dataset proposed pre-training on the data from the first 22
participants, so they only provide only training sets for these
participants. Thus, we include all participants as potential
source domains but only include the later 18 participants as
target domains. As in their paper, we use 260ms windows (i.e.,
52 samples) with an overlap of 235 ms.

The NinaPro Myo dataset consists of data from the Ni-
naPro DB5 Exercise 2 dataset [12] processed similar to the
Myo EMG dataset to better align with the problem setup
in their paper [11]. The same subset of classes are used as

3

in Myo EMG and only the 8-channel EMG signals from the
lower Myo armband. Additionally, while the authors proposed
an electrode shifting/rotation mechanism to better align data
across participants, we found this additional procedure to be
unnecessary for our domain adaptation method. Thus, we
perform no such electrode shifting. This dataset consists of
data from 10 participants at 200 Hz, and we use the same
window size and overlap as the Myo EMG dataset. To not
have overlap between data from gestures in the training and
testing sets, we select the first 5 repetitions of each gesture
as the training data and the final repetition as the test data,
which gives approximately an 80%-20% train-test split.

For each HAR dataset, the data from each participant
was split into 80% training set and 20% testing set, with the
training set similarly split into training and validation sets.
The train-test splits for the EMG datasets were described
above, and the training set of each was further split into
training and validation sets of 80% and 20% respectively.
After the selection of source and target domains for each
experiment, we select the corresponding training, validation,
and test sets for each participant. Data are normalized to
have zero mean and unit variance with statistics computed
on only the training set. The model selected for evaluation is
the checkpoint that performs best on the validation set.

3 Additional Experimental Results
While the key results were presented in the main paper,
here we provide a few additional tables that could not be
included in the main paper due to space constraints. These
further results corroborate our conclusions from the main
paper. Table 1 provides the ablation results when including
pseudo-labeled target domain data on the synthetic datasets.
Table 2 provides the results of the ablation study without the
adversary on the synthetic datasets.

Table 3 summarizes target domain classifier performance
for single-source CoDATS domain adaptation. In contrast,
Tables 4 through 8 show the results comparing CALDA with
baseline methods when varying the number of source domains
n for MS-UDA and the synthetic datasets. Similarly, Tables 10
and 11 show the results for MS-UDA with weak supervision.
In these tables, CoDATS represents a configuration where
adversarial learning (without or with weak supervision) is
employed without the use of contrastive learning. Note that
the average performance of single-source adaptation in Table 3
is 83.3, in comparison with an average performance for the
same datasets of 89.0 when the largest number of sources is
used, as shown in Tables 5 and 10.

Another property of the CALDA framework is that be-
cause the models do not reason about the length of the
time series itself, the algorithms can handle cases where the
domains contain series of different lengths. CALDA’s CNN in-
cludes a global average pooling layer to handle such cases. We
verify this property using data from the WISDM AR dataset
in which we remove elements from the end of time series
entries. The amount removed is random, leaving a residual
percentage shown in Table 4 and resulting in varying time
series lengths between domains. As Table 4 shows, CALDA
is able to handle each of these cases. As the range of lengths
increases between domains, the adaptation performance does
decrease slightly, due to the increased underlying distribution
differences between domains.

4 Training Algorithm
For added clarity, we present the overall training loop using
pseudo code in Algorithm 1 and the contrastive loss compu-
tation in Algorithm 2. Note, in practice, we use a vectorized
version of Algorithm 2 on GPUs for computational efficiency.

Algorithm 1: Training Loop
Input: datasettrain, datasetvalid, F, C,D,Z,GRL, λc

Output: checkpoint of best model F,C,D,Z on
datasetvalid

// Mini-batch from shuffled/repeated train
data

for (s1, s2, . . . , t) ∈ datasettrain do
// Concatenate all x and d values
x = concat([s1.x, s2.x, …, t.x])
d = concat([s1.d, s2.d, …, t.d])
// Concatenate y, exclude unlabeled

target
y = concat([s1.y, s2.y, …, sn.y])
// Run input through model
f = F (x)
ypred = C(f)
dpred = D(GRL(f)) // Gradient reversal
z = Z(f)
// Task loss, ignoring target
losstask = cross_entropy(y, ypred excluding
target)

// Domain loss, over both sources and
target

lossdomain = cross_entropy(d, dpred)
// Contrastive loss, see Algorithm 2
losscontrastive = contrastive_loss(y, d, ypred, z)
// Total loss, recall GRL includes λd

weight
loss = losstask + lossdomain + λc · losscontrastive
// Compute/apply gradient to update model
update(loss, [F,C,D,Z])
// Store best model on validation set
checkpoint(datasetvalid, [F,C,D,Z])

References
[1] G. Wilson, J. R. Doppa, and D. J. Cook, “Multi-source deep

domain adaptation with weak supervision for time-series sensor
data,” in KDD, 2020, p. 1768–1778.

[2] Z. Wang, W. Yan, and T. Oates, “Time series classification
from scratch with deep neural networks: A strong baseline,” in
IJCNN, 2017, pp. 1578–1585.

[3] C. Park, J. Lee, J. Yoo, M. Hur, and S. Yoon, “Joint
contrastive learning for unsupervised domain adaptation,”
arXiv:2006.10297, 2020.

[4] T. Cai, J. Frankle, D. J. Schwab et al., “Are all nega-
tives created equal in contrastive instance discrimination?”
arXiv:2010.06682, 2020.

[5] Y. Ganin, E. Ustinova et al., “Domain-adversarial training of
neural networks,” JMLR, vol. 17, no. 59, pp. 1–35, 2016.

[6] G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann, “Contrastive
adaptation network for unsupervised domain adaptation,” in
CVPR, 2019, pp. 4893–4902.

[7] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz,
“A public domain dataset for human activity recognition using
smartphones.” in ESANN, 2013.

4

TABLE 1
Ablation study of CALDA instantiations that include the target-domain data via pseudo labeling on synthetic datasets.

Dataset CALDA-In,R,P CALDA-In,H,P CALDA-Any,R,P CALDA-Any,H,P CALDA-XS,R,P CALDA-XS,H,P

Synth InterT 10 72.1 ± 12.8 72.7 ± 14.1 71.5 ± 13.6 71.1 ± 15.1 70.7 ± 13.8 72.4 ± 13.7
Synth InterR 1.0 69.7 ± 11.6 70.1 ± 10.1 65.4 ± 10.4 77.9 ± 9.2 65.2 ± 10.7 76.6 ± 9.4
Synth IntraT 10 66.7 ± 6.4 68.4 ± 7.0 71.8 ± 7.5 73.7 ± 11.2 69.4 ± 7.3 75.0 ± 8.9
Synth IntraR 1.0 77.7 ± 6.1 77.6 ± 7.5 77.9 ± 6.9 75.9 ± 3.3 78.0 ± 6.4 75.6 ± 4.3

Average 71.6 ± 9.2 72.2 ± 9.7 71.7 ± 9.6 74.7 ± 9.7 70.8 ± 9.6 74.9 ± 9.1

TABLE 2
Ablation study comparing CALDA with or without an adversary on synthetic datasets. Bold denotes highest accuracy in each row.

Dataset CALDA-Any,R,NoAdv CALDA-XS,H,NoAdv CALDA-Any,R CALDA-XS,H

Synth InterT 10 70.0 ± 16.4 69.3 ± 14.0 69.4 ± 17.0 70.5 ± 14.5
Synth InterR 1.0 68.8 ± 12.0 76.2 ± 9.3 63.4 ± 10.2 76.3 ± 8.9
Synth IntraT 10 74.7 ± 7.6 75.5 ± 8.6 75.6 ± 8.4 76.2 ± 8.3
Synth IntraR 1.0 73.8 ± 7.8 77.2 ± 5.5 77.5 ± 7.0 76.9 ± 6.1

Average 71.8 ± 10.9 74.6 ± 9.4 71.5 ± 10.7 75.0 ± 9.4

TABLE 3
Comparison of target classification accuracy (source → target, mean ± std%) on randomly-chosen single-source domain adaptation problems for

each dataset, using adversarial learning (CoDATS) and adversarial learning with weak supervision (CoDATS-WS). Underline denotes highest
accuracy in each row.

Problem No Adaptation CoDATS CoDATS-WS Train on Target

HAR 2 → 11 83.3 ± 0.7 74.5 ± 4.5 74.5 ± 6.0 100.0 ± 0.0
HAR 7 → 13 89.9 ± 3.6 96.5 ± 0.7 96.5 ± 0.7 100.0 ± 0.0

HAR 12 → 16 41.9 ± 0.0 77.5 ± 0.6 75.2 ± 3.5 100.0 ± 0.0
HAR 12 → 18 90.0 ± 1.7 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
HAR 9 → 18 31.1 ± 1.7 85.8 ± 1.7 76.7 ± 6.8 100.0 ± 0.0

HAR 14 → 19 62.0 ± 4.3 72.2 ± 27.2 98.6 ± 1.1 100.0 ± 0.0
HAR 18 → 23 89.3 ± 5.0 86.2 ± 0.6 89.3 ± 1.1 100.0 ± 0.0
HAR 6 → 23 52.9 ± 2.3 94.7 ± 1.1 94.2 ± 1.3 100.0 ± 0.0
HAR 7 → 24 94.4 ± 2.7 100.0 ± 0.0 99.1 ± 0.6 100.0 ± 0.0

HAR 17 → 25 57.3 ± 5.5 96.7 ± 1.5 97.6 ± 1.0 100.0 ± 0.0
HAR Average 69.2 ± 21.8 88.4 ± 10.1 90.2 ± 10.1 100.0 ± 0.0
HHAR 1 → 3 77.8 ± 4.4 93.2 ± 1.6 90.8 ± 2.0 99.2 ± 0.0
HHAR 3 → 5 68.8 ± 5.2 95.6 ± 0.9 94.3 ± 1.2 99.0 ± 0.1
HHAR 4 → 5 60.4 ± 3.0 94.2 ± 1.1 94.7 ± 0.5 99.0 ± 0.1
HHAR 0 → 6 33.6 ± 2.2 76.7 ± 1.5 74.2 ± 1.1 98.8 ± 0.1
HHAR 1 → 6 72.1 ± 3.9 90.5 ± 0.7 90.8 ± 0.2 98.8 ± 0.1
HHAR 4 → 6 48.0 ± 2.6 93.7 ± 0.4 85.3 ± 10.6 98.8 ± 0.1
HHAR 5 → 6 65.1 ± 6.9 90.7 ± 2.3 91.7 ± 0.4 98.8 ± 0.1
HHAR 2 → 7 49.4 ± 2.1 58.1 ± 4.5 56.6 ± 3.4 98.5 ± 0.5
HHAR 3 → 8 77.8 ± 2.1 93.4 ± 0.4 94.3 ± 1.0 99.3 ± 0.0
HHAR 5 → 8 95.3 ± 0.4 97.1 ± 0.3 95.8 ± 0.2 99.3 ± 0.0

HHAR Average 64.8 ± 16.9 88.3 ± 11.4 86.8 ± 11.8 99.0 ± 0.3
WISDM AR 1 → 11 71.7 ± 0.0 71.7 ± 0.0 93.3 ± 0.0 98.3 ± 0.0
WISDM AR 3 → 11 6.7 ± 4.9 47.8 ± 0.8 46.7 ± 0.0 98.3 ± 0.0
WISDM AR 4 → 15 78.2 ± 4.5 81.4 ± 8.9 75.6 ± 6.3 100.0 ± 0.0
WISDM AR 2 → 25 81.1 ± 2.8 90.6 ± 1.6 97.8 ± 0.8 100.0 ± 0.0

WISDM AR 25 → 29 47.1 ± 8.2 74.6 ± 7.4 84.8 ± 1.8 95.7 ± 0.0
WISDM AR 7 → 30 62.5 ± 0.0 73.2 ± 16.2 70.2 ± 9.9 100.0 ± 0.0

WISDM AR 21 → 31 57.1 ± 0.0 68.6 ± 4.0 92.4 ± 1.3 97.1 ± 0.0
WISDM AR 2 → 32 60.1 ± 9.1 67.3 ± 0.9 68.6 ± 1.6 100.0 ± 0.0
WISDM AR 1 → 7 68.5 ± 2.3 70.9 ± 0.0 66.1 ± 6.9 96.4 ± 0.0
WISDM AR 0 → 8 34.7 ± 9.3 54.0 ± 15.6 62.0 ± 15.7 99.3 ± 0.9

WISDM AR Average 56.8 ± 21.3 70.0 ± 11.6 75.8 ± 15.4 98.5 ± 1.6

5

TABLE 4
Performance of CALDA-Any,R on a modified version of WISDM AR.
The dataset name indicates the amount of data that was removed to
vary domain lengths. For example, the 60-100% entry indicates that

the length of each domain’s time series, including the target, is
between 60% and 100% of the original size. The amount of removed

data is chosen randomly between domains.

Dataset n CALDA-Any,R

WISDM AR 2 68.6 ± 13.3
WISDM AR 8 77.9 ± 8.2
WISDM AR 14 85.6 ± 4.7
WISDM AR 20 85.5 ± 4.8
WISDM AR 26 83.2 ± 4.3
WISDM AR Avg 80.2 ± 7.1

WISDM AR 90-100% 2 70.4 ± 11.8
WISDM AR 90-100% 8 80.6 ± 7.2
WISDM AR 90-100% 14 83.3 ± 5.2
WISDM AR 90-100% 20 88.2 ± 2.6
WISDM AR 90-100% 26 83.6 ± 4.4
WISDM AR 90-100% Avg 81.2 ± 6.2
WISDM AR 80-100% 2 66.4 ± 14.0
WISDM AR 80-100% 8 76.9 ± 10.5
WISDM AR 80-100% 14 84.4 ± 6.0
WISDM AR 80-100% 20 84.6 ± 5.1
WISDM AR 80-100% 26 86.2 ± 2.6
WISDM AR 80-100% Avg 79.7 ± 7.7
WISDM AR 60-100% 2 65.0 ± 10.5
WISDM AR 60-100% 8 74.3 ± 9.9
WISDM AR 60-100% 14 82.9 ± 5.6
WISDM AR 60-100% 20 85.8 ± 5.1
WISDM AR 60-100% 26 85.9 ± 4.3
WISDM AR 60-100% Avg 78.8 ± 7.1

Average 80.0 ± 7.0

[8] A. Stisen et al., “Smart devices are different: Assessing and mit-
igating mobile sensing heterogeneities for activity recognition,”
in SenSys, 2015, pp. 127–140.

[9] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recogni-
tion using cell phone accelerometers,” SIGKDD Explor. Newsl.,
vol. 12, no. 2, pp. 74–82, 2011.

[10] J. W. Lockhart, G. M. Weiss, J. C. Xue et al., “Design con-
siderations for the wisdm smart phone-based sensor mining
architecture,” in SensorKDD, 2011, pp. 25–33.

[11] U. Côté-Allard, C. L. Fall et al., “Deep learning for electromyo-
graphic hand gesture signal classification using transfer learn-
ing,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 27, no. 4, pp. 760–771, 2019.

[12] S. Pizzolato, L. Tagliapietra, M. Cognolato, M. Reggiani,
H. Müller, and M. Atzori, “Comparison of six electromyography
acquisition setups on hand movement classification tasks,” PloS
one, vol. 12, no. 10, 2017.

Algorithm 2: Contrastive Loss
Input: y, d, ypred, z
Output: loss
// Construct query set
if pseudo labeling then

append argmax(ypred) to y
queries = (z, d, y) for each example

else
queries = (z, d, y) for each source example

loss = 0
for (zq , dq , yq) ∈ queries do

// Construct positive and negative sets
if within source then

positives = z with dq and yq , exclude zq
negatives = z with dq and not yq

else if any source then
positives = z with yq , exclude zq
negatives = z with not yq

else if cross source then
positives = z with not dq and yq
negatives = z with not dq and not yq

// Hard or random sampling
if hard sampling then

sort positives descending by cross_entropy(y for
each positive, ypred for each positive)

sort negatives ascending by cross_entropy(yq , ypred
for each negative)

take first num_positives and num_negatives

else if random sampling then
shuffle positives and negatives
take first num_positives and num_negatives

// Compute loss component for this query
lossquery = 0
for zp ∈ positives do

lossp = exp(sim(zp, zq)/τ)
lossn = 0
for zn ∈ negatives do

lossn += exp(sim(zn, zq)/τ)
lossquery += -log(lossp / (lossp + lossn))

loss += lossquery / len(positives)
return loss / len(queries)

6

TABLE 5
Comparison of target domain accuracy of the most-promising CALDA instantiations with baselines on real-world datasets when varying the

number of source domains n. Bold denotes CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CAN CoDATS CALDA-Any,R CALDA-XS,H Train on Target

UCI HAR 2 74.5 ± 12.2 84.1 ± 7.4 91.3 ± 3.6 92.1 ± 4.1 91.2 ± 4.8 99.6 ± 0.1
UCI HAR 8 90.4 ± 3.0 88.3 ± 4.1 93.7 ± 2.8 92.6 ± 3.0 93.4 ± 2.4 99.6 ± 0.1
UCI HAR 14 92.4 ± 2.8 90.5 ± 2.9 92.9 ± 3.9 93.5 ± 2.3 94.4 ± 2.6 99.6 ± 0.1
UCI HAR 20 93.2 ± 1.6 90.5 ± 2.7 92.7 ± 3.4 93.6 ± 1.1 94.1 ± 1.5 99.6 ± 0.1
UCI HAR 26 93.4 ± 1.5 91.7 ± 1.5 93.5 ± 2.8 94.0 ± 1.0 93.8 ± 1.4 99.6 ± 0.1
UCI HAR Avg 88.8 ± 4.2 89.0 ± 3.7 92.8 ± 3.3 93.1 ± 2.3 93.4 ± 2.5 99.6 ± 0.1

UCI HHAR 2 68.4 ± 7.5 73.3 ± 7.1 87.6 ± 5.1 88.8 ± 4.4 88.7 ± 4.7 98.9 ± 0.2
UCI HHAR 3 74.8 ± 6.8 77.5 ± 6.3 88.6 ± 4.3 90.2 ± 3.8 89.7 ± 3.5 98.9 ± 0.2
UCI HHAR 4 77.9 ± 7.2 79.0 ± 5.0 89.4 ± 3.4 90.2 ± 3.6 89.9 ± 4.1 98.9 ± 0.2
UCI HHAR 5 80.9 ± 5.2 79.8 ± 4.3 89.0 ± 3.2 90.0 ± 3.4 89.6 ± 3.9 98.9 ± 0.2
UCI HHAR 6 82.4 ± 4.9 78.0 ± 3.6 88.6 ± 3.4 89.7 ± 3.4 89.3 ± 3.6 98.9 ± 0.2
UCI HHAR Avg 76.9 ± 6.3 77.5 ± 5.3 88.6 ± 3.9 89.8 ± 3.7 89.4 ± 4.0 98.9 ± 0.2
WISDM AR 2 55.2 ± 13.0 48.8 ± 10.1 65.6 ± 13.9 68.6 ± 13.3 69.9 ± 12.3 96.5 ± 0.1
WISDM AR 8 69.6 ± 8.2 57.8 ± 7.8 76.1 ± 8.8 77.9 ± 8.2 79.9 ± 10.5 96.5 ± 0.1
WISDM AR 14 77.8 ± 7.4 65.9 ± 5.9 80.8 ± 8.7 85.6 ± 4.7 84.2 ± 5.9 96.5 ± 0.1
WISDM AR 20 78.1 ± 6.6 65.6 ± 7.3 82.3 ± 5.2 85.5 ± 4.8 86.3 ± 5.9 96.5 ± 0.1
WISDM AR 26 79.7 ± 4.5 68.2 ± 6.3 85.1 ± 5.2 83.2 ± 4.3 86.5 ± 4.7 96.5 ± 0.1
WISDM AR Avg 72.1 ± 8.0 61.3 ± 7.5 78.0 ± 8.4 80.2 ± 7.1 81.4 ± 7.9 96.5 ± 0.1
WISDM AT 2 51.8 ± 15.8 50.3 ± 13.8 56.5 ± 16.9 57.9 ± 13.7 55.8 ± 19.5 98.8 ± 0.1
WISDM AT 12 69.1 ± 8.9 64.6 ± 13.8 68.6 ± 7.2 71.6 ± 11.4 69.6 ± 13.2 98.8 ± 0.1
WISDM AT 22 73.3 ± 3.6 67.6 ± 7.8 71.8 ± 4.4 76.5 ± 4.0 74.7 ± 4.5 98.8 ± 0.1
WISDM AT 32 75.8 ± 3.3 69.9 ± 7.5 76.2 ± 2.2 78.0 ± 3.7 76.8 ± 3.4 98.8 ± 0.1
WISDM AT 42 79.4 ± 4.0 78.4 ± 5.1 75.6 ± 2.5 76.6 ± 4.8 78.4 ± 2.4 98.8 ± 0.1
WISDM AT Avg 69.9 ± 7.1 66.2 ± 9.6 69.7 ± 6.6 72.1 ± 7.5 71.0 ± 8.6 98.8 ± 0.1
Myo EMG 2 71.7 ± 8.7 61.4 ± 14.4 77.4 ± 10.8 78.7 ± 11.6 78.6 ± 10.9 97.7 ± 0.1
Myo EMG 10 77.3 ± 4.9 73.8 ± 6.7 84.9 ± 5.3 84.5 ± 5.0 82.5 ± 5.1 97.7 ± 0.1
Myo EMG 18 79.3 ± 4.0 76.0 ± 4.8 80.8 ± 4.8 84.4 ± 4.8 84.4 ± 4.8 97.7 ± 0.1
Myo EMG 26 77.8 ± 4.3 79.1 ± 3.1 83.4 ± 3.6 85.8 ± 3.0 84.6 ± 3.1 97.7 ± 0.1
Myo EMG 34 80.6 ± 4.3 80.0 ± 2.6 84.5 ± 2.5 85.3 ± 3.5 86.3 ± 2.5 97.7 ± 0.1
Myo EMG Avg 77.4 ± 5.2 74.1 ± 6.3 82.2 ± 5.4 83.8 ± 5.6 83.3 ± 5.3 97.7 ± 0.1

NinaPro Myo 2 48.4 ± 5.8 52.0 ± 3.4 52.7 ± 5.6 54.4 ± 5.1 53.2 ± 4.7 77.8 ± 1.3
NinaPro Myo 4 54.8 ± 4.3 56.9 ± 3.7 55.3 ± 6.3 58.9 ± 3.7 57.0 ± 4.6 77.8 ± 1.3
NinaPro Myo 6 57.1 ± 2.6 58.4 ± 3.1 57.1 ± 5.6 58.4 ± 3.6 56.9 ± 3.7 77.8 ± 1.3
NinaPro Myo 8 58.9 ± 1.6 60.2 ± 2.8 58.3 ± 2.7 59.0 ± 2.9 56.9 ± 2.7 77.8 ± 1.3
NinaPro Myo Avg 54.8 ± 3.6 56.8 ± 3.2 55.9 ± 5.0 57.7 ± 3.8 56.0 ± 3.9 77.8 ± 1.3

Average 73.9 ± 5.8 71.3 ± 6.0 78.6 ± 5.4 80.2 ± 5.0 79.9 ± 5.4 94.9 ± 0.3

7

TABLE 6
Comparison of target domain accuracy of the most-promising CALDA instantiations with baselines on synthetic SW datasets when varying the

number of source domains n. Bold denotes CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CAN CoDATS CALDA-Any,R CALDA-XS,H Train on Target

Synth InterT 10 2 54.9 ± 23.5 61.2 ± 12.7 57.0 ± 23.3 56.8 ± 22.0 57.1 ± 20.0 93.4 ± 0.2
Synth InterT 10 4 56.9 ± 15.5 78.7 ± 18.9 66.3 ± 18.6 59.5 ± 17.5 61.8 ± 19.2 93.4 ± 0.2
Synth InterT 10 6 62.3 ± 18.9 77.0 ± 10.9 75.5 ± 17.6 73.1 ± 24.9 77.3 ± 12.0 93.4 ± 0.2
Synth InterT 10 8 73.4 ± 9.6 78.3 ± 8.7 75.9 ± 9.4 78.6 ± 9.5 77.8 ± 9.4 93.4 ± 0.2
Synth InterT 10 10 65.4 ± 26.4 76.9 ± 10.2 60.2 ± 12.1 79.2 ± 10.9 78.6 ± 11.9 93.4 ± 0.2
Synth InterT 10 Avg 62.6 ± 18.8 74.4 ± 12.3 67.0 ± 16.2 69.4 ± 17.0 70.5 ± 14.5 93.4 ± 0.2
Synth InterR 1.0 2 45.6 ± 6.7 80.2 ± 2.7 51.8 ± 18.7 54.6 ± 14.7 58.0 ± 16.1 94.0 ± 0.0
Synth InterR 1.0 4 59.0 ± 13.5 71.4 ± 22.4 55.0 ± 11.7 64.3 ± 20.1 72.3 ± 21.5 94.0 ± 0.0
Synth InterR 1.0 6 54.9 ± 15.5 82.4 ± 6.7 63.3 ± 10.2 68.5 ± 9.8 83.7 ± 4.0 94.0 ± 0.0
Synth InterR 1.0 8 52.8 ± 2.5 80.5 ± 1.7 56.0 ± 1.9 64.9 ± 4.6 83.5 ± 2.5 94.0 ± 0.0
Synth InterR 1.0 10 49.6 ± 0.9 81.2 ± 0.2 54.9 ± 1.4 64.6 ± 2.0 84.1 ± 0.5 94.0 ± 0.0
Synth InterR 1.0 Avg 52.4 ± 7.8 79.2 ± 6.8 56.2 ± 8.8 63.4 ± 10.2 76.3 ± 8.9 94.0 ± 0.0
Synth IntraT 10 2 79.8 ± 4.4 91.7 ± 0.0 80.0 ± 11.5 82.0 ± 5.7 80.7 ± 4.0 93.7 ± 0.2
Synth IntraT 10 4 69.0 ± 18.6 81.1 ± 8.6 71.8 ± 9.2 71.2 ± 14.8 71.5 ± 15.6 93.7 ± 0.2
Synth IntraT 10 6 73.0 ± 7.5 85.2 ± 7.2 61.1 ± 8.4 73.7 ± 8.1 73.9 ± 10.0 93.7 ± 0.2
Synth IntraT 10 8 65.0 ± 5.8 83.8 ± 6.8 60.9 ± 12.6 74.5 ± 4.8 79.0 ± 4.7 93.7 ± 0.2
Synth IntraT 10 10 66.0 ± 6.3 86.7 ± 4.1 76.7 ± 2.8 76.6 ± 8.5 75.7 ± 7.0 93.7 ± 0.2
Synth IntraT 10 Avg 70.6 ± 8.5 85.7 ± 5.3 70.1 ± 8.9 75.6 ± 8.4 76.2 ± 8.3 93.7 ± 0.2
Synth IntraR 1.0 2 70.6 ± 14.1 75.2 ± 13.1 66.0 ± 15.2 69.6 ± 17.7 72.7 ± 12.4 93.6 ± 0.2
Synth IntraR 1.0 4 68.1 ± 3.7 73.6 ± 4.1 63.7 ± 11.1 77.4 ± 5.5 81.5 ± 4.3 93.6 ± 0.2
Synth IntraR 1.0 6 59.2 ± 9.6 70.5 ± 4.2 57.8 ± 9.5 79.1 ± 4.4 76.3 ± 7.2 93.6 ± 0.2
Synth IntraR 1.0 8 58.2 ± 10.9 74.5 ± 5.2 61.0 ± 4.4 81.7 ± 4.6 81.0 ± 2.7 93.6 ± 0.2
Synth IntraR 1.0 10 60.4 ± 6.8 73.1 ± 5.4 61.2 ± 1.8 79.5 ± 2.8 73.1 ± 3.9 93.6 ± 0.2
Synth IntraR 1.0 Avg 63.3 ± 9.0 73.4 ± 6.4 61.9 ± 8.4 77.5 ± 7.0 76.9 ± 6.1 93.6 ± 0.2

Average 62.2 ± 11.0 78.2 ± 7.7 63.8 ± 10.6 71.5 ± 10.7 75.0 ± 9.4 93.7 ± 0.2

TABLE 7
Comparison of target domain accuracy of the most-promising CALDA instantiations with baselines on synthetic 1GMM datasets when varying the

number of source domains n. Bold denotes CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CAN CoDATS CALDA-Any,R CALDA-XS,H Train on Target

Synth HAR 2 81.5 ± 5.8 87.7 ± 5.0 91.1 ± 4.8 91.6 ± 5.0 92.5 ± 4.9 98.4 ± 0.5
Synth HAR 8 88.2 ± 3.3 89.0 ± 4.7 90.2 ± 4.2 92.9 ± 2.8 89.8 ± 2.4 98.4 ± 0.5
Synth HAR 14 89.2 ± 3.7 90.2 ± 5.5 92.3 ± 1.8 92.1 ± 4.2 91.2 ± 4.1 98.4 ± 0.5
Synth HAR 20 92.2 ± 2.0 91.4 ± 2.9 92.1 ± 1.5 92.3 ± 3.1 92.4 ± 2.6 98.4 ± 0.5
Synth HAR 26 91.4 ± 2.0 92.4 ± 3.1 91.4 ± 1.5 92.3 ± 3.6 91.4 ± 2.8 98.4 ± 0.5

Average 88.5 ± 3.4 90.1 ± 4.2 91.4 ± 2.8 92.3 ± 3.7 91.4 ± 3.4 98.4 ± 0.5

TABLE 8
Comparison of target domain accuracy of the most-promising CALDA instantiations with baselines on synthetic 2GMM datasets when varying the

number of source domains n. Bold denotes CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CAN CoDATS CALDA-Any,R CALDA-XS,H Train on Target

Synth HAR GMM 2 71.1 ± 8.9 80.6 ± 8.9 80.0 ± 19.6 82.2 ± 16.3 83.3 ± 13.6 100.0 ± 0.0
Synth HAR GMM 8 82.2 ± 10.3 91.1 ± 4.7 88.9 ± 11.0 92.2 ± 6.3 95.6 ± 4.7 100.0 ± 0.0
Synth HAR GMM 14 90.0 ± 7.1 92.8 ± 4.7 95.6 ± 4.7 96.7 ± 3.1 95.6 ± 1.6 100.0 ± 0.0
Synth HAR GMM 20 93.3 ± 3.9 90.0 ± 7.4 95.0 ± 2.9 96.7 ± 0.0 97.2 ± 2.1 100.0 ± 0.0
Synth HAR GMM 26 95.0 ± 2.4 92.8 ± 2.9 99.4 ± 0.8 100.0 ± 0.0 98.3 ± 1.4 100.0 ± 0.0

Average 86.3 ± 6.5 89.4 ± 5.7 91.8 ± 7.8 93.6 ± 5.1 94.0 ± 4.7 100.0 ± 0.0

8

TABLE 9
Comparison of target domain accuracy of the most-promising CALDA instantiations with baselines on synthetic 3GMM datasets when varying the

number of source domains n. Bold denotes CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CAN CoDATS CALDA-Any,R CALDA-XS,H Train on Target

Synth HAR GMM 3 2 67.2 ± 9.5 77.2 ± 11.6 78.9 ± 15.3 75.0 ± 16.7 81.7 ± 11.8 100.0 ± 0.0
Synth HAR GMM 3 8 74.4 ± 10.4 84.4 ± 8.2 88.9 ± 14.1 93.3 ± 4.7 90.6 ± 10.2 100.0 ± 0.0
Synth HAR GMM 3 14 83.9 ± 10.4 85.0 ± 7.4 96.7 ± 4.7 97.2 ± 3.9 96.1 ± 5.5 100.0 ± 0.0
Synth HAR GMM 3 20 87.2 ± 8.6 85.0 ± 8.4 95.6 ± 6.3 95.0 ± 5.5 96.1 ± 4.5 100.0 ± 0.0
Synth HAR GMM 3 26 87.8 ± 6.1 87.2 ± 9.8 96.7 ± 0.0 96.7 ± 3.7 96.7 ± 3.9 100.0 ± 0.0

Average 80.1 ± 9.0 83.8 ± 9.1 91.3 ± 8.1 91.4 ± 6.9 92.2 ± 7.2 100.0 ± 0.0

TABLE 10
Comparison of target domain accuracy for domain adaptation methods utilizing weak supervision on real-world datasets. Bold denotes CALDA

outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CoDATS-WS CALDA-Any,R,WS CALDA-XS,H,WS Train on Target

UCI HAR 2 74.5 ± 12.2 91.5 ± 3.7 91.8 ± 4.4 91.6 ± 4.4 99.6 ± 0.1
UCI HAR 8 90.4 ± 3.0 92.1 ± 3.4 94.5 ± 2.2 95.4 ± 2.0 99.6 ± 0.1
UCI HAR 14 92.4 ± 2.8 94.4 ± 2.9 95.6 ± 1.0 97.0 ± 1.4 99.6 ± 0.1
UCI HAR 20 93.2 ± 1.6 93.2 ± 3.0 95.7 ± 1.0 96.5 ± 1.8 99.6 ± 0.1
UCI HAR 26 93.4 ± 1.5 93.5 ± 3.2 96.6 ± 0.7 96.8 ± 0.8 99.6 ± 0.1
UCI HAR Avg 88.8 ± 4.2 92.9 ± 3.2 94.8 ± 1.8 95.5 ± 2.1 99.6 ± 0.1

UCI HHAR 2 68.4 ± 7.5 86.7 ± 5.8 89.1 ± 4.6 88.1 ± 5.5 98.9 ± 0.2
UCI HHAR 3 74.8 ± 6.8 88.3 ± 5.2 90.8 ± 3.7 90.0 ± 4.2 98.9 ± 0.2
UCI HHAR 4 77.9 ± 7.2 89.0 ± 4.4 91.0 ± 3.5 90.5 ± 3.7 98.9 ± 0.2
UCI HHAR 5 80.9 ± 5.2 88.6 ± 3.9 90.5 ± 3.4 90.2 ± 3.7 98.9 ± 0.2
UCI HHAR 6 82.4 ± 4.9 88.5 ± 3.5 89.7 ± 3.8 90.2 ± 3.5 98.9 ± 0.2
UCI HHAR Avg 76.9 ± 6.3 88.2 ± 4.6 90.2 ± 3.8 89.8 ± 4.1 98.9 ± 0.2
WISDM AR 2 55.2 ± 13.0 77.1 ± 11.7 80.6 ± 8.8 77.5 ± 11.8 96.5 ± 0.1
WISDM AR 8 69.6 ± 8.2 85.6 ± 5.3 86.0 ± 7.3 85.0 ± 8.8 96.5 ± 0.1
WISDM AR 14 77.8 ± 7.4 88.6 ± 5.0 86.0 ± 6.8 86.2 ± 5.0 96.5 ± 0.1
WISDM AR 20 78.1 ± 6.6 88.3 ± 4.5 86.5 ± 6.6 86.7 ± 5.5 96.5 ± 0.1
WISDM AR 26 79.7 ± 4.5 84.7 ± 9.5 86.8 ± 5.0 87.9 ± 4.1 96.5 ± 0.1
WISDM AR Avg 72.1 ± 8.0 84.9 ± 7.2 85.2 ± 6.9 84.7 ± 7.0 96.5 ± 0.1
WISDM AT 2 51.8 ± 15.8 66.8 ± 13.5 67.8 ± 15.6 68.5 ± 17.0 98.8 ± 0.1
WISDM AT 12 69.1 ± 8.9 70.9 ± 9.1 86.4 ± 8.0 87.0 ± 6.2 98.8 ± 0.1
WISDM AT 22 73.3 ± 3.6 74.0 ± 10.1 85.0 ± 5.9 86.2 ± 4.7 98.8 ± 0.1
WISDM AT 32 75.8 ± 3.3 71.1 ± 8.4 87.0 ± 5.0 88.0 ± 3.2 98.8 ± 0.1
WISDM AT 42 79.4 ± 4.0 77.8 ± 10.2 88.3 ± 2.2 87.0 ± 4.3 98.8 ± 0.1
WISDM AT Avg 69.9 ± 7.1 72.1 ± 10.3 82.9 ± 7.3 83.3 ± 7.1 98.8 ± 0.1
Myo EMG 2 71.7 ± 8.7 75.2 ± 11.6 79.1 ± 8.6 78.8 ± 9.6 97.7 ± 0.1
Myo EMG 10 77.3 ± 4.9 79.4 ± 5.2 87.9 ± 3.9 86.7 ± 5.2 97.7 ± 0.1
Myo EMG 18 79.3 ± 4.0 79.1 ± 5.5 87.0 ± 3.8 86.1 ± 4.4 97.7 ± 0.1
Myo EMG 26 77.8 ± 4.3 82.8 ± 3.4 84.4 ± 3.6 84.9 ± 2.2 97.7 ± 0.1
Myo EMG 34 80.6 ± 4.3 81.2 ± 3.0 87.4 ± 2.8 86.8 ± 1.8 97.7 ± 0.1
Myo EMG Avg 77.4 ± 5.2 79.5 ± 5.7 85.1 ± 4.6 84.7 ± 4.6 97.7 ± 0.1

NinaPro Myo 2 48.4 ± 5.8 50.6 ± 5.9 55.7 ± 4.7 51.5 ± 6.0 77.8 ± 1.3
NinaPro Myo 4 54.8 ± 4.3 56.3 ± 4.2 61.1 ± 4.2 57.3 ± 4.2 77.8 ± 1.3
NinaPro Myo 6 57.1 ± 2.6 55.4 ± 3.8 58.8 ± 2.7 56.7 ± 4.6 77.8 ± 1.3
NinaPro Myo 8 58.9 ± 1.6 57.5 ± 3.1 59.5 ± 3.7 58.4 ± 3.0 77.8 ± 1.3
NinaPro Myo Avg 54.8 ± 3.6 54.9 ± 4.2 58.8 ± 3.8 56.0 ± 4.5 77.8 ± 1.3

Average 73.9 ± 5.8 79.6 ± 5.9 83.7 ± 4.7 83.2 ± 4.9 94.9 ± 0.3

9

TABLE 11
Comparison of target domain accuracy for domain adaptation methods utilizing weak supervision on synthetic SW datasets. Bold denotes

CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CoDATS-WS CALDA-Any,R,WS CALDA-XS,H,WS Train on Target

Synth InterT 10 2 54.9 ± 23.5 60.9 ± 21.2 56.6 ± 32.1 74.9 ± 14.1 93.4 ± 0.2
Synth InterT 10 4 56.9 ± 15.5 69.9 ± 23.1 82.2 ± 14.8 79.4 ± 16.1 93.4 ± 0.2
Synth InterT 10 6 62.3 ± 18.9 75.6 ± 17.4 83.8 ± 8.7 83.8 ± 9.5 93.4 ± 0.2
Synth InterT 10 8 73.4 ± 9.6 75.0 ± 15.5 81.4 ± 13.8 81.7 ± 10.4 93.4 ± 0.2
Synth InterT 10 10 65.4 ± 26.4 56.3 ± 20.5 72.9 ± 20.9 73.0 ± 19.0 93.4 ± 0.2
Synth InterT 10 Avg 62.6 ± 18.8 67.5 ± 19.5 75.4 ± 18.0 78.6 ± 13.8 93.4 ± 0.2
Synth InterR 1.0 2 45.6 ± 6.7 47.8 ± 20.5 54.9 ± 15.4 62.1 ± 16.2 94.0 ± 0.0
Synth InterR 1.0 4 59.0 ± 13.5 63.4 ± 4.9 66.5 ± 17.5 73.0 ± 23.2 94.0 ± 0.0
Synth InterR 1.0 6 54.9 ± 15.5 68.3 ± 10.7 72.2 ± 14.8 85.6 ± 4.2 94.0 ± 0.0
Synth InterR 1.0 8 52.8 ± 2.5 56.6 ± 0.8 63.8 ± 1.8 86.3 ± 2.2 94.0 ± 0.0
Synth InterR 1.0 10 49.6 ± 0.9 49.9 ± 6.8 68.3 ± 4.8 84.0 ± 1.9 94.0 ± 0.0
Synth InterR 1.0 Avg 52.4 ± 7.8 57.2 ± 8.7 65.1 ± 10.9 78.2 ± 9.5 94.0 ± 0.0
Synth IntraT 10 2 79.8 ± 4.4 74.4 ± 10.0 86.7 ± 1.8 83.1 ± 0.4 93.7 ± 0.2
Synth IntraT 10 4 69.0 ± 18.6 58.8 ± 5.7 74.1 ± 18.5 72.3 ± 20.0 93.7 ± 0.2
Synth IntraT 10 6 73.0 ± 7.5 64.3 ± 10.9 77.3 ± 7.9 77.9 ± 8.4 93.7 ± 0.2
Synth IntraT 10 8 65.0 ± 5.8 58.4 ± 8.2 79.5 ± 4.8 81.1 ± 3.9 93.7 ± 0.2
Synth IntraT 10 10 66.0 ± 6.3 61.7 ± 5.8 74.4 ± 7.0 76.9 ± 2.7 93.7 ± 0.2
Synth IntraT 10 Avg 70.6 ± 8.5 63.5 ± 8.1 78.4 ± 8.0 78.3 ± 7.1 93.7 ± 0.2
Synth IntraR 1.0 2 70.6 ± 14.1 60.8 ± 22.3 71.6 ± 19.8 73.0 ± 14.7 93.6 ± 0.2
Synth IntraR 1.0 4 68.1 ± 3.7 56.6 ± 7.1 82.3 ± 6.8 82.5 ± 4.6 93.6 ± 0.2
Synth IntraR 1.0 6 59.2 ± 9.6 52.0 ± 7.2 78.8 ± 8.4 79.8 ± 8.0 93.6 ± 0.2
Synth IntraR 1.0 8 58.2 ± 10.9 64.5 ± 3.5 84.7 ± 2.8 83.5 ± 0.7 93.6 ± 0.2
Synth IntraR 1.0 10 60.4 ± 6.8 69.7 ± 10.8 78.0 ± 2.6 80.6 ± 3.2 93.6 ± 0.2
Synth IntraR 1.0 Avg 63.3 ± 9.0 60.7 ± 10.2 79.1 ± 8.1 79.9 ± 6.3 93.6 ± 0.2

Average 62.2 ± 11.0 62.2 ± 11.6 74.5 ± 11.3 78.7 ± 9.2 93.7 ± 0.2

TABLE 12
Comparison of target domain accuracy for domain adaptation methods utilizing weak supervision on GMM synthetic datasets. Bold denotes

CALDA outperforming baselines. Underline denotes highest accuracy in each row.

Dataset n No Adaptation CoDATS-WS CALDA-Any,R,WS CALDA-XS,H,WS Train on Target

Synth HAR GMM 1 2 81.5 ± 5.8 90.9 ± 4.9 91.9 ± 4.6 90.0 ± 6.2 98.4 ± 0.5
Synth HAR GMM 1 8 88.2 ± 3.3 89.6 ± 3.4 90.7 ± 2.1 90.7 ± 2.3 98.4 ± 0.5
Synth HAR GMM 1 14 89.2 ± 3.7 90.2 ± 3.1 93.5 ± 3.3 91.5 ± 3.6 98.4 ± 0.5
Synth HAR GMM 1 20 92.2 ± 2.0 89.8 ± 1.2 91.5 ± 1.3 90.5 ± 4.9 98.4 ± 0.5
Synth HAR GMM 1 26 91.4 ± 2.0 91.4 ± 2.3 91.1 ± 1.2 91.1 ± 1.5 98.4 ± 0.5
Synth HAR GMM 1 Avg 88.5 ± 3.4 90.4 ± 3.0 91.7 ± 2.5 90.8 ± 3.7 98.4 ± 0.5
Synth HAR GMM 2 2 71.1 ± 8.9 77.8 ± 17.7 79.4 ± 17.5 82.8 ± 17.3 100.0 ± 0.0
Synth HAR GMM 2 8 82.2 ± 10.3 87.8 ± 12.3 92.8 ± 10.2 91.1 ± 12.6 100.0 ± 0.0
Synth HAR GMM 2 14 90.0 ± 7.1 87.8 ± 11.0 93.9 ± 3.9 97.8 ± 1.6 100.0 ± 0.0
Synth HAR GMM 2 20 93.3 ± 3.9 89.4 ± 13.4 96.7 ± 3.1 100.0 ± 0.0 100.0 ± 0.0
Synth HAR GMM 2 26 95.0 ± 2.4 89.4 ± 9.9 98.9 ± 1.6 96.7 ± 4.7 100.0 ± 0.0
Synth HAR GMM 2 Avg 86.3 ± 6.5 86.4 ± 12.9 92.3 ± 7.3 93.7 ± 7.2 100.0 ± 0.0
Synth HAR GMM 3 2 67.2 ± 9.5 78.9 ± 15.4 72.2 ± 14.4 80.0 ± 15.7 100.0 ± 0.0
Synth HAR GMM 3 8 74.4 ± 10.4 87.2 ± 9.8 86.1 ± 11.5 91.7 ± 7.9 100.0 ± 0.0
Synth HAR GMM 3 14 83.9 ± 10.4 95.6 ± 4.3 90.0 ± 14.1 93.3 ± 7.9 100.0 ± 0.0
Synth HAR GMM 3 20 87.2 ± 8.6 91.1 ± 8.7 87.8 ± 13.4 88.9 ± 12.6 100.0 ± 0.0
Synth HAR GMM 3 26 87.8 ± 6.1 85.6 ± 7.6 84.4 ± 14.1 91.7 ± 10.2 100.0 ± 0.0
Synth HAR GMM 3 Avg 80.1 ± 9.0 87.7 ± 9.2 84.1 ± 13.5 89.1 ± 10.9 100.0 ± 0.0

Average 85.0 ± 6.3 88.2 ± 8.3 89.4 ± 7.8 91.2 ± 7.3 99.5 ± 0.2

	CALDA___IEEE_PAMI_v3
	CALDA___IEEE_PAMI_v3-1

