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 
Abstract—Smart cities use information and 

communication technologies (ICT) to scale services include 
utilities and transportation to a growing population. In this 
article we discuss how smart city ICT can also improve 
healthcare effectiveness and lower healthcare cost for smart 
city residents. We survey current literature and introduce 
original research to offer an overview of how smart city 
infrastructure supports strategic healthcare using both 
mobile and ambient sensors combined with machine 
learning. Finally, we consider challenges that will be faced 
as healthcare providers make use of these opportunities. 
 

Index Terms— activity recognition, mobile health; pervasive 
computing, smart cities, smart environments  
 

I. INTRODUCTION 

NGOING population growth and urbanization are sparking 
a renewed desire to integrate technology into the design of 

city services, thus creating the essence of “smart cities”. This 
renewed focus has resulted in the use of information and 
communication technologies (ICT) to scale up critical urban 
support for larger communities including transportation [1]–
[3], energy systems [4], [5], crime-sourcing [6], [7], and 
emergency response [8]. 

 Smart cities rely heavily on sensors to perceive parameters 
such as temperature, humidity, allergens, pollution, traffic 
conditions, and power grid status. The values of these 
parameters provide a context that helps a system to understand 
the state of a citizen at any given time [9]. Strategically 
responding to sensed data helps heathcare be smarter. By 
gaining real-time access to this information, city services can 
respond promptly to urgent health needs and make decisions to 
avoid unhealthy situations. 

The maturation and adoption of computing technologies 
have dramatically changed the face of healthcare. Figure 1 
illustrates these changes. We can describe each of these 
approaches to healthcare based on three characteristics: the size 
of the group that is analyzed, the use of ICT, and the nature of 
the data. 
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Traditional medicine consists of a physician examining an 
individual patient to generate a diagnosis and recommend a 
treatment. Instead of using computing technologies to do this, 
the doctor relies on previous training and experience. 

Electronic health records (EHRs) and personal health records 
(PHRs) made an appearance in the early 2000s and even 
influenced government decisions on where to invest healthcare 
funds [10]. While doctors do not typically analyze real-time 
streaming e-health data, data mining these historical records 
allows physicians to examine conditions that are common 
across entire subpopulations and to understand health trends 
[11], [12]. An estimated 55% of physicians now make use of 
EHR and PHR resources [13]. 

In 2006, Istepanian et al. [14] predicted the potential impact 
of mobility on healthcare services (m-health). With the 
introduction of mobile devices and body area networks, mobile 
device owners self-monitor their physiological variables in real 
time using mobile sensors and ICT. Additionally, care 
providers use this information to overcome geographic and 
temporal barriers and thus more effectively prescribe medical 
treatments and behavioral changes [15]. 

As an alternative to embedding sensors on personal devices, 
sensors are now also embedded into physical environments. In 
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Fig. 1.  A timeline illustrating the influence of ICT and community in
healthcare. 
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the past few years, continuously-collected data in ambient 
intelligent environments (a-health) has been used to look for 
changes in health status and design in-the-home health 
interventions [16]. These ambient assistive environments do not 
require any interaction or wearables on the part of the user but 
do have to overcome the possible challenges of monitoring 
multiple people at once [17]. 

This ICT foundation paved the way to consider smart city-
based healthcare (c-health). ICT infrastructure throughout a city 
can offer a more global view of the health status of community 
residents and insights on the relationship between city services 
and health provisioning. 

In this article, we look at the technologies that can form a 
foundation for smarter healthcare using smart city ICT. We 
examine techniques that analyze data collected from mobile and 
ambient sensors for health assessment and intervention and 
survey representative work in these fields. We then look at the 
current state of the art in c-health and discuss challenges for 
ongoing research and development in this area. 

II. MOBILE SENSOR DATA COLLECTION AND ANALYSIS 

Smart cities can pull information from many sources. These 
include the information sources listed in the previous section 
such as mobile device sensor data and ambient sensor data. 
Additionally, data can be tapped from city-wide sites such as 
power grid status, transportation grid status, vehicular 
networks, locations of emergency service providers, and size of 
crowds in locations throughout the region. Here we begin by 
describing the data that is collected from mobile devices and 
how it can be used for personal healthcare as well as healthcare 
of an entire smart city. 

A. Mobile Sensors and Features 

Smartphones and watches come equipped with many 
sensors. A number of apps such as the AL activity learner [18], 
illustrated in Figure 2, are available to gather this information. 
As Figure 2 shows, sensors that are common to these devices 
include accelerometers to measure movement in three axes 
relative to the device and gyroscopes to measure rotation about 
those axes. These devices commonly also collect location 
information (latitude, longitude, and altitude) using a 
combination of GPS, Wifi, and GSM sources, depending on 
whether the device is inside or outside of a building. Related 

information includes the compass heading of the device 
(course) and the current speed. The compass heading is 
determined by magnetometers while barometers generate 
altitude values. 

Depending upon the actual device that is used, additional 
information can be collected. Many devices have cameras and 
microphones that provide a dense source of data indicative of 
the state of the user and environment. Use of other apps on the 
device, including phone calls and texting, can be captured. 
Table I lists sensors that are commonly found on mobile devices 
and wearable devices. 

While these sensors are standard for most mobile devices, 
other health-related insights can be suggested by specialized 
devices and mobile device attachments. As an example, smart 
watches offer LEDs and photodiodes that utilize light to 
monitor heart rate by detecting correlated changes in blood 
flow, while glucose meters can plug into phones to monitor 
blood sugar. 

Fig. 2.  AL activity learning app collecting real-time sensor data. 

TABLE I 
MOBILE / BODY SENSORS 

Sensor Measurement 

Accelerometer acceleration in x/y/z directions 
Gyroscope rotational velocity 
Location latitude, longitude, altitude 
Camera surrounding image / video 
Compass orientation 
Microphone surrounding audio 
App status usage of apps, phone, text 
Photodiodes heart rate 
Glucometer blood sugar 
Barometer atmospheric pressure 
Carbon dioxide (CO2) CO2 concentration 
Electrocardiography (ECG) cardiac activity 
Electroencephalogram (EEG) brain activity 
Electromyography (EMG) muscle activity 
Electroculography (EOG) eye movement 
Force screen touch pressure 
Light ambient light level 
Proximity nearness to external object 
Pulse oximetry blood oxygen saturation 
Galvanic Skin Response (GSR) perspiration 
Thermal temperature 

TABLE II 
STANDARD MOBILE DATA FEATURES 

Type Features 

Time date, day of week, weekday / weekend, days past 
January 1, time of day, hours / minutes / seconds 
past midnight 

Statistical max, min, sum, mean, median, standard  / mean 
absolution / median absolute deviation, zero / 
mean crossings, interquartile range, coefficient of 
variation, skewness, kurtosis, signal energy, log 
signal energy, power 

Relational correlation (between axes / variables), 
autocorrelation 

Trajectory heading change rate, stop rate, sequence overall 
trajectory, normalized distance to user mean 
location 

Phone / App currently in use, use / call time for current day, 
number of bouts / calls for current day, elapsed 
time since most recent use / call 

Physiological pulse, respiration, blood glucose, blood pressure 
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When sensors are placed on, in, or around a physical body 
then data can be collected using a Body Area Network (BAN) 
[19]. Generally, body area networks are wireless personal area 
networks that act as gateways working together with small 
sensors and control units to collect data [20]. While smart 
watches can be integrated into a BAN and placed on the body, 
BANs can also utilize implanted sensors as well as sensors that 
are near to the body but do not touch it. A popular type of 
implanted sensor is the electrochemical glucose sensor that is 
used for the management of diabetes [21], but there exists a 
wealth of sensors that have been implanted for monitoring 
conditions such as rheumatoid arthritis, sleep apnea, heart 
arrhythmias, and cranial pressure [22]. 

The first step in analyzing mobile sensor data is to extract 
features from the raw data. Features not only create descriptive 
statistics but they contribute a context for the setting in which 
the data was produced. Most sensors generate updated readings 
at constant time increments (e.g., 30 times a second) and 
features are extracted from a fixed-length sequence of raw 
sensor values. 

Table II summarizes features that are commonly extracted 
from mobile sensor values. In addition to standard signal 
processing features, higher-level information about the 
sequence of data as a whole represents valuable context, 
including time and date features and trajectory features  [23]. 
The features can be used to analyze behavior patterns for device 
users. 

Additionally, machine learning algorithms can be used to 
map the vector of features onto activity labels [24], [25]. These 
labels then create a vocabulary to express routine behaviors and 
changes in these behaviors. An activity recognition algorithm 
learns a mapping from a sequence of sensor readings to a 
corresponding activity label. More formally, let A = {a1, a2, …, 
aT} be the set of T activities, where ai corresponds to the ith 
activity class. Given a sequence of n observed sensor readings, 
<r1 r2 .. rn>, a feature vector X is extracted from the sequence. 
In order to learn a model of activities, individuals need to use 
an app such as AL to answer occasional queries about the 
activity they are currently performing. The user-specified label 
and corresponding sensor data represent training data that can 
be used to learn the class of activities. The extracted feature 
vector and user-provided label are input to a machine learning 
classifier, which learns a function h that maps the feature vector 
onto an activity label, h:XA. Note that activity learning can 
be considered as part of the feature extraction process because 
the generated activity labels become a component of a feature 
vector that describes a person’s behavior over time and can be 
mapped to the person’s health status. 

In addition, it is not necessary to use only one sensor 
platform at a time to monitor behavior and provide smarter 
health assessment and intervention. Different sensors provide 
different types of insight: accelerometers may indicate the type 
of movement the user is performing and at the same time, light 
sensors explicate the surrounding environment conditions. 
Particular sensors may also be chosen based on their battery 
consumption profiles and ability to extend battery life through 
energy harvesting [26]. Varying information sources can be 
combined using data fusion to learn a more robust model [27]. 

Alternatively, models learned using one sensor platform can be 
mapped to another sensor platform using a technique called 
transfer learning [28], which can reduce or eliminate the need 
to train models for each new type of sensor device or collection 
parameters. 

 

B. ICT-Driven Healthcare at a Personal Level 

Mobile ICT can support health monitoring and intervention 
at multiple scales ranging from personal data collection to an 
entire city and beyond. At the individual level, mobile devices 
have become a mainstay for personal healthcare. Recent 
statistics report that 52% of smartphone users gather health-
related information on their phones and 61% of users have 
downloaded an mHealth app [29]. Most commonly, people 
search for insights on a medical or insurance problem, but users 
also look for hints on nutrition, fitness, drugs, and doctor 
choices. 

In addition to investigating specific medical issues, another 
popular personal use for mobile and wearable ICT is step 
counting, which provides a foundation for many fitness apps. 
Mobile devices and apps infer step counts from the 3D 
accelerometer signals. While there can be a lack of uniformity 
among alternative step counting devices, most of the 
disagreement is due to the wearing site of the tracker rather than 
the embedded signal processing algorithm that calculates steps 
from the accelerometer data. Studies have shown that these 
devices perform quite similarly and are reliable for normal 
conditions [30], although they do experience performance 
degradation when the person moves together with an accessory 
(e.g., walker, shopping cart) or performs vigorous non-walking 
activity near the mobile device tracking site. 

An advantage of mobile ICT-driven healthcare is that 
continuous monitoring of behavioral patterns facilitates 
detection of subtle disease symptoms that are otherwise 
difficult to observe and associate with diagnoses. As an 
example, older adults may experience cognitive decline but 
because they still retain a high degree of autonomy this change 
may be difficult to catch and treat. However, early stages of 
dementia are associated with frequent bouts of spatial and 
temporal disorientation and an increased likelihood of not 
finishing important daily tasks [31]. These changes translate 
into abnormal mobility patterns. The SIMPATIC project [32] 
analyzes these mobility patterns to communicate detected 

Fig. 3.  An example of m-Health through the SIMPATIC project  [32]. 
Here warnings are provided for no movement or unusual speeds,
depending on the patient current location. 
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abnormalities to patients and care providers. As shown in 
Figure 3, warnings can be transmitted to caregivers based on 
individualized rules or based on movement patterns that are 
unusual for the user. In the case of wandering, mobile guidance 
also guides the individual back to their home. 

Another disease with subtle manifestations is depression. In 
some cases, symptoms are too faint for a person to note. With 
ICT-based psychiatry, changes in behavioral patterns such as 
lower activity levels, degrading sleep, decreased phone 
conversations, and even mobility patterns may point to a 
possible diagnosis of depression [33], [34]. Mobile healthcare 
intervenes when these changes are detected by recommending 
that the user contact a health care professional. ICT-based 
assistance can further extend from diagnosis to intervention by 
monitoring treatment compliance and medication effects [35]. 

C. ICT-Driven Healthcare at a Community Level 

Moving from ICT-based individual monitoring to 
community-level monitoring, mobile devices again play a large 
role in this effort. Doctors keep hospital and office note records 
to assist with patient diagnosis. Electronic health records allow 
physicians to access additional records not only for the 
individual but for a population of individuals with similar health 
conditions. However, with the advent of mobile devices, each 
person has enhanced access to more rich, real time, granular 
data about themselves and, if this information is made public, 
about others in the community. 

Citizen sensing and crowdsourcing allows diagnosis to 
become a community effort and intervention to be boosted by a 
community support system. People with serious and chronic 
illnesses turn to social media to share their illness experiences 
as well as to seek and offer support [36], [37]. For some of these 
individuals, physically attending support groups is not practical 
but they find a sense of community in online settings. 

Social media outlets can play an even more central role in 
smarter citywide healthcare. Researchers have detected 
influenza epidemics based both on individuals posting 
symptoms [38] and querying about symptoms [39]. Similarly, 
the wording and content of Twitter posts have been used to infer 
heart disease mortality at a county level [40] and obesity at a 

country level [41]. 
A study by De Choudhury et al. [42] examined social media 

usage over an entire year and used the data to identify 
individuals that were vulnerable to depression. Ground truth 
labels were obtained from individuals in the cohort who were 
diagnosed with depression at some point during the year-long 
data collection period. By comparing individuals diagnosed 
with depression and those without this diagnosis the researchers 
discovered differences in behavior. Differences include 
lowered social activity, more indicators of negative emotions, 
high attention on themselves and increased concerns about 
sickness and relationships. Figure 4 shows an example of one 
difference that was discovered between the two groups: 
participants in the non-depression group do not use social media 
extensively late at night and increase their use of social media 
throughout the day. In contrast, individuals in the depression 
group maximize their social media usage late at night and do 
not use it as much during daytime hours. 

In addition to comparing behavior between the two 
participant groups, De Choudhury et al. also used a Support 
Vector Machine (SVM) classifier to predict individuals who 
would be diagnosed at a future time with depression. The 
feature vector input to the classifier included the following 
Twitter usage statistics: 

 Mean of usage frequency X over N days. 
 Variance of X over the observed N days. 
 Mean momentum, which compares each M=7 day 

time period to the previous time period using 
Equation 1, where t represents data for one day. 

   


t tkM
kXMttXN

)1(
))())(1()()1(    (1) 

 Entropy, which computes the uncertainty in the 
sequence of usage frequencies based on Equation 2. 

 t
tXtX ))(log()(         (2) 

This method yielded an average predictive accuracy of 70% 
and a precision of 0.75. Early detection of problems such as 
depression, influenza outbreaks, and obesity will allow 
communities to take steps to prevent and treat these pervasive 

Fig. 5.  Map of asthma hotspots collected by Propeller inhaler sensor
and smartphone app [43]. 

Fig. 4.  Number of Twitter posts made hourly throughout a day (mean
plots and least squares trend fit) for individuals in two classes: depression
and non-depression [42]. 
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health issues. 
In Louisville, Kentucky, mobile ICT combined with citizen 

sensing helped the city to respond to asthma triggers and thus 
circumvent possible long-term chronic conditions for its 
residents. In 2014 Louisville was ranked the 16th most 
challenging city for people with asthma [43]. To identify where 
asthma triggers might be located throughout the region, sensor-
enabled inhalers were distributed to asthma sufferers 
throughout Jefferson County. When the inhaler is used, the use 
is recorded on a smartphone app and the sensor monitors the 
nearby air for particulates that might be triggering the episode. 

Figure 5 illustrates the asthma hotspots that were located 
throughout the county using this mobile ICT. The sensor data 
spotlighted one particular road where inhaler use was three 
times as high as throughout the rest of the city. The city was 
able to respond to this ICT-provided information and planted 
trees that separate the congested road from residential 
neighborhoods. The result was a 60% decrease in particulate 
matter, addressing a major contributor to breathing problems in 
the geographic area. 

 

D. Mobile Sensor-Based Analysis of the Relationship 
between City Planning and Walkability 

In this section, we describe our study that highlights the 
impact that city planning can have on behavior and health. 
Specifically, we investigate the relationship between a 
community’s “walkability” and a resident’s behavioral routine. 
The impact of the built environment on lifestyle choices and 
resulting health is increasingly noticeable [44]. One 
quantifiable measure for urban design is neighborhood 
walkability [45]. Commercial tools compute the walkability 
index for a location based on distance to nearby amenities 
including schools, parks, stores, community centers, and 
restaurants; then it is adjusted to account for pedestrian 
friendliness and bicycle friendliness. The impact of walkability 
on lifestyle and health has been discussed in detail [46], [47]. 
While early studies often rely on self-report, mobile technology 
allows smart city planners to analyze the impact of design 
choices using sensor data and automated activity monitoring. 

In this study, we utilize information from smartphones to 
monitor daily routines in combination with neighborhood 
walkability for a population sample. Machine learning-based 
activity models label the captured sensor data with activity 
names and data mining techniques are used to analyze the 
relationship between walkability, activity, and demographics. 
Study participants are drawn from the Washington State Twin 
Registry and include 187 female pairs and 77 male pairs. The 
participation of twins in this study allows us to control for 
genetic background by comparing behaviors and health 
between twins. Twin participants supplied demographic 
information, height, weight, body mass index (BMI), and home 
address. The walkability score for each home was generated via 
walkscore.com and are close to uniformly distributed between 
5 and 100. 

To generate continuous monitoring information, participants 
wore GPS devices for 1-2 weeks while performing normal daily 

routines. Reverse geocoding was applied using the 
OpenStreetMap Nominatum tool [48] to categorize each visited 
location as either house, place of worship, recreation, 
restaurant, road, school, service, store, work, or other. 

As shown in Figure 6, the 3,509,133 collected GPS events 
are mapped to activity labels using the AL activity learner [49]. 
Previous evaluation of AL indicates that activities are labeled 
with an accuracy of 89% based on 3-fold cross validation. AL 
results are based on a feature vector of dimensionality 328 
which includes the time, statistical, relational, and trajectory 
features shown in Table II. The modeled activities include 
drive, eat, errands, exercise, hobby, housework, sleep, and 
work. This method outperforms random guess which would 
yield an expected accuracy of 12.5%. 

The participant demographics, activity-labeled GPS events, 
and neighborhood walkability scores are collected. These are 
combined with the fraction of a participant’s time spent on each 
activity and location type, the average size of the community 
region visited by the participant on a daily basis, the time spent 
near home (proximal) and the time spent far from home (distal). 

Analyzing activity routines and home-based walkability 
scores, relationships between these parameters does become 
apparent. In particular, there is a Cohen’s moderate-size 
correlation between the walkability of a resident’s home 
location and the time they spend exercising (r=.40) as well as 
the time they spend working (r=.36). While both of these 

Fig. 6.  Walkability data mining process. 
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activities have an established connection with health and 
overall well-being, the small-size direct correlation between 
home walkability and a participant’s BMI (r=.28) yields 
additional evidence of the effect of city design on health. 

We separately consider genetic influences on lifestyle and 
BMI. To do this, we introduce the notion of twin-sample 
permutation tests, which represent a variation of the 
permutation tests defined by Ojala and Garriaga [50]. This test 
allows us to determine whether the aforementioned results are 
obtained because of chance. With this permutation-based 
evaluation, we calculate a p-value to test a null hypothesis about 
the relationship between the features and the class labels. This 
p-value is calculated as a fraction of times that the correlation 
obtained by shuffling (permuting) the class labels exceeded the 
correlation on the original dataset. The permutation test 
determines whether we found a correlation that truly exists in 
the data by randomly shuffling class labels among the data 
points while maintaining relative label frequencies. 

We adapt this test to our twin participants by first shuffling 
the walkability scores from one twin to the other for a 
randomly-chosen 50% of the twin pairs. We then re-calculate 
correlations, repeating the entire process 100 times. A t-test is 
used to determine whether the difference in correlation values 
using the original data and using the permuted data is 
statistically significant. 

The null hypothesis (H) is that there exists no relationship 
between the data features and the class labels. Based on the 
statistically significant p-value (p<0.05) we fail to reject the 
null hypothesis H. Thus, we conclude that there does exist a 
relationship between the detected activities (including exercise 
and work) and BMI and that the correlations are not obtained 
by chance.  

The results of this study offer insights that city planners can 
use to generate urban analytics and modify city design to 
improve the health of city residents. Similar ICT-based methods 
can be utilized for additional analytics including transportation 
routing and provision of resources such as electricity and water. 

Mobile ICT plays a major role in today’s healthcare. This 
technology also connects healthcare with other smart city 
services. This connection can improve the ability for city 
services to respond to health needs. Smartphones enable 
information gathering without spending city dollars on 
additional facilities and infrastructure. With mobile citizen 
sensing, city residents can inform service providers of time-
critical events [51]. This may refer to a broken-down subway 
car or a power outage. However, a person may also use their 
device to report hearing gun shots or coming across an injured 
person who is lying on a city sidewalk. Such a report allows 
cities to deploy emergency services to those sites in a more 
timely manner. 

III. AMBIENT SENSOR DATA COLLECTION AND ANALYSIS 

In many ways, mobile sensing and crowd sourcing represent 
the lifeblood of smart cities. Mobile technologies do require 
active involvement on the part of city residents, however. A 
second, rich source of information relevant to smart cities and 
health care comes from sensors embedded in the environment, 

or ambient sensors. While mobile health monitoring allows a 
user to potentially gather critical data anywhere, at any time, 
there is a presumption with that the user is physically, 
cognitively, and emotionally equipped to operate the devices. 
In practical situations, limitation arise because people forget to 
charge or put on the device, they operate the device 
inaccurately, or they position the device incorrectly. In contrast, 
ambient physiological monitoring devices can be considered 
zero-effort technologies (ZETs) [52]. This means that the 
technology frees the user from the effort needed to operate the 
technology correctly. 

Remote monitoring is beneficial for many types of chronic 
health conditions such as dementia and cardiovascular disease. 
Behavior monitoring is important for these types of diseases 
because they are so ubiquitous. The number of people with 
dementia was estimated at 47 million globally in 2017 and is 
projected to increase to 132 million by 2050 [53]. The cost of 
caring for individuals with Alzheimer’s disease in the US alone 
was estimated at $818 billion [53]. Cardiovascular disease also 
strikes a large percentage of the population. It is the leading 
cause of morbidity and mortality globally across all age groups  
[54]. In the US, an estimated 84 million people have 
cardiovascular disease including coronary heart disease, high 
blood pressure, and diabetes [54]. 

 

A. Ambient Sensors and Features 

Ambient smart environments typically consist of sensors that 
measure the quantity of interest (e.g., room temperature), 
transceivers for communicating the collected information, and 

Fig. 7.  Common ambient sensors monitor (top) infrared-based motion, 
ambient light, ambient temperature and (bottom) door open/close status.
Arrows indicate a sensor location. 
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a computer to collect, timestamp, and store (or transmit to 
another computer for storage) the data. Figure 7 shows an 
example smart home. Here, disks are attached to the ceiling that 
monitor heat-based movement with passive infrared (PIR) 
sensors as well as ambient light levels. Similarly, magnetic  
sensors are attached to doors and door frames to monitor their 
open/closure status. In these settings, a wide range of additional 
sensors can be used. Some, such as radio-frequency 
identification (RFID) or Bluetooth low energy transmitters, 
require that a sensor be attached to an item and that a separate 
device be positioned nearby (a reader) to communicate with the 
sensor. Proximity between the sensor and reader can be used to 
determine the location of objects and thus whether the resident 
is moving and possibly using the object. 

Unlike many of the mobile sensors, ambient sensors are 
typically designed to generate a reading only when there is a 
change in their state. For example, PIR sensors indicate when 
there is movement in their field of view and when the 
movement has stopped. Similarly, magnetic door sensors 
indicate when the door state changes from closed to open and 
vice versa. However, many additional sensors can be included 
in these settings that generate the same continuous or periodic 
readings found on mobile devices. Table III characterizes 
sensors that are typically found in smart environments. 

Because many of the sensors that are used in smart 
environments are discrete event and thus only report a change 
in state, the features that are listed in Table II are well suited to 
these settings. Table IV lists features that are often used when 
analyzing data collected from ambient sensors. We again 
assume that features are extracted from a fixed-size window of 
sensor events. The extracted feature vector can be used to 
recognize activities and to analyze behavior patterns that are 
helpful for health assessment and intervention. In the same way 
that AL is used to learn a mapping from mobile device sensor 
sensors to activity labels, so machine learning techniques can 
be used to learn a mapping from ambient device sensor features 
to activity labels. These labels can be used to provide real-time 
information on the types of behavior that are automatically 
observed in a home or other physical environment. 

B. Ambient Intelligence: Connecting Personal Health with 
Smart Cities 

In Section II, we showed that medical technology is already 
making its way into the home and throughout the smart city 
using mobile devices and apps. However, ambient sensors 
allow smart cities to take this one step further with integrated 
systems that can support vulnerable and non tech-savvy 
patients. 

Plextek recently conducted a survey of future health needs 
[55] and found that 76% of the population is worried about their 
elderly relatives living alone. They mention specific concerns 
about their relatives experiencing an emergency such as a heart 
attack or fall and about these relatives not telling anyone if they 
feel ill. For much of the at-risk population, the likelihood of 
visiting doctors in person is limited by lack of transportation, 
possible embarrassment about symptoms, and discouragement 
when facing long wait times. 

Given that by 2020 the average home will have more than 
500 connected devices [55], smart cities can employ embedded 
technologies to meet the health needs of their citizens and face 
the coming “age wave” despite limited availability of care 
providers. 

As a first step in this effort, researchers have been focusing 
efforts on performing automated health assessment and 
intervention in everyday settings such as smart homes, using 
ICT technology including ambient sensors, networking, and 
machine learning. Continuously collecting sensor data in 
everyday environments sheds light on behavior changes that are 
consistent with changes on cognitive and physical health. Some 
of these changes might be too difficult to observe without ICT 
assistance because they are too gradual or too subtle.  For 
example, scientists have found behavioral markers in early-
stage dementia patients that include high daily variability in 
walking speed/trajectory [56], changes in time spent on key 
activities of daily living [57], interrupted sleep patterns [58]–
[60], and changes in patterns of using a computer mouse at 
home [61]. 

Smart home technology can not only aid in determining if 
there are changes in a resident’s health but it can also offer 
insights on the effects of known conditions in daily life. Austin 
et al., for example, found that cognitive performance is affected 
when individuals do not regularly follow prescribed medication 

TABLE IV 
STANDARD AMBIENT DATA FEATURES 

Type Features 

Time date, day of week, weekday / weekend, days past 
January 1, time of day, hours / minutes / seconds 
past midnight, duration of window 

Sensor number of events generated by each sensor, 
elapsed time since most recent event for each 
sensor 

Location location in space of first and last motion sensor in 
window, fraction of motion sensor events in 
window, change in fraction of motion sensor 
events between first and second half of window 

Complexity entropy of window to measure diversity of 
sensors generating events 

 

TABLE III 
AMBIENT SENSORS 

Type Measurement Data Format Data Rate 

PIR motion state low 
RFID / 
Bluetooth 

object interaction state low 

Pressure pressure on mat, 
chair, object 

state low 

Magnetic 
switch 

door/cabinet 
open/close 

state low 

Camera video, still image numeric vector very high 
Microphone audio numeric vector very high 

CO2 CO2 concentration numeric high 

Power electricity 
consumption 

numeric high 

Water water consumption numeric high 

Temperature ambient temperature numeric high 

Light ambient light level numeric high 
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treatments in certain populations [62]. Similarly, continuous 
monitoring of gait patterns using ambient sensors can be used 
to generate predictive models of falls [63]. Ambient sensors can 
also detect the presence of visitors in the home, time the resident 
spends out of the home, and time the person spends on the 
phone and using social media, all of which impact not only 
loneliness and mood but also cognitive health [64], [65]. 

If smart cities make use of ambient intelligence technology 
they may not only improve quality of life for its residents but 
also save the city substantial costs of patient treatment. ICT-
based smart health allows patients to spend less time in 
hospitals and more time in their own homes by using 
monitoring sensors, telemedicine, and reasoning techniques 
that transmit alerts [66], [67]. These technologies also enable 
health providers to quantify rehabilitation at both hospital and 
home settings [68], making the transition more seamless and 
recovery more constant.  

Fortunately, the role of ICT health technologies in smart 
cities does not end with assessment. Many automated health 
interventions have been introduced in recent years. Some focus 
on guiding patients through physical therapy and exercise [69]. 
Others use web interfaces to strengthen cognitive performance 
and promote social interaction [70]. 

Furthermore, smart homes can use the activity learning 
methods described in Section IIIA to automated interventions. 
If activities can be recognized, then their future occurrences can 
also be predicted [71]. Instead of learning a mapping from the 
extracted feature vector to an activity label with a classifier, a 
regression algorithm is used to learn a mapping from the 
extracted feature vector to a number indicating the amount of 
time that will elapse until a particular activity will occur again. 
Training the regressor requires activity-labeled sensor data. At 
each point in time within the sequence of training data, the 
actual elapsed time until an activity next occurs is calculated 
and becomes the target output for the regressor. Given an 
established baseline routine, the activity prediction algorithm is 
used to prompt smart home residents to initiate critical activities 
at the appropriate time and context, without any need for 
preprogrammed reminder rules [71]. For example, the home 
can sense when the resident is eating dinner and at that time 
remind them to also take their medicine. Employing such 
assessment and intervention technologies means that existing 
health providers can scale their services to a growing city. 

C. Detecting Health Events at Home Using Ambient Sensors 

Most health assessment technologies look at long-term 
changes in behavior to alert individuals of possible physical or 
mental health issues. As mentioned in the previous section, a 
large portion of the population is concerned about detection of 
sudden health events. While research has concentrated on fall 
detection in everyday city settings, most methods require the 
incorporation of wearable devices or customized detection 
environments [72]. 

Here we introduce one specific new approach to 
automatically detect health events in smart environments using 
ambient sensors. The method compares two or more time 
periods, or windows, of activity-labeled data using an algorithm 

called Behavior Change Detection (BCD). If the two time 
windows contain significantly different activity information 
this may indicate a significant behavior change. The size of the 
windows governs how sudden (or short term) the change is. If 
the windows are drawn from two different homes then the 
method can be used to actually compare behavior patterns 
between different subpopulations within a smart city or 
between different cities. 

Let X denote a sample of time series (ambient sensor) data 
where each day’s data are expressed by extracted activity 
features, X = {x1, x2, ..} and let W be a window of n days such 
that W  X. In this particular study, activity features consist of 
the amount of time spent on each activity and the sensor density 
(number of sensor events) for one day. BCD then compares two 
windows of data, Wi and Wj, within time series X. The examples 
we present here consider windows that are one week in length 
(n=7) and that compare a baseline window (i=1) with each 
subsequent window (j=2,3,..). In our experiments, baseline 
windows are manually selected. In future work, they can instead 
represent a distribution over a large number of observed weeks. 

In order to generate activity labels, we employ the CASAS-
AR activity recognition algorithm [73]. CASAS-AR learns a 
mapping from the sensor feature vector to a set of activity labels 
using a random forest classifier. Training data for CASAS-AR 
annotators who look at one month of data and utilize both the 
house floorplan and resident information to generate 
corresponding ground truth activity labels. The data input to 
CASAS-AR utilizes the feature types described in Table IV and 
has a dimensionality of 99. The labeled activities are hygiene, 
sleep, bed-toilet, eat, drink, enter home, leave home, relax, and 
work. For these activities, CASAS-AR achieved a recognition 
accuracy (computed as ratio of correctly-labeled sensor events 
to the total number of sensor events) of 98% using 3-fold cross 
validation on a total of 8,735,293 data points collected from 30 
homes. 

The time series literature offers strategies to perform change 
detection. Relative unconstrained Least-Squares Importance 
Fitting (RuLSIF) [74] is one such approach that estimates the 
ratio of probability distributions in the two windows using the 
Pearson divergence dissimilarity window. We then introduce a 
significance test in which the magnitude of inter-window 
change should exceed the day-to-day variability within each 
window [75]. We also introduce our approach called small-
window Permutation-based Change Detection in Activity 
Routine (sw-PCAR) which breaks each day unit into smaller 
time intervals and uses Kullback-Leibler (KL) divergence as a 
distance measure of the two compared windows. To perform 
significance testing, sw-PCAR randomly shuffles the time 
intervals and computes the KL distance for the permuted pair. 
The algorithm repeats the shuffling procedure multiple times to 
form an empirical distribution of the possible permutations for 
the two windows; then boxplot-based outlier detection can be 
used to report statistical significance. 

The third method we report in this study utilizes a binary 
classifier to not only detect behavior change but to explain it 
using human-interpretable rules. This type of virtual classifier 
for change analysis was proposed by Hido et al. [76]. The 
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classifier labels data points from one window as positive and 
from the second window as negative, then trains a decision tree 
to learn the boundary between the two classes. If a significant 
change exists between the two windows, then the average 
classification accuracy should be higher than 0.5. This 
threshold represents the critical value at which n Bernoulli trials 
are expected to exceed the accuracy of random guess at =0.05 
significance. 

BCD has been used to detect health events in six smart 
homes. Detected health events include cancer diagnosis and 
treatment, insomnia, in-home falls, hypoxia, and restless leg 
syndrome. Figure 8 shows the results of analyzing one of these 
homes with an 86 year old resident. This resident was diagnosed 
with lung cancer during Week 4 of the analysis and underwent 
radiation treatment starting in the middle of Week 10. The 
hypothesis is that treatment has an observable, quantifiable, and 
explainable impact on daily behavior. 

Figure 8 illustrates results of applying the three change 
detection methods on this activity-based smart home data. All 
points above the horizontal red line indicate a statistically 
significant change detected by the corresponding method. 
Comparing Week 1 and Week 11 (the first full week of 
treatment), RuLSIF finds a change of 2.298, sw-PCAR finds a 
change of 0.091, and the virtual classifier finds a change of 

1.000. All three are significant results and are much greater than 
the corresponding changes of -0.017, 0.001, and 0.500 that were 
computed when comparing Weeks 1 and 2. 

Figure 8 also shows associated activity density maps to 
visualize the amount of time spent on a particular activity over 
a one-week period. In these maps, each row represents an hour 
of the day and each column represents a single week. Cells 
represent data aggregated over a one week period. The darker 
the color is for a cell, the more time was spent on the activity 
during that particular hour of the day in the corresponding 
week. Finally, the figure shows a rule that was learned by a 
virtual classifier to explain the difference between Weeks 1 and 
11. As the density maps show and the rule indicates, the 
resident’s level of sleep decreased once treatment started and 
the number of visitors who came to the home, likely to help the 
resident, increased. Another observed impact of the treatment 
is the increased number of trips to the kitchen. These more 
frequent kitchen trips are consistent with a known effect 
radiation treatment has on a feeling of thirst which results in a 
patient drinking more liquids throughout the day [77]. 

To illustrate a health event that is observed by the smart 
home, Figure 9 shows another sensor-detectable health event in 
a smart home with a resident who has Parkinson’s disease. 
Going into the kitchen at night to get a drink is a frequent 

Fig. 8.  (left) BCD change scores plotted using RuLSIF, sw-PCAR, and VC comparing each week with the baseline week with 
values above the red line showing significant changes. (right) Density maps for the Sleep, Enter home, and Eat/Drink activities for 
each week, where darker colors indicate more time spent on the activity. (bottom right) A VC-discovered rule explaining the change 
during Week 11. 
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activity for this resident. The kitchen visit typically lasts one 
minute and generates 30-40 sensor events. On one evening, 

however, the resident fell while in the kitchen. As can be seen 
in the figure, the ambient sensors do not provide information 
about gait or acceleration that indicates a falling motion. 
However, the length of time spent near the stove was much 
longer than normal and the person did not even reach the sink. 
Given the time of day, the movement pattern, and the unlikely 
lingering in one area of the home, this can be detected as a 
health event. If the resident or a clinician suggests a reason for 
this behavior change, then this type of health event can be more 
readily recognized in future cases and can prompt service 
providers to respond quickly. 

This approach holds promise for detecting behavioral 
changes that may indicate health events. Advantages to this 
approach are that it incorporates activity information into 
reasoning about routine behavior and changes can be identified 
in an unsupervised manner. Additionally, the changes can be 
explained by using a virtual classifier to generate rule-based 
explanations of the changes. There are areas for ongoing work 
with behavioral change detection as well. The examples 
illustrated in this paper look at one week of behavior at a time. 
Automated tools should examine varying time scales to detect 
changes at different granularities. In addition, because some of 

the changes may not be health critical (e.g., changes may be 
detected when a family member comes for a visit or the resident 
leaves for a vacation), a future version of BCD might use 
weakly supervised learning with a clinician expert to identify 
classes of behavior changes that carry clinical relevance. 

IV. ONGOING CHALLENGES FOR SMART CITY HEALTHCARE 

The discussion in this paper highlights work that uses smart 
city ICT to provide smart healthcare and that can in turn more 
effectively channel city resources to help residents promptly as 
the need arises. While researchers and city designers have taken 
important first steps towards integrating smart ICT and 
healthcare, here we discuss how these solutions can scale 
further by becoming more fully connected. 

A. Privacy and Security 

Certainly the advances in pervasive computing and machine 
learning open up possibilities for smarter healthcare using smart 
city technology. At the same time, these advances rely on data 
being both collected and shared. Privacy issues often deter data 
sharing. In fact, security and privacy are the issues that are most 
often headlined in discussions about barriers to incorporating 
technology into healthcare [78], [79]. 

Concerns about privacy and security are not unfounded. 
Smart homes offer tremendous benefits for health monitoring 
and intervention, yet reports are frequently released about ways 
for intruders to hack into these homes [80]. This new breed of 
burglars may obtain details about resident living patterns in 
order to more effectively break into a house, putting both the 
resident’s belongings and their safety at risk. Other forms of 
security risk may rise even when there is no malicious intent. 
For example, health monitoring devices that do not follow 
prescribed software standards can endanger lives by not 
providing critical information at the needed time. 

 Sharing mobile app information can also be dangerous, 
because the collected information may not only identify the user 
but also track their current location and predict future locations. 
In some countries, releasing location information to third 
parties is prohibited by law [81]. In practice, however, Zang et 
al. tested 110 popular apps found that 73% of Android apps and 
47% of iOS apps shared location and other personal information 
with third parties [82]. 

 While data is assumed to be encrypted before transmission 
and storage, the power of the data lies in sharing the data in 
order to analyze patterns over entire populations. While the first 
line of defense that is employed by researchers before sharing 
data is to replace names with randomized identifiers (de-
identifying the data), this is not sufficient. A well-known 
investigation into anonymized Massachusetts health and voter 
records revealed that 87% of the population was identifiable by 
the quasi-identifiers of zip code, gender, and date of birth. 
Similarly, an analysis of newspaper stories about hospital visits 
led to identifying the matching health record in 43% of the cases 
[83]. 

While researchers such as Bhuyan et al. [84] and Kotz et al. 
[85] try to educate policymakers about the potential privacy and 
security risks of smart city-based healthcare, there are advances 
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2017‐01‐12 01:40:53.116671 DiningRoom OFF 
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2017‐01‐12 01:41:06.435801 KitchenStove OFF  

2017‐01‐12 01:41:07.134531 KitchenStove ON  

2017‐01‐12 01:41:09.014158 KitchenStove OFF  

2017‐01‐12 01:41:09.034279 KitchenStove ON  

2017‐01‐12 01:41:12.033392 KitchenStove OFF  

2017‐01‐12 01:41:13.322879 KitchenStove ON  
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Fig. 9.  (top) Smart home where fall occurred and (bottom) corresponding
sensor events. Red area highlights likely time of fall. 
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that are being made on the technology side as well. In the area 
of privacy-preserving data mining, data analysis techniques 
guarantee certain levels of privacy while attempting to 
maximize the utility of the data [86]. This is referred to as the 
privacy-utility tradeoff. 

Three types of privacy-ensuring data mining techniques are 
being investigated that may offer assurance for smart city 
residents. First, data can be “camouflaged” as it is collected by 
perturbing the data. Collected data can be perturbed by adding 
(or multiplying) noise to the original data, as shown in Equation 
3. The noise has a known statistical distribution, Y, and the 
result, Z, of perturbing using Y can be shared publicly. 

Z = X + Y           (3) 
X = Z – Y            (4) 

Using Equation 4, the original data distribution, X, can be 
reconstructed for data mining but the original values cannot. 
While perturbation techniques remain an area of ongoing 
investigation [87], achieving optimal data privacy while not 
shrinking data utility is an NP-hard task. 

Second, in cases where the original collected data will be 
released to third parties, a goal of privacy-preserving data 
mining is to ensure the k-anonymity of the data [86]. This refers 
to the assurance that the identifiable attributes for any given 
user are undistinguishable from at least k-1 other users. K-
anonymity can be achieved through techniques that include 
removing sensitive attributes, increasing diversity of sensitive 
attributes, or adding synthetic data to obfuscate the real values, 
thus allowing sensitive data to “hide in the crowd”. In the case 
of mobile data, an alternative to assigning a single constant 
identifier for each user is to change identifiers periodically. This 
change makes tracking users over time and space difficult. An 
ideal time to change the identifier is when a user enters a space 
with at least k-1 other users so that old and new IDs cannot be 
easily linked. 

Third, the output of data mining algorithms can be modified 
to avoid leaking sensitive information. For example, the 
effectiveness of a classification algorithm can be downgraded 
enough so that it meets performance thresholds but minimizes 
the risk of being used to identify individuals. Whichever 
combination of techniques is employed, it is important that all 
parties including city designers, policy makers, and tech 
providers agree on privacy guarantees and describe to city 
residents the potentially sensitive data sharing that may occur 
with smart city technologies. 

B. Accessibility and Usability 

Healthcare is a keyword that appears in many smart city 
efforts. However, cost is still a barrier for widespread adoption 
of technologies that can be employed at an individual and 
community level [88]. In fact, Mehl and Labrique [89] place 
financial coverage of technologies at the topic of their 
cascading model of priorities in ensure universal health 
coverage. In the long term, integrating technology into city-
wide healthcare can reduce costs for the city and its citizens. In 
the short term, however, the cost of the technology itself may 
prevent communities from adopting the technology. 

Cities can take a similar approach as insurance companies to 
not only offset the short-term cost of health technology but also 

address another barrier of healthcare technology, which is 
taking the time to learn and adopt the technology [90]. In recent 
years, some insurance companies have offered discounts to 
customers who agree to install telematics in their vehicles that 
monitor driving patterns [91]. The potential boon for deciding 
to install the devices, in addition to lowering premium rates, is 
that the information can improve road safety because the 
insurance app can inform drivers when they are driving too 
recklessly. Incentives have also been offered over the last 
decade from other service providers such as utility companies 
[92], [93]. Similar incentives may be offered in the future by 
health insurance companies to install ICT in homes. The 
technology will support quality healthcare in a cost-effective 
manner to citizens when and where they need it. 

C. Connection with other Smart City Services  

Smart cities utilize information and communications 
technologies in multiple ways, as shown in Figure 10. As Jin et 
al. state, the goal of smart city platforms is to facilitate plug-
and-play smart objects that can be deployed anywhere with an 
ability to blend in to their surroundings [94]. The objects should 
support not only health monitoring but structure monitoring, 
environment monitoring, security, and intelligent 
transportation. As an example, while many city citizens would 
look at the icon in the middle of the figure and see a streetlamp, 
in some smart cities such as Spokane, Washington, streetlights 
already contain sensors to capture a variety of air quality 
conditions around the town [95]. Indeed, by the year 2020 10% 
of the smart cities will also likely use streetlamps as the 
backbone for citywide wireless networks [96]. Weaving sensors 
into existing city features represents an example of the ever-
increasing connectivity of data that can help researchers 
understand the connection between city design and health. By 
monitoring air quality as well as behavior, we can see the 
impact of our behavioral patterns as well as design choices on 
air quality. Additionally, we can monitor the impact of air 
quality on health and we can design interventions such as 

Fig. 10.  The connection between healthcare and other smart city services. 
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changing city design or providing real-time information to 
residents to stay indoors during times of poor air quality. 
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