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Abstract Homes that can increase their own self-sufficiency over
time can augment busy or aging inhabitants allowing peo-
The goal of the MavHome project is to develop technolpie to live in their homes longer (potentially alleviating
gies toManageAdaptiveVersatile environments. In thissome health care system burdens) and free time to allow
paper, we present a complete agent architecture for a gieeple to focus on other aspects of their lives. These are
gle inhabitant intelligent environment and discuss the dast some of the potential benefits of working intelligent
velopment, deployment, and techniques utilized in oenvironments, research and advancements in this area of
working intelligent environments. Empirical evaluatiogcience stand to make a large impact on the future.
of our approach has proven its effectiveness at reducThe goal of this paper is to present one possible engi-
ing inhabitant interactions in simulated and real environeered approach to developing intelligent environments.
ments. We present the some background of work in this area of
research, the MavHome architecture, some of the lessons
. learned, and some of our experimental results.
1 Introduction

The MavHome ProjectM anaging arAdaptiveVersatile 2 Related Work

Home) is focused on conducting research in smart home

technologies from the aspect of treating an environmedur work focuses on the emerging domain of intelligent

as an intelligent agent [10]. We seek to develop and ingavironments or smart homes and buildings. Generally,

grate components that will enable the intelligent envirothiese environments are defined by the way in which peo-

ments of the future. The goals of these environments @te interact with them or in the way that these places in-

to maximize the comfort of the inhabitants, minimize theract with the inhabitants. Benefits include providing

consumption of resources, and maintain safety and seeamfort and productivity for inhabitants and generating

rity. cost savings for utility consumption. There are many re-
Work in intelligent environments is an important stepearchers working on interesting problems in this domain.

in the forward progress of technology. As computing be-

comes molre.perv.asive angl people’s lives pecome bus'Qa_rl Framework Projects

advances in intelligent environments can aid by automat-

ing the simple things (e.g., lighting and HVAC control)Qut of the MIT Artificial Intelligence Lab comes the

work to actively conserve resources (reducing cost), aAtRE (Agent-based Intelligent Reactive Environments)

improve safety and security. Environments that seng®up. The AIRE group is engaged in research involving

their own well-being and can request repair or notifyervasive computing designs and people-centric applica-

inhabitants of emergencies can save property and livegns and have constructed “AIRE spaces” in the forms



of an intelligent conference room, intelligent workspacestiented work such as design reviews or brainstorm-
kiosks, and “oxygenated” offices. To assist in their réng sessions. Their experimental facility is called
search and to integrate their research technologies, tli&oom” where they are investigating integration issues
have developed middleware called Metaglue and an &ith multiple-device, multiple user applications, interac-
tension, Hyperglue [3]. In addition to infrastructure fotion technologies, deployment software, and component
intelligent environments, the AIRE group is focused antegration.[40] To answer the integration and interactive
developing collaboration support tools to support meetorkspace building challenge they have developed iROS,
ings by capturing information and facilitation of the mee& middleware system for interactive workspaces. iROS
ing, using sketch understanding for information capturis,comprised of three subsystems: tEeentHeapwhich
developing algorithms for the arrangement of informatiqrovides coordination, theataHeapwhich provides data
to foster a better understanding of the data, and extentbvement and transformation, aidrafter which pro-
ing instant messaging beyond the desktop to the phyddes user resource control. Through iROS they seek to
cal environment. They are also involved in investigatingovide a middleware layer that provides true platform
novel human-computer interfaces that utilize technolpertability, application portability and extensibility, ro-
gies such as gaze-aware interfaces, streaming media, langtness, and simplicity [34]. Current work at Stanford
multi-modal sketching which involves capturing speedias shifted focus to the area where HCI meets the system
with white-board sketching and gestures in order to cap-the development, deployment, and operation of iRoom
ture the full meaning of the intended discourse. Recdniman interfaces. They are studying issues with eye con-
work includes the development of applications to suppaéct in videoconferencing, wall-display interaction, and
plan-based proactive computing which can store and nirdormation fusion issues.
nipulate knowledge about user plans, habits and needs ifhe Laboratory for Communication Engineering
order to execute actions of a user plan on request [3]. (LCE) at Cambridge University (originally in conjunction
The AMBIENTE division of the Fraunhofer-IPS| Re-with AT&T Laboratories Cambridge) is pursuing their
search Institute in Germany is working on a number &entient Computing project with the focus of simulating
intelligent environment-related projects. As a partner obmputer perception in computing systems that detect,
the fifteen member European AMIGO project [4], theinterpret, and respond to facets of a user’'s environment
are focused on creating ambient intelligence (a paradi¢g®). Research has involved a deployed ultrasonic location
that promotes the empowerment of people through ensystem, advancements in world modeling including spa-
ronments that are aware of their presence and respotigisconsiderations, and sentient computing applications
to their needs [18]) for the networked home environmesiich as world model browsing, remote desktop displays
where home automation, consumer electronics, mohifat follow users, smart posters using context-aware in-
communications, and personal computing come togett@mation retrieval, and ubiquitous user interfaces.[8] The
under complete integration. AMIGO seeks to researomniORB CORBA package and VNC (Virtual Network
and develop open, standardized, interoperable midd@mputing) both originated from the AT&T Labs, Cam-
ware and intelligent user services for these environmertigsdge, research. However, the Sentient Computing group
The goal of i-Land is to create “intelligent user servicesio longer uses omniORB in favor of middleware that
which will provide experience enriching services that wittan support context-aware multimedia applications called
make the system seem intelligent. They are focusi@pSDREAM, also under research and development at the
these services on home care and safety, home inform@E. QSDREAM supports multiple types of sensors and
tion and entertainment, and the extended home envirgnevides a simple spatial model for representoaatable
ment. AMIGO is just in the beginning stages of life, bugntities real-time model and sensor data integration, an
it draws from work on Ambient Agoras [15], i-Land [5],event mechanism for notifying applications of location in-
and other related precursor projects. formation, a query-able location database, and an ease of
At Stanford University, the Interactive Workspacesxtensibility. QoSDREAM is based on providing Qual-
project is exploring work collaboration technologies iity of Service guarantees and takes a location-centric ap-
technology-rich environments with a focus on taslproach to the services it provides [31].



The Gaia project at the University of lllinois at Urbana¥his home features such technologies as a smart mailbox
Champaign [43] involves the creation of active spaces fitiat senses mail, a smart front door to control access, a
ubiquitous computing. Their focus has been on creatidgving simulator in the garage to evaluate elderly driv-
middleware to support environments that sense inhainig abilities, smart blinds, a smart bed, a smart closet
tant actions and assist them with different tasks—refertttht helps with clothing choices, a smart laundry, a smart
to by this work as an “active space.” In support of thisathroom mirror to display information, a smart bath-
goal they have developed the Gaia OS which is a metaem thats controls water temperature and features bioin-
operating system that has been customized for specifionatic capture, smart displays throughout the home, a
physical spaces in order to support application develggnart microwave, a smart refrigerator and pantry, smart
ment in those domains. Gaia supports mobile user-centréaneras for security, ultrasonic location detection, a smart
active space applications by managing the resources #adr for localization, a smart phone, smart wall plugs for
services of an active space and providing services for &ectrical items, smart thermostats (i.e., HVAC control),
cation, context, events, and storage of information. Gamart leak detectors in areas with water, a smart stove, a
consists of the Gaia Kernel, the Gaia Application Framsmart display projector for information, a home security
work, and Gaia Applications. The kernel consists aofionitor, an emergency button, and cognitive assistance
an event manager which distributes events in the actiheough visual and audio cues to help the inhabitants re-
space, a context service which provides contextual infonember medications, appointments, and other important
mation in the form of first order logic and boolean aftems. Their current key contribution is the development
gebra, a presence service which is resource-aware ah@ middleware architecture which includes a physical
provides information, a space repository to store infdeyer of devices, a sensor platform layer to convert read-
mation, and a context file system to make personal datgs into service information, a service layer to provide
available to applications, organize data, and retrieve détatures and operators to components, a knowledge layer
in a format based on the context of user preferencestloat offers ontology and semantics, a context management
device characteristics. The application framework priayer to provide context information, and an application
vides mechanisms to develop, execute or accommodatger to support a rich set of features for inhabitant liv-
existing applications to active spaces and is comprisedmg. The state of the project is still focused on integration
a distributed component-based infrastructure which praad the middleware development, but they are beginning
vides a model, view, controller, and coordinator; a mate focus on issues with eldercare and the aging in place
ping mechanism which customizes applications to diffanitiatives [21].
ent active spaces, and a group of policies to customize
the applications [36]. Gaia applications include a prer o Application and Gadget Projects
sentation manager to present slideshows on one or many
displays in an environment, ConChat which is a contexthe Aware Home Research Initiative (AHRI) at the Geor-
aware chat program, a calendar program, meeting attgia Institute of Technology is focused in the areas of inter-
dance task recorder, media players, speech engines, Riotive experience applications, technology, software en-
interfaces, and other presentation and workgroup centyineering, and an investigation of the social implications
applications [43]. The Gaia researchers have limited thgivolved with aware home living. Their interactive ex-
domains to spaces used for teaching such as classrograsgnce applications have been developed in the areas
offices, and lecture rooms. of social communication, memory aids, and home assis-

Researchers at the University of Florida are buildirignts. Technology development by the AHRI has involved
the Gator Tech Smart House with the goal of creatiragn indoor location service and an activity recognition al-
assistive environments that can perceive themselves gndthm. AHRI has focused on the problem of sensing
their residents and utilize telematics to provide servicdscation and as a by-product have produced the Location
Drawing on their previous knowledge gained from exService infrastructure which seeks to provide a robust and
perimentation in their Matilda Smart House laboratorgccurate location service, performs sensor fusion trans-
they have constructed a full house in Gainesville, Floridaarently for the user, and supplies reusable and extensible



techniques to application programmers so that they miaghould be of interest that they use IBM Websphere, Java
utilize location information in application-relevant wayservlet technology, and Lotus Notes [45].
[1]. AHRI researchers have conducted research developThe Vision Group at Microsoft Research were in the
ing two toolkits, INCA and the Context Toolkit, as wellprocess of developing a prototype architecture and asso-
as a location service. INCA is the Infrastructure for Cajgtated technologies for intelligent environments in their
ture and Access, and it provides the means for creatiBgsy Living project (no updates since 2001). Their re-
systems that capture life experience details and presesgarch was concerned with using computer vision for in-
them for future access. INCA provides capture, storadebitant tracking and visual gesture recognition, sensor
format-conversion, and access support [42]. The Cdnosion, context-aware computing using geometric mod-
text Toolkit provides abstractions and support for contexls, automatic sensor calibration, dynamic and adaptable
aware development [38]. user interfaces, generalized communication and data pro-
MIT Media Lab’s Consortia on Things That Thinktiocols, and system extensibility [17]. Microsoft corporate
(TTT) and their special-interest group on Counter I@lso has a demonstration home on their Redmond cam-
telligence are primarily focused on single applicatiormus that features a six room home enclosed in a building
such as an augmented reality kitchen, context-aware wdiere they demonstrate what they perceive to be technol-
bles, and the Food Oracle. They have also been invohagy in the five to ten year out window. Featured tech-
in developing smart architectural surfaces, an intelligemblogy involves the integration of Microsoft products and
spoon, and have also produced a distributed agents pdatvices such as their digital music and video offerings.
form called Hive [26]. The augmented reality kitcheRecent demonstrations show the integration of RFIDs on
projects informational displays onto existing counterslothing and a mirror with a built in display that pro-
cabinets, and appliances in order to improve ease of ugded care instructions as well as garment matches from
efficiency, and safety. Context-aware tables are physitia user's wardrobe [11].
tables that change their purpose by height (e.g, displayOther industry initiatives include British Telecom’s
picture book photos when raised and food menus whéglecare project which established 10 “millenium homes”
lowered). The Food Oracle is a set of tools that combinkes aged people where an array of sensors monitored en-
learning and reasoning about cooking and food into a sysronmental conditions, notified the inhabitants to cor-
tem to help people explore creative and intuitive cookect potentially dangerous conditions, and notified care
ing. The system reasons about recipe-sensitive ingraatieviders on necessity [7]; CISCO Network’s Internet
ent substitutions and the intentions of recipes, and usémme which explores the impact of the Internet on the
a database of food and culture to create an adaptive aothe by showcasing Internet-dependant technologies and
dynamically generated smart recipe system based upomieless web pad interfaces [9]; Intel Corporations Proac-
wealth of information about food. There are a dozen tive health Lab is exploring technologies to help seniors
more such projects as these undergoing varying levels‘afe in place” in order to help the increasing health care
development, research, and testing at the MIT Media Labrden of the rapidly aging population of the United
[26]. States by anticipating inhabitant needs through observa-
tion with wireless sensors and taking action to meet those
needs through available control and interactive systems
[24]; Siemens AG is promoting “living made easy” home
The Pervasive Computing Lab at IBM Research is perutomation products which include a full range of com-
forming work involving speculative integration to creatponents for automating almost all of the common items
proof of conceptdemonstrations utilizing modern techin a home and integration systems as part of their smart
nology to create such things as an advanced media livimgme technology initiative [39]; Royal Philips is involved
room, a networked kitchen, and integrated automobilegth exploring ambient intelligence and user experience
Although not developing new technologies they are conm-their HomeLab experiments involving people living in
bining existing technologies in new and interesting wags apartment and being observed by a research team [33];
to show what is possible. For the designer and integragord Accenture is focusing on elder care and lifestyle with

2.3 Industry Initiatives



their room of the future which examines activity monian attempt to improve the way recipients are fit to tech-
toring and interactive furniture and objects that are meamdlogy [12]. Their work addresses the issues of proper
to improve the inhabitant experience while allowing fdit, deployment, and usage of the technologies of smart
aging in place [2]. There are also a number of commédremes with the disabled and elderly.
cial retail companies selling products to make people’s
homes “smart.” The most prominent of these companig_ss Learning and Adapting Initiatives
is SmartHome (www.smarthome.com).
The Adaptive House project at the University of Colorado
at Boulder under the direction of Michael Mozer tackles
the issue of overcoming the programming problem with
The Medical Automation Research Center (MARC) smarbme automation (i.e., where someone must program the
house project at the University of Virginia is focused orules for automation and reprogram them over time as the
the issue of in-home monitoring for the elderly in orddnhabitant’s lifestyles change). Their work involves de-
to promote the concept of aging in place. Their homegsloping a system that controls the HVAC, water heater,
are equipped with low-cost, non-invasive sensors (thagd interior lighting of a home, learning how to control
do not allow cameras or microphones), and a data ldabese features based on the lifestyle and desires of the in-
ging and communications to establish telematics to éwabitants, and adapting the control policy over time in an
thorized individuals (e.g., family and their personal physénvironment with a minimal user interface. This project
cian). They have developed data analysis tools to obsewges an actual residence called the neural network house
general health and activity levels and have developed #rpiipped with 75 sensors that monitor temperature, am-
metrics of Activities of Daily Life (ADL), most Instru- bient light levels, sound, motion, door and window open-
mental Activities of Daily Life (IADL), the index of well- ings as well as actuators that control the furnace, space
being, and a measure of ability decline. System feedbdedaters, water heater, lighting units, and ceiling fans [29].
to prompt the individual to remain active is also bein§he control systems in this work are based on neural net-
explored. The MARC In-Home Monitoring System hawork, reinforcement learning, and prediction techniques
been deployed in several case study homes. Its key fealled ACHE (Adaptive Control of Home Environments).
tures are the low cost technology, the ability to retrofit -learning (a reinforcement learning technique [41]) uses
into existing homes, and the data-mining health status esrent-based segmentation over clock-based in order to
port components [27]. make the problem tractable and initiates actions based on
The Robert Gordon University CUSTODIAN (Con-perceived state and reward. In order to simplify the state
ceptualization for User involvement in Specification argpace the automation task was decomposed into zones and
Tools Offering the efficient Delivery of system Integraa heuristic based determination of event separation factors
tion Around home Networks) project has an objective t@as used to partition the experience into events for the
develop technology and services for disabled and eldeglyent-based control system. The control policy involved
people through information and communication technola-mixing of inhabitant comfort and energy conservation
gies in order to improve the quality, effectiveness, ampals. The system used a state estimator to form high-
efficiency of services which support their independentavel state representations which were based upon inhab-
in living and maintained integration in society. To thigant activities (through an occupancy model and an an-
end they are focused on maintaining and restoring funiipator which was neural network based and provided
tional capabilities through assistive technologies, elezprediction of occupancy of a space) and light levels in
tronics products, and systems around a home netwedch zone (through a natural light estimator). This in-
in smart houses. They have designed and establishddrenation and the decomposition of spaces were utilized
demonstration house called the Dundee Flat to perfomith multiple Q controllers to automate the home. Their
experimentation for the personal care services. Their cuerk also involved some exploration in order to reduce
rent work involves case studies that observe process faeitergy consumption by occasionally testing the inhabi-
itators that try to match individual needs to technology tant by altering the control policy unless counteracted by

2.4 Healthcare Initiatives



the inhabitant [30]. promoting healthy behaviors by encouraging a more
Researchers from the Intelligent Inhabited Enviromctive lifestyle, context-sensitive measurement of phys-
ments Group (IIEG) at the University of Essex in thizal and sedentary activities, context aware experience
United Kingdom are creating ambient-intelligencen- sampling which attempts to learn inhabitant activities
vironment using embedded agents calledib@m [22]. from observed sensor readings, portable wireless sensors
Their approach involves the use of a fuzzy logic baséar studying behavior in natural settings, proactive health
Incremental Synchronous LearnifigL) system to learn displays for health assessment and self reflection, idle
and predict inhabitant needs. Their testbed environmempment detection for proactive health activities using
a dorm room, involves the access of 11 environmental geersonal and environmental sensors and interfaces, and
rameters and nine effectors (mostly lights). The use wfany others [28].
parallel fuzzy logic controllers (FLC) in a hierarchy is In Japan, efforts by the National Institute of Informa-
used to learn and encode rules. Each FLC has a sintip@ and Communications Technology (NiCT) and their
modifiable parameter and is used to learn a particular &gihanna Human Info-Communications Research Center
pect of the environmental control. The FLCs are eithare focused on the development and testing of the Ubiqui-
static (i.e., pre-seeded with knowledge) or dynamic (i.eous Home. Their research goal is to support and optimize
observed from the inhabitant). In combination all of thie usage of information appliances in the home across the
FLCs form the ISL system and encode the desired contuskers regardless of age or lifestyles. They are develop-
behavior of the environment. Other management systeimg many technologies which include middleware in the
prune down the number of FLCs by observing factors fifrm of a distributed collaborative infrastructure for the
redundancy and low usage to keep the system computame appliances to interact, an interactive field model for
tionally manageable. The researchers have presentedcewtext-sensitive services to enhance the user-appliance
idence via empirical evaluation of iDorm inhabitants thatteraction, a distributed environment action database to
the system can perform initial and lifelong learning of irstore and recall information about interactions, and event

habitant needs over a 132 hour experiment [18]. interactive robotics that provide context-sensitive interac-
tion. In league with many Japanese technology compa-
2.6 Other Initiatives nies, their research aims to improve the relationship be-

tween humans and household appliances. Efforts for eval-
The Department of Architecture’s Changingiation of case studies involving human family participa-
Places/Hous@a project at MIT is focused on howtion in their Ubiquitous Home are just beginning [32].
technology, materials, and design strategies can creatBesides AMIGO on the European continent, the United
dynamic, evolving places that respond to the lives of th&dingdom Equator Interdisciplinary Research Collobora-
inhabitants. Using the one bedroom condominium calléddn comprised of eight members (The University of Bris-
the PlacelLab, researchers use sensors spread througiobuthe Lancaster University, The Royal College of Art,
the environment to observe the environment and develbipe University of Sussex, The University of Glasgow,
innovative user interfaces for control of the spaceEhe University of Nottingham, The University of South-
resource management, and to maintain their health dapton, and The University College London) and sup-
activity levels. Current projects also include participatigmorted by the UK Engineering and Physical Sciences
in the Open Source Building Alliance (OSBA) wher&kesearch Council (EPSRC) is another supergroup of
key components of a more responsive model for creatirgsearchers working on pervasive/ubiquitous computing
living spaces are being developed, homes chassis desigd intelligent environment related work. They are fo-
to make building a home similar to industry standarasised on the integration of physical and digital interac-
for building vehicles or electronics, integrated interidion in order to bridge the gap between reality and virtual
infills which replace interior walls with customizableaeality. This combined effort aims to search for a better
cabinetry-like components, design and configuratiemderstanding of what it means to live in an age when dig-
tools to promote the ease of design of these new typts and physical activities not only coexist but co-operate
of structures, just-in-time persuasive user interfaces fmd interoperate. Their list of publications cover almost



all areas of related research (e.g., HCI, location systern, which the essence of this system is to perceive the
sensors, and so forth), but do not seem to currently be &mwvironment through sensors, reason about this informa-
cused on developing specific intelligent environments ton in order to make decisions on whether or not an ac-
automation and inhabitant context learning [13]. tion should be taken to change the state of the environ-
The PRIMA project at INRIA is concerned with thement in which the agent is situated, and then perform this
scientific foundation for interactive environments. Theaction through actuators which will affect the perceived
mission is to develop and integrate systems with the alsitate continuing the cycled infinitum This work focuses
ity to perceive and model an environment and its coan an agent based system centered around a known single
tents, to act in/upon this environment, and to interact witithabitant in our environment.
the occupants. Their research focus is on multi-modalThe sensing and control capabilities of our intelli-
observation and tracking of people, new forms of magent environments fit into the generalized models of any
machine integration, control and integration of perceptuggnsed and controlled system. The sensors, and for that
processes, and context guided learning and recognitioatter all objects, in our environments are designated
[23]. They have an augmented meeting room testbed Vaith a zone-number combination (e.g., Al) for unique-
their experimentation that is equipped with cameras andess. In our environments, there is a one-to-one corre-
microphone array. This group is a member of the AMIGEpondence between state and action (e.g., an action such
project. as turning on a light produces the state change of that light
There are many other intelligent environment projedseing on) which is an attribute shared by many systems
in academia, government, industry, and even amongst ki certainly not all.
enthusiastic general population and home hobbyists. We=nvironments of this nature provide significant chal-
have covered many of the current and historical effotgnges. The largest involves the curse of dimensional-
in this area. The current trend is that many groups afg [25]. The state space of an intelligent environment
combining their efforts to eliminate redundancy of effois enormous. For example, if we were to examine a very
and focus on the research challenges. These super effemall environment with ten motion sensors and five lights
from groups such as Equator in the UK and AMIGO ofor a total of fifteen objects and each of these objects
continental Europe are beginning to produce measurabés only two states (they are binary) that would give us
results and forward knowledge in intelligent environmegt® = 32, 768 unique states. If we can reason about each
research. one for 0.01 seconds it would take 5.46 minutes to make
a decision. Our environments have state spaces closer to
the size 0f2'%0 or 1.43x10*® unique states. The size of
3 Approach the problem space makes it difficult to develop real-time
reasoning for intelligent environments.
Our work focuses on learning to automate the intelligentThe second largest problem is the curse of generaliza-
environment. The motivation for this work is the devekion. Most approaches to state space reduction involve
opment of systems to meet this focus in an accurate aygheralization techniques that reduce the state spaces into
efficient manner. There are a number of significant chaimilar groups; however, in the intelligent environment
lenges in this work in order to meet our goals, which atemain where inhabitants are involved in specific local
to learn a model of the inhabitant of an intelligent enviroractivities generalizing will often produce undesirable re-
ment, automate devices to the fullest extent possible usgudts. For example, if an inhabitant reads, listens to mu-
this model in order to maximize the comfort of the inhalsic, and watches television all in the same room and the
itant while maintaining safety and security, and adapt ttéemmonality between these events is that the same light
model over time to maintain these requirements. In ds-on in the room all that a generalized approach will pro-
der to accomplish these goals, we must first learn a modigle is an automation of that light, missing the desired au-
of inhabitant activities, and then incorporate this into gomation of the CD player and television as appropriate.
adaptive system for continued learning and control.  The challenge is to develop a solution that can maintain a
Our development goal is to create an agent based sy®all state space for macro reasoning, but still maintains



the details for micro reasoning and automation. Each state also represents a perceived observation that en-

The big assumption we make are that pearkecrea- capsulates many possibly unseen events thahiaden
tures of habit and will provide some periodicity and/drom the observer. We depart from the traditional state-
frequency to a number of activities they perform in anlyased chains of the Markov model which typically rep-
given environment, that these patterns can be observesent the entire world state in favor of an event-based
through sensor perception, and that these patterns cachmn, one in which the world state is represented only by
represented as Markov chains. This base pattern refhe single change observed at that point in time. Since
sentation of a Markov chain represents a certain identifiir model focus is on a single inhabitant, we concentrate
able pattern of activity oepisode These episodes mayon the changes made to the world state by that individ-
be abstracted into higher-level episodes that representahand assume that the rest of the world has not changed.
grouping of related episode activity. In order to distim@ur model, as such, represents a chain of events where
guish pattern permutations when building hierarchies wach event represents the observation that we make at a
add history to the transitions to determine the correct tragiven point. Each event encapsulates all of the hidden
sition probabilities. acts that may occur as well. You can build HMMs into a

As a basic example, Figure 1 shows a typical Markdwerarchy and call it a Hierarchical Hidden Markov Model
chain of inhabitant activity, namely the pattern of watcHHHMM). If you tie actions and rewards to the transi-
ing television. Patterns similar to watching television sudions between states this model becomes known as a Hi-
as listening to music and reading a book can be groupsdrchical Partially-observable Markov Decision Process
together because they occur in the same space in an(efROMDP).
vironment. Furthermore, activities that occur on that sideOur main challenge is to learn an inhabitant model
of the house could be grouped together and eventuallysallely from observation. The learned model can only uti-
activities in a house fall under the root note as shownline data from the perception of the environment and de-
Figure 2. signed mechanisms for converting that data into a useful

This location-based hierarchical decomposition of aknowledge representation. The model should be compu-
tivities illustrates the type of information we are trying téationally tractable, accurately reflect the interactivity pat-
learn about the inhabitants of an environment—how th&srns of the inhabitant, and provide for the accurate and
utilize the environment. The model influenced by locatiagfficient automation of the environment.
is typical of human partitioned state spaces, but in thisLearning past the initial model is our second challenge.
work we seek to learn the structure automatically througtutomation systems for intelligent environments are only
observation. Hierarchical decomposition of the Markayseful in the real world if they can adapt to the ever chang-
activity model will be guided by how the inhabitant ining lifestyles of the inhabitants to whom they cater. The
teracts in the environment. In other words, the hierarchiggsstem should accommodate for both a slow drift in pat-
we learn are based upon observed patterns so that if theéénas and for dramatic shifts. The system should adapt
habitant eats then watches television followed by a perigdickly while minimizing the loss of accuracy and effi-
of sleep then those activities are more likely to be groupeigncy. The goal is to provide for the life-long adaptation
together because at a higher level they form a pattern. of the system with the inhabitant of the environment.

In the real world the current state of our environments This work seeks to utilize information presented to it.
is never fully understood. We can make observations ahlde better the quality of information, the better the model,
infer about the general state of the environment, but thed the better the control policy. Central to our approach
environment is still only partially observable—we cannas the necessity to recognize the Markov chain patterns of
observe what takes place in people’s minds, in the duttte life of an inhabitant in one of our environments and
work, behind the couch, inside the television, and so forti. recognize the patterns of the abstract patterns, com-
In our environments what we actually learn are Hiddgarising a sequence of the low-level patterns—all from ob-
Markov Models (HMMs) . HMMs still describe a pro-servation data. The large quantities of observed data and
cess that goes through a series of states, but each staedesire to extract the patterns from it have led us to
has a probability distribution of possible transitions [37ihe data-mining community. If we could employ a data-
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Figure 1: Watching television Markov chain
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Figure 2: Basic hierarchical Markov model

mining technique to discover the periodic and frequetdrn we are currently observing, but may be insufficient to
episodes of behavioral patterns in the data, we could tsdy pinpoint the exact chain of current activity. What we
that knowledge to build our inhabitant models. We utilizeeed to develop is a belief in which state the current world
the work by Ed Heierman in his Episode Discovery (ED$ engaged in order to utilize our learned model to auto-
technique [20] as a tool for extracting the desired knowhate future events. Understanding what is most probable
edge from the data stream. next event to occur would assist in this belief. Using a
If a data-mining technique can generate knowledge peediction algorithm trained on our observation data sets
create a hierarchical model, then in order to be abledod with reasonable accuracy could be used to provide
use it for automation we will require information that wilthis type of information. In addition, since our approach
provide a mapping from the real world observations te to create hierarchical layers that are labeled as groups
the specific location within our model. The event streaaf events there will always be a probability of member-
coming into the system provides one clue as to which pahip given an observation data stream to these groupings.



An algorithm that produces a probability of membershipodel. This HHMM will be extended with actions and re-
given the current event stream to learned groups wowdrds to form a HPOMDP model of the inhabitant for the
provide information that could narrow the choices of spenvironment under evaluation. The observation data will
cific patterns in current practice and improve the belief afso be used to train a prediction algorithm. The obser-
which state the system is currently engaged. The cowation data and data-mined patterns will be used to train
bination of the current event stream, a membership pr@m episode membership algorithm. After the initial in-
ability across the hierarchical layers, and a prediction feirmation is processed, the model is derived, and useful
the next event to occur yield a belief state of where somponents are trained, we can move into the next phase.
the derived model the current inhabitant is interacting. If The second phase involves the operational use of the
we look ahead in the model we can determine events thamponents under the direction of the decision-maker
will occur in the near future, and if these events are withio automate the environment. The decision-maker takes
the control of the system it can issue actions to automé#te incoming data stream and provides the information
them. to the predictor and the episode membership algorithms
Invariably, there will be events that escape periodic tr receive a predicted state and membership probabili-
frequent patterns, but are desired items for automatities. Based upon the current event, the recent history, the
The notion of encoding safety, security, and user prefeiext state prediction, and the probabilities of membership
ences into the system is important to our system goalse decision-maker will develop a belief state of where
In order to accommodate these needs, we are employiimghe learned HPOMDP model the inhabitant’s activi-
the use of a rules engine that will maintain a knowledgies are currently engaged. If the belief is strong enough
base of user preference, safety, and security rules and aomd exists in a series of non-abstract events (i.e., there is
straints. These rules would incorporate knowledge susilifficient evidence and probability that current observa-
as not opening the mini-blinds at night or turning on exions are part of a known low-level Markov chain) then
haust fans at high humidity levels. It can also accommitie decision-maker will look ahead and make an action
date user preference that could specify rules such asléxision if one exists. These action decisions automate
not automate particular items perhaps because it is thtae environment. While the second phase continues to au-
favorite lamp or they just do not feel comfortable with theomate the environment, as feedback is returned from the
automation for a particular device. These rules can alsges engine and the inhabitant interacting in the environ-
be used to incorporate desired events outside the reat@nt, we enter the third phase.
of normal observation by the system. For example, pat-The third phase involves adaptation and learning by
terns that cannot be performed by the inhabitants suchtfas decision-maker altering the transition probabilities be-
turning off all of the lights when the inhabitant leaves thieveen events based on feedback in order improve automa-
environment can be encoded as a rule. tion performance. These local changes to the model ac-
Since our goal is to learn how to automate the intedommodate for minor changes in the activity patterns of
ligent environment, the rules engine can also serve atha inhabitant over time. The decision-maker will also
feedback mechanism. Whenever a rule is violated or firesntinue to periodically reexamine the historical data us-
feedback can be given to the learning mechanisms of thg the data-mining tool to determine if new patterns are
decision-making component to incorporate into its knoweémerging with the goal of detecting shifts in the patterns.
edge for the future. Ideally, the decision-maker wouldarge lifestyle changes in the inhabitant may lead to a
learn not to violate the safety and security rules and éareaking of the current model. In order to accommodate
tomate the inhabitant-designed rules as well. such shifts the decision-maker must evaluate performance
A decision-maker is our core control policy componerdénd pattern change information in order to contemplate
Our approach is to utilize an overall control algorithm ipotential reset of the entire system in order to accommo-
a three-phase system. The first phase will extract the dpte a major change in the inhabitant’s patterns. These
propriate observation data from a database and controlttmee phases are designed to initiate, operate, and main-
data-mining algorithm in order to find patterns and pafin a system for the automation of the intelligent envi-
terns of patterns to build a hierarchical hidden Markawnment.



4 Architecture
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maker Phase
One

There are three distinct phases to our approach. 1

first phase as shown in Figure 3 is tHkeowledge Dis- o 7ﬁ
covery and Initial Learningphase which involves the data Database
decision-maker utilizing the data-miner to produce hiere l—l
chical knowledge of inhabitant activity patterns, creatir
amodel, and training the prediction and episode memb | feseion o | Tean reccton ahacipans erodcend.
ship algorithms. The second phase as shown in Figure - roduen cpsoses
theOperationalphase which involves observing the ever li v
stream and providing current observation data to then . ' Mined

N . . e Episode Train Episode / Episodes
ceiving next observation and membership probability i fembersip [$—| - Membershi Create HHMM ——
formation from the predictor and episode membership —
gorithms in order to form a belief state in the inhabitai o
model. This infomation is used to potentially make an a Extend HHM 0 '
tomation decision. The rules engine is constantly runni T:T
during this phase. The third phase as shown in Figt HPOMDP
5 is theAdaptation and Continued Learnimnase which P
involves feedback from the rules engine to adjust the tre < ne )

sition probabilities in the model to improve performanc:

monitoring of system performance, and the monitoring of

data-mined inhabitant activity patterns to observe shiftiggure 3: Phase 1: Knowledge discovery and initial learn-
in the inhabitant’s activities. Together this system is d#g phase

signed to learn a model of the inhabitants of the intelligent

environment, automate devices to the fullest extent pos- ,

sible using this model in order to maximize the comfoft1-1 Abstract View

of the inhabitant while maintaining safety and securitfe system framework shown in Figure 6 consists of four
and adapt thls quel ovgrtlmeto accommodate shifts %perating layers. Starting at the bottom, ieysi-
drifts in the inhabitant's life patterns. cal layer contains the hardware within the environment.
This includes all physical components such as sensors,
actuators, network equipment, and computers. Com-
municationlayer lies available to all layers to facilitate
communication and service discovery between compo-
nents. The communication layer includes the operating
system, device drivers, low-level component interfaces,
Given the problem and our chosen approach, it is irdevice proxies, and middleware. Th&formation layer
portant to develop a framework in which to support ogathers, stores, and generates knowledge useful for de-
work. Our system framework is designed of modulaision making. The information layer contains predic-
components and open source software. Modularity is chimn components, databases, user interfaces, data mining
sen over a monolithic system to promote ease of maintemponents, resource utilization information providers,
nance and replacement. The architecture is designedma high-level aggregators of low-level interfaces (e.g.,
allow components to be swappable, potentially even hatmbined sensor or actuator interfaces). Thexision
swappable, in order to create a robust and adaptive dgser takes in information, learns from stored informa-
tem. We present the framework first in a functional attion, makes decisions on actions to automate in the en-
stract view and then in a detailed concrete form. vironment, determines if faults occur and correlates them

4.1 The System Framework
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feedback

sion is checked for safety and security concerns and, if al-
lowed, signals the beginning of action execution. Action
execution flows top-down. The decision action is commu-
nicated to the information layer which records the action
and communicates it to the physical layer. The physical
layer performs the action, thus changing the state of the
world and triggering a new perception. The process re-
back to using components, and develops policies wh Satsad infinitumwith pgriodic retraining of the decision.

. - ayer components, policy development, database archiv-
checking for safety and security.

o ~ing, and component maintenance.
Perception is a bottom-up process. Sensors monitor the

envwonrr!ent. and make m_formatlo_n available through “21(.31.2 Concrete View
communication layer to information layer components.

The database stores this information while other informa@he abstract layers of the system framework are realized
tion components process the raw information into motlerough a set of concrete functional layers. These con-
useful knowledge (e.g., predictions, abstractions). Neanete layers are shown with components in Figure 7. The
information is presented to the decision layer componebiase layer is th€hysical Componentsyer which con-
upon request or arrangement. The decision layer usedts of all real devices utilized in the system. These de-
learned experience, observations, and derived knowledgzes include powerline control interface hardware, sen-
to select an action (which may be vacuous). The desbr networks, input devices, cameras, and so forth, with

Perform action
and provide
positive

feedback

Figure 4: Phase 2: Operational phase



and shared memory based interfaces in a modular de-
ey sign. All of the lower layers are based on simple single
application components, but in higher layers the compo-
DECISIO/N/ nents become more complex. Thikddlewarelayer pro-
vides valuable services to the upper layers of the archi-
- tecture to facilitate communication and service discov-
ery. The MavHome architecture specifies middleware that
provides both point-to-point (done through CORBA) and
. . publish-subscribe (done through multicast messaging uti-
|NFORMAT|ON ‘ lizing OS socket services and the IP stack) types of com-
. . — munication and naming/service discovery provisions. The
s — Servicedayer utilizes the middleware layer to gather in-

formation from lower layers and provide information to

| , system applications above. Services either store informa-
/ / tion, generate knowledge, aggregate lower-level compo-
nents, or provide some value-added non-decision making

COMMUI\UC AT'ON .' computational function or feature (e.g., user interfaces).
AN A

The Applicationslayer is where learning and decision-

-

making components operate.

4.1.3 Implementation

‘ To provide the reader with a better understanding of

Pl_\lYSlﬁ:AL ‘ ‘ ‘ the system framework we employ, we will discuss some

implementation-specific details. More information on our
systems and environments can be found in the appendices.
Lighting control is the most prominent effector in most
Figure 6: Abstract framework inte!ligept environments. We curreptly use X-10-based
devices in the form of lamp and appliance modules to con-
trol all lights and appliances. The CM-11A interface is
the exception of the computer with which equipment issed to connect computers to the power system to control
interfaced. The physical computer(s) and associated ritbe devices. Radio-frequency based transmitters (in re-
work this system resides on is considered the host of mlbte control form factor) and receivers are also used for
layers above the physical. Ti@omputer Interfacdayer device interaction. X-10 was chosen because of its avail-
contains the hardware interfaces to physical devices (eafility and low price. Many home users also utilize X-
PCI card interfaces, USB, Firewire), device drivers to utl-0 technology, so immediate benefits to the current home
lize the hardware, the operating system of the computeser are possible.
and all software interfaces that provide services or APIsPerception through light, humidity, temperature,
for hardware access. It should be noted that since shoke, gas, motion, and switches is performed through
components of above layers reside and utilize operatagensor network we developed. The Argus network sys-
system services, these services are shown to extend toea is a PIC16F877-based system comprised of a master
layers. In thelLogical Interfacelayer, the hardware de-board that interfaces to the computer via a serial interface
vice services and APIs are utilized to create simple, liglgnd connects up to 100 slave boards that host up to 64
weight programs that create a series of atomic servignsors each, ganged in groups of four on a sensor dongle.
around each sensor and effector in the system. Tlogse Special masters have also been developed for high speed
ical proxiesprovide information and control via socketligital and mixed digital/analog sensing applications. A




. framework and components have been developed on Intel-
aker based PCs (Pentium 4) and use the Linux operating sys-
tem (SUSE 9.1).

The logical interfaces for all X-10 and Argus-based
components have been written as light-weight config-
urable modules. The proxies maintain the current state
_____ -1 of each device and provide a mechanism for reading and,
if applicable, control. The communication protocols for
X-10 devices and Argus components are well defined and
interface availability is advertised through zero configura-
tion (ZeroConf) technology.

Components desiring to find X-10 or Argus compo-

L ) nents merely need to perform a link-local query for de-

Middleware - @ vices that follow the defined MavHome X-10 and Argus
protocols and a list of available devices will be presented
to the requester. Contact information is returned to the re-

Logical Logical  { Logical Logical guester to allow connection to the logical proxy. Through
nierface Froxy this mechanism no configuration is required and the sys-
------------------------------------------------ - temis very adaptive and dynamic. New proxies advertise
Soware m::;:] ponware J their availability and older ones remove theirs before they
shut down. We have had a high level of success using Ze-

roConf technology with very few problems once the com-
Hardware | | Hardware Hardware | ponents were developed. When we were using a CORBA
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————————————————————————————————————————————————————————————— name server we had close to a 50% component communi-
Physical Physical | | Physical | | Physical | | Physical | | Physical cation or discovery failure rate at any given time.
Components | Device || Deviee || Devee || Device || Device The system framework uses two main middleware
packages. Communication between high level compo-
Figure 7: Concrete framework nents is performed using the Common Object Request
Broker Architecture (CORBA) due to the clarity of in-
terface design provided by the Interface Description Lan-
stepper-motor master has also been developed to comguge (IDL), ease of integration, maturity and stability
up to four mini-blinds. of the technology, and object-oriented design compatible
A key element in perception is inhabitant localizatiowith our C*+ implemented components. Zero configura-
The Argus Digital Master is used in conjunction with pasion technologies are used for replacing the CORBA nam-
sive infrared (PIR) sensors placed on the ceiling in trafiieg service and utilizing service discovery. They provided
areas to detect motion. The sensors have a 60° fieldbgfthe Apple Multicast DNS responder and adherence to
view and are placed between eight and ten feet from tte ZeroConf standard.
ground depending on the height of the ceiling. In order to Implemented services include a PostgreSQL database
reduce the sensing area, tubes are placed over the sernhatsstores information, user interfaces, prediction com-
to reduce the floor footprint to a three to four foot sensimpnents, data mining components, and logical proxy ag-
circle. Tests in our environments show a consistent singleegators (e.g., the projector screen aggregator that takes
inhabitant location detection rate of 95% or better accsimple “up” or “down” commands to coordinate the ef-
racy. Multiple inhabitant studies will require augmentingprts of a timed control of three switches to place the
technology. screen in the proper position). Resource utilization ser-
All system framework components interface througkices monitor current utility consumption rates and pro-
either serial, USB, or firewire interfaces. The systemide usage estimates and consumption queries, but are not




used in this work. stract inhabitant activity to episodes that represent the
The core of this work resides at the application layeurrent task of involvement. Given the inhabitant task
which along with some of the services comprise the cagpisode, observations not related to the task can be
system architecture of this approach. pruned. A difficult problem is how to discover these
episodes. After discovering the episodes, it is also de-
sirable to be able to classify streamed observations to
episodes in real time with the same service.
Inside the system framework exists the core system archiWWe use théEpisode Discover{ED) algorithm [19] for

4.2 The System Architecture

tecture for our approach. finding inhabitant episodes in the collected data and for
episode classification of streamed observations. ED is
421 ProPHeT an input, not transaction, based algorithm that mines de-

vice activity streams trying to discover clusters of inter-
Decision making is performed in the ProPHérdviding actions that are closely related in time. Significance test-
Partially-observableHidden (HMM/ POMDP) based ing is performed on discovered clusters to generate sets
decision Tasks) component. The world representati@f significant episodes based on the frequency of occur-
at this level is the Hierarchical Hidden Markov Modetence, length, and regularity. Further processing using
(HHMM) [14] based upon a hierarchy of episodes of athe Minimum Description Length (MDL) principle [35]
tivity mined from stored observations. Episode Discoand greedy selection produces sets of significant episodes.
ery (ED) is used to generate low-level episode Markdhese are labeled and directly correspond to an inhabitant
chains and build the hierarchy of abstract episodes uask.
der the direction of ProPHeT. Learning is performed by When an inhabitant is first introduced to an intelligent
extending the HHMM to a hierarchical Partially Obsernenvironment no automation should occur for an initial ob-
able Markov Decision Process (HPOMDP) and applgervation period. This allows the building of a database of
ing temporal-difference learning. Constant feedback fropoetential episodes of normal task activity. This is inhab-
ARBITER is used for continuous learning using TD(G}ant centric and the observation period duration is deter-
reinforcement learning [41]. Action decisions are madeined by data compressibility which is used to determine
by using the incoming event stream, recent history, ttiee stability of the data with relation to episode discov-
stream episode membership features of Episode Memlay: A stable, consistent data compression as reported by
ship (Epi-M) to provide input into the current belief stat&D indicates an end to observation. Identification of con-
in the model, and the Active LeZi (ALZ) prediction of thecept drift and shift is performed by continued monitoring
next event to chose the appropriate transitional action. of streaming data and compressibility. Changes in com-
pressibility indicate a need to reevaluate the discovered
4.2.2 Episode Discovery (ED) episodes. o o
Episode discovery, classification, and identification are
The Episode Discovery (ED) data-mining algorithm disstilized to reduce the state space of an intelligent envi-
covers interesting patterns in a time-ordered data streaghment to a set of inhabitant-centric tasks. Thus, the
ED processes a time-ordered sequence, discovers thaviavHome architecture is inhabitant-centric.
teresting episodes that exist within the sequence as an un-
ordered collection, and records the unique occurrence%%g
the discovered patterns. Because the framework is capa-
ble of processing the interactions incrementally, it can Ba intelligent environment must be able to acquire and
used as part of a real-time system. These features magply knowledge about its inhabitants in order to adapt
ED a suitable algorithm for mining an intelligent environto the inhabitants and meet the goals of comfort and effi-
ment data stream. ciency. These capabilities rely upon effective prediction
Our approach to state space reduction from the largigorithms. Given a prediction of inhabitant activities,
number of potential environment observations is to abtavHome can decide whether or not to automate the ac-

3 Active LeZi (ALZ)



tivity or even find a way to improve the activity to meeable episode of membership. Epi-M output is used by

the system goals. ProPHeT to determine belief state in the operational phase
Specifically, the MavHome system needs to prediftdr the current event observations.

the inhabitant’s next action in order to automate selected

repetitive tasks for the inhabitant. The systemwillneed 0, 5 ARBITER

make this prediction based only on previously-seen inhab-

itant interaction with various devices. It is essential th¥¢hen issues of safety and security are of the highest im-

the number of prediction errors be kept to a minimunportance in a system there is the need for an enforcer of

not only would it be annoying for the inhabitant to rerules before actions are made. This system works by us-

verse system decisions, but prediction errors can leadrtg a knowledge base of rules and evaluating each action

excessive resource consumption. Another desirable clement against these rules to determine if the action vio-

acteristic of a prediction algorithm is that predictions bates them. Actions in violation will be prevented from

delivered in real time without resorting to an offline preaccurring and feedback will be sent back to the originat-

diction scheme. ing system (i.e., the decision-maker). Rules are not re-
Based upon our past investigations, MavHome uses tiuired to be just of a safety and security type, any type of

Active-LeZialgorithm [16] to meet our prediction requiresule can be used in order to guide the behavior of the sys-

ments. By characterizing inhabitant-device interaction t&n. Cases where system behaviors are desired but will

a Markov chain of events, we utilize a sequential predigever be trained by streaming data or interactions can be

tion scheme that has been shown to be optimal in termd@hdled by the addition of rules to provide feedback and

predictive accuracy. Active-LeZi is also inherently an ofacilitate learning of the desired behavior.

line algorithm, since it is based on the incremental LZ78 Before an action is executed it is checked against the

data compression algorithm. policies in the policy engine, ARBITER (A Rule-Based
InitiaTor of Efficient Resolutions). These policies con-
4.2.4 Episode Membership (Epi-M) tain designed safety and security knowledge and inhabi-

tant standing rules. Through the policy engine the system
Effective utilization of the derived HHMM/HPOMDP- is prevented from engaging in erroneous actions that may
based inhabitant model requires an understanding of hparform such activities as turning the heater to 120° F or
to map the current observation stream into the derived dtmm violating the inhabitant’s stated wishes (e.g., a stand-
stractions. Episode Membership (Epi-M) performs thisg rule to never turn off the inhabitant’s night light).
function by using the information learned from Episode These components work in concert to learn, adapt, and
Discovery to build internal correlation tables and furtheuutomate the inhabitants’ lives in an intelligent environ-
augment those tables with time-based occurrence inforent.
mation based on circular probability capture from the
same Qata stream. Data} stream observation over the sResx  MavCore
ified window span supplied to ED can be used to generate
match probabilities with the episode sets over each layldre core of this work lies in the data-mining—decision-
of abstraction. Augmenting the probability with the likemaking—belief—rule/feedback chain or in what we call the
lihood of occurrence based on the observed occurrefd@BA chain comprised of the Episode Discovery (ED),
time distribution for each of the discovered episodes witroPHeT, belief through Active LeZi and Episode Mem-
relation to the current time further improves the accurabgrship (Epi-M), and the ARBITER components.
of possible episode membership reporting. For exampleJnformation and action flow through the system accord-
if the current observation stream matches with 90% prdhbg to the three main system phases. These phases as pre-
ability either reading a book or the pattern of sleepingously stated can be restated as bdimtalization, Op-
on the couch, but the inhabitant has never slept on @tion,andAdaptation
couch at this time of day, then the probability of sleeping The structure of the core components in the initializa-
can be discounted to promote reading as the most prtibn phase and the flow of information are shown in Fig-
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Predictor

the HPOMDP model an action decision may be made.
Any action decisions, or at a minimum the current event,
will flow through to ARBITER to be checked for rule vi-
olations. If a satisfactory action is to be performed, AR-
BITER will contact the appropriate logical proxy to initi-
ate the action.

Figure 8: Core system architecture in initialization phase

ure 8. During initialization information flows from the
database through ProPHeT into ED. As many instanc
of ED as are necessary to process the data into a hie
chy of discovered patterns are started by ProPHeT, p
vided information, and return information on the disco\
ered patterns to ProPHeT. ProPHeT then trains ALZ o\
the same observation data from the database. ProP!
determines what information to pull from the databa:
and performs the necessary data conversions and fil
ing for each component to accept the data and perform
computation within a reasonable amount of time. AftefFigure 10: Core system architecture in adaptation phase
ALZ, ProPHeT trains Epi-M with the same observation
data and the returned hierarchical data returned from EDThe structure of the core components in the adaptation
After deriving the data from the target observation data §gtase and the flow of information are shown in Figure
and training the belief supporting components, ProPHe®. During adaptation information flows from the event
generates the HHMM and subsequent HPOMDP modedgeam through ProPHeT to ARBITER, often accompa-
The structure of the core components in the opemied with an action. Rule violations and any other feed-
tion phase and the flow of information are shown in Fidpack are relayed back to ProPHeT from ARBITER in-
ure 9. During operation information flows from eventsluding inhabitant feedback correlation to countermanded
generated in the environment and perceived by the I@#tomation. ProPHeT uses feedback from ARBITER to
ical proxies and presented to ProPHeT. ProPHeT reladjust the HPOMDP structure to improve performance
these events to ALZ and Epi-M and receives predicti@amd accommodate for pattern drift. Internally ProPHeT
and membership information. Based upon the incomiigevaluating performance based on feedback and usage.
event, history, prediction, membership probabilities, ahaformation also flows into and out of ED as ProPHet

Episode Discovery
(ED)

Data-miner



will periodically evaluate the continuously-growing oband automate their life. The MavPad hosts automation ca-
servation database—it should be noted that in our systpability through 25 X-10 controllers (three fans, thirteen
the database component has an event listener that logtigtits, one HVAC unit, and seven electrical outlets) and
events into the database—for changes in patterns and hi@o ArgusM mini-blind control systems. Sensing capabil-
archy in order to detect pattern shift using ED continuallty is provided by the ArgusMS and ArgusD systems that
in the background. ProPHeT will decide based upon perovide eighteen light, eleven temperature, four humidity,
formance as well as indications of pattern shift and dribur leak detection, four door open/close, three window
whether a reset of the decision-maker is required. The open/close, two seat occupancy, four HVAC vent position,
set is essentially a reboot of the system using a new setwsd smoke detectors, two CO detectors, and 36 motion
observations—one that will hopefully better fit the inhalsensors. The MavPad has been operational for over a year
itant. and has hosted three inhabitants.

The operation and adaptation phases occur simultane-
ously until interruptt'ad. py.the_adaptation phase, usually592 MavLab
return through the initialization phase. All components
with a bold, solid border in the architecture Figures 8, $he MavLab is the project name for the Artificial Intelli-
and 10 represent components that are developed as pageoice Lab located in 250 Nedderman Hall at The Univer-
this work, items with a dashed border are components ddy of Texas at Arlington which is base of operations for
veloped on the MavHome project but were developed byis research. The MavLab is a workspace setting with
others, and components with thin borders represent daffices, cubicles, a break area (MavKitchen), a lounge
or storage. (MavDen), and a conference room. The MavLab hosts

This is only one possible approach to developing a sadtomation capability through 54 X-10 controllers (49
lution given the problem and goals. There are many otHight, five appliances, a projection screen) and fourteen
possible approaches, some of which we presented in rgusM mini-blind control systems. Sensing capability is
related work, but others remain to be explored. We gpeovided by the ArgusMS and ArgusD systems that pro-
exploring this method because it had not been previousige 36 light, ten temperature, three humidity, two door
explored in this domain. We present this work to the seipen/close, six seat occupancy, and 25 motion sensors.
entific community in order to further knowledge in thidMavLab has been in various operational states for the last
area of research and human understanding. two years.

5.3 ResiSim

It is important that this work be well grounded in real-
This work uses two real environments and their simulatggg and in dealing with the real world, especially with
counterparts. The MavPad is an on-campus apartment gflgoals being directed to the intelligent environment do-
the MavLab is the workplace of the researchers of thigain. This research work is aimed at real-time decision-
project. ResiSim is an in-house developed “residentiakking in the real-world. However, it is not always feasi-
simulator” for interactive simulation of intelligent envi-ple to study interactions solely in the real world. A tool for

5 Experimental Environments

ronments. interactive simulation and data visualization was needed.
Since this is a relatively new area of study there are not
51 MavPad any available simulation tools designed for intelligent en-

vironments or home simulation, so the development of a
The MavPad is an on-campus apartment located at 186l became an important issue for performing this type
University Village on The University of Texas at Arling-of work.
ton campus and sponsored by the UTA College of Engi-ResiSim is a residential simulation environment tool.
neering that hosts a full-time student occupant that pétris designed to provide a simulation environment for
ticipates in the project allowing us to learn about theany indoor environment where people would typically



Figure 11: ResiSim view of the MavPad.

spend time. It features Markov model-based virtual imvas generated from a ResiSim virtual inhabitant based on
habitants that interact with the environment and can reaaptured data from the MavLab and was restricted to just
to changes in that simulation. It can also provide real imotion and lighting interactions which account for an av-
habitant data playback and limited interaction. As an evarage of 1400 events per day. There are on average 25
uation tool it can track automation and its source whetHeghting device interactions a day with the remainder be-
from an external system, playback, or elsewhere. ing motion information. Using our ResiSim (Residentual
Simulator) tool which exactly replicates the real MavLab,
. . we trained ALZ and ED on real data and then repeated a
6 Expe”mentatlon and Results typical week in the simulator to determine if the system

. . . could automate the lights throughout the day in real-time.
NOTE: These sections from here on are in progress right

now. The idea is to go from simulation, to the mixed in- h 0

hab 2 real/virtual experiment, and end with inhab 3 exper-ALZ Processed the data and converged to 99.99% ac-

iment. curacy during training on test data from the data set in 10
These systems work in concert to learn, adapt, and iterations. When the system was run with automation de-

tomate the inhabitants’ lives in an intelligent environmerft'SIoNs beéing made by ALZ alone, it was able to reduce
interactions by 9.7% event as shown in Figure 16. ALZ

performance on streaming data maintained between 24-
60% accuracy converging to 54% as illustrated in Figure

As an illustration of these techniques and the system dé-

ployed in the MavLab and MavPad, we have evaluated aED processed the data and found 12 interesting
typical week in an inhabitant’s life with the goal of reducepisodes, 10 that correspond to automatable actions out
ing the inhabitant’s interactions in the MavLab. The datd# 7 originally developed patterns—the difference comes

6.1 Simulation



Figure 12: ProPHeT generated HHMM from ED interaction.
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Figure 14: ALZ Accuracy. Figure 15: Interaction reduction.

from machine grouping versus human encoding. This

was abstracted through ED to three abstract nodes. A

HPOMDP was constructed in ProPHeT as shown in fig-

ures 13. This system was able to reduce interactions byrhe additional abstractions in the hierarchy coupled
76%. As a comparison, the HHMM produced was flatvith a next state produced by ALZ and a probability of
tened and the abstract nodes removed to produce arfiembership from ED to provide input to the belief state
HMM. This HMM was still able to reduce interactions bycreate a system that improves automation performance
38.3%. Comparative results are shown in Figure 16. over a flat model or prediction alone.
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Figure 13: Learned HHMM from MavPad inhabitant data.

6.2 A Day inthe Life of a Real Inhabitant  take over seven feet of paper in order to be legible). This
system was able to reduce interactions by 72.2% to five
fnteractions. As a comparison, the HHMM produced was
ftened and the abstract nodes removed to produce a flat
M. This HMM was still able to reduce interactions by
3.3% to 12. Comparative results are shown in Figure 16.

As an illustration of the viability of the architecture, th
techniques described in this paper, and the MavHome
tem deployed in the MavPad, we have evaluated a typi
day in the inhabitant’s life with the goal of reducing th
inhabitant’s interactions with the lighting in the MavPad.
The data was restricted to just motion and lighting inter-
actions which account for an average of 10,310 events
day. There are on average 18 lighting device interaction

e- Inhabitant s
day with the remainder being motion information. Usin *7— +P:e;c't:n //
our ResiSim (Residentual Simulator) tool which exact »{— . fat num /
replicates the real MavPad, we trained ALZ and ED ¢

12— - HHMM

real data and then repeated a typical MavPad inhabit //
day in the simulator to determine if the system could a % , /
tomate the lights throughout the day in real-time. Figu /f//

11 shows a graphical view of the MavPad data under si /

ulation playback. ) =g

ALZ processed the data and converged to 99.99% i o
curacy on test data from the data set. When the SySt  * 7% e Twes 1o was 265 1es o5 100 278 500 sa1 627 ea 543 370 72 392 40
was run with automation decisions being made by AL_ "
alone, it was able to reduce interactions by one event as
shown in Figure 16. ALZ performance on streaming data Figure 16: Interaction reduction.
maintained between 40-60% accuracy.

ED processed the data and found 10 interestingThe additional abstractions in the hierarchy coupled
episodes that correspond to automatable actions. This w@h a next state produced by ALZ and a probability of
abstracted through ED to three abstract nodes. A HHMiembership from ED to provide input to the belief state
was constructed in ProPHeT. Figure 13 shows this modetate a system that improves automation performance
without the production nodes (it is difficult to show thever a flat model or prediction alone. Problems in the au-
full models because even the simple models when printedhation decisions appear around interactions that occur

Light Interactions




within a short time-frame and are currently under inves  Future Work

gation.
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