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Abstract

The goal of the MavHome project is to develop technolo-
gies toManageAdaptiveVersatile environments. In this
paper, we present a complete agent architecture for a sin-
gle inhabitant intelligent environment and discuss the de-
velopment, deployment, and techniques utilized in our
working intelligent environments. Empirical evaluation
of our approach has proven its effectiveness at reduc-
ing inhabitant interactions in simulated and real environ-
ments.

1 Introduction

The MavHome Project (Managing anAdaptiveVersatile
Home) is focused on conducting research in smart home
technologies from the aspect of treating an environment
as an intelligent agent [10]. We seek to develop and inte-
grate components that will enable the intelligent environ-
ments of the future. The goals of these environments are
to maximize the comfort of the inhabitants, minimize the
consumption of resources, and maintain safety and secu-
rity.

Work in intelligent environments is an important step
in the forward progress of technology. As computing be-
comes more pervasive and people’s lives become busier,
advances in intelligent environments can aid by automat-
ing the simple things (e.g., lighting and HVAC control),
work to actively conserve resources (reducing cost), and
improve safety and security. Environments that sense
their own well-being and can request repair or notify
inhabitants of emergencies can save property and lives.

Homes that can increase their own self-sufficiency over
time can augment busy or aging inhabitants allowing peo-
ple to live in their homes longer (potentially alleviating
some health care system burdens) and free time to allow
people to focus on other aspects of their lives. These are
just some of the potential benefits of working intelligent
environments, research and advancements in this area of
science stand to make a large impact on the future.

The goal of this paper is to present one possible engi-
neered approach to developing intelligent environments.
We present the some background of work in this area of
research, the MavHome architecture, some of the lessons
learned, and some of our experimental results.

2 Related Work

Our work focuses on the emerging domain of intelligent
environments or smart homes and buildings. Generally,
these environments are defined by the way in which peo-
ple interact with them or in the way that these places in-
teract with the inhabitants. Benefits include providing
comfort and productivity for inhabitants and generating
cost savings for utility consumption. There are many re-
searchers working on interesting problems in this domain.

2.1 Framework Projects

Out of the MIT Artificial Intelligence Lab comes the
AIRE (Agent-based Intelligent Reactive Environments)
group. The AIRE group is engaged in research involving
pervasive computing designs and people-centric applica-
tions and have constructed “AIRE spaces” in the forms



of an intelligent conference room, intelligent workspaces,
kiosks, and “oxygenated” offices. To assist in their re-
search and to integrate their research technologies, they
have developed middleware called Metaglue and an ex-
tension, Hyperglue [3]. In addition to infrastructure for
intelligent environments, the AIRE group is focused on
developing collaboration support tools to support meet-
ings by capturing information and facilitation of the meet-
ing, using sketch understanding for information capture,
developing algorithms for the arrangement of information
to foster a better understanding of the data, and extend-
ing instant messaging beyond the desktop to the physi-
cal environment. They are also involved in investigating
novel human-computer interfaces that utilize technolo-
gies such as gaze-aware interfaces, streaming media, and
multi-modal sketching which involves capturing speech
with white-board sketching and gestures in order to cap-
ture the full meaning of the intended discourse. Recent
work includes the development of applications to support
plan-based proactive computing which can store and ma-
nipulate knowledge about user plans, habits and needs in
order to execute actions of a user plan on request [3].

The AMBIENTE division of the Fraunhofer-IPSI Re-
search Institute in Germany is working on a number of
intelligent environment-related projects. As a partner of
the fifteen member European AMIGO project [4], they
are focused on creating ambient intelligence (a paradigm
that promotes the empowerment of people through envi-
ronments that are aware of their presence and responds
to their needs [18]) for the networked home environment
where home automation, consumer electronics, mobile
communications, and personal computing come together
under complete integration. AMIGO seeks to research
and develop open, standardized, interoperable middle-
ware and intelligent user services for these environments.
The goal of i-Land is to create “intelligent user services”
which will provide experience enriching services that will
make the system seem intelligent. They are focusing
these services on home care and safety, home informa-
tion and entertainment, and the extended home environ-
ment. AMIGO is just in the beginning stages of life, but
it draws from work on Ambient Agoras [15], i-Land [5],
and other related precursor projects.

At Stanford University, the Interactive Workspaces
project is exploring work collaboration technologies in
technology-rich environments with a focus on task-

oriented work such as design reviews or brainstorm-
ing sessions. Their experimental facility is called
“iRoom” where they are investigating integration issues
with multiple-device, multiple user applications, interac-
tion technologies, deployment software, and component
integration.[40] To answer the integration and interactive
workspace building challenge they have developed iROS,
a middleware system for interactive workspaces. iROS
is comprised of three subsystems: theEventHeapwhich
provides coordination, theDataHeapwhich provides data
movement and transformation, andICrafter which pro-
vides user resource control. Through iROS they seek to
provide a middleware layer that provides true platform
portability, application portability and extensibility, ro-
bustness, and simplicity [34]. Current work at Stanford
has shifted focus to the area where HCI meets the system
in the development, deployment, and operation of iRoom
human interfaces. They are studying issues with eye con-
tact in videoconferencing, wall-display interaction, and
information fusion issues.

The Laboratory for Communication Engineering
(LCE) at Cambridge University (originally in conjunction
with AT&T Laboratories Cambridge) is pursuing their
Sentient Computing project with the focus of simulating
computer perception in computing systems that detect,
interpret, and respond to facets of a user’s environment
[6]. Research has involved a deployed ultrasonic location
system, advancements in world modeling including spa-
tial considerations, and sentient computing applications
such as world model browsing, remote desktop displays
that follow users, smart posters using context-aware in-
formation retrieval, and ubiquitous user interfaces.[8] The
omniORB CORBA package and VNC (Virtual Network
Computing) both originated from the AT&T Labs, Cam-
bridge, research. However, the Sentient Computing group
no longer uses omniORB in favor of middleware that
can support context-aware multimedia applications called
QoSDREAM, also under research and development at the
LCE. QoSDREAM supports multiple types of sensors and
provides a simple spatial model for representinglocatable
entities, real-time model and sensor data integration, an
event mechanism for notifying applications of location in-
formation, a query-able location database, and an ease of
extensibility. QoSDREAM is based on providing Qual-
ity of Service guarantees and takes a location-centric ap-
proach to the services it provides [31].



The Gaia project at the University of Illinois at Urbana-
Champaign [43] involves the creation of active spaces for
ubiquitous computing. Their focus has been on creating
middleware to support environments that sense inhabi-
tant actions and assist them with different tasks—refered
to by this work as an “active space.” In support of this
goal they have developed the Gaia OS which is a meta-
operating system that has been customized for specific
physical spaces in order to support application develop-
ment in those domains. Gaia supports mobile user-centric
active space applications by managing the resources and
services of an active space and providing services for lo-
cation, context, events, and storage of information. Gaia
consists of the Gaia Kernel, the Gaia Application Frame-
work, and Gaia Applications. The kernel consists of
an event manager which distributes events in the active
space, a context service which provides contextual infor-
mation in the form of first order logic and boolean al-
gebra, a presence service which is resource-aware and
provides information, a space repository to store infor-
mation, and a context file system to make personal data
available to applications, organize data, and retrieve data
in a format based on the context of user preferences or
device characteristics. The application framework pro-
vides mechanisms to develop, execute or accommodate
existing applications to active spaces and is comprised of
a distributed component-based infrastructure which pro-
vides a model, view, controller, and coordinator; a map-
ping mechanism which customizes applications to differ-
ent active spaces, and a group of policies to customize
the applications [36]. Gaia applications include a pre-
sentation manager to present slideshows on one or many
displays in an environment, ConChat which is a context-
aware chat program, a calendar program, meeting atten-
dance task recorder, media players, speech engines, PDA
interfaces, and other presentation and workgroup centric
applications [43]. The Gaia researchers have limited their
domains to spaces used for teaching such as classrooms,
offices, and lecture rooms.

Researchers at the University of Florida are building
the Gator Tech Smart House with the goal of creating
assistive environments that can perceive themselves and
their residents and utilize telematics to provide services.
Drawing on their previous knowledge gained from ex-
perimentation in their Matilda Smart House laboratory,
they have constructed a full house in Gainesville, Florida.

This home features such technologies as a smart mailbox
that senses mail, a smart front door to control access, a
driving simulator in the garage to evaluate elderly driv-
ing abilities, smart blinds, a smart bed, a smart closet
that helps with clothing choices, a smart laundry, a smart
bathroom mirror to display information, a smart bath-
room thats controls water temperature and features bioin-
formatic capture, smart displays throughout the home, a
smart microwave, a smart refrigerator and pantry, smart
cameras for security, ultrasonic location detection, a smart
floor for localization, a smart phone, smart wall plugs for
electrical items, smart thermostats (i.e., HVAC control),
smart leak detectors in areas with water, a smart stove, a
smart display projector for information, a home security
monitor, an emergency button, and cognitive assistance
through visual and audio cues to help the inhabitants re-
member medications, appointments, and other important
items. Their current key contribution is the development
of a middleware architecture which includes a physical
layer of devices, a sensor platform layer to convert read-
ings into service information, a service layer to provide
features and operators to components, a knowledge layer
that offers ontology and semantics, a context management
layer to provide context information, and an application
layer to support a rich set of features for inhabitant liv-
ing. The state of the project is still focused on integration
and the middleware development, but they are beginning
to focus on issues with eldercare and the aging in place
initiatives [21].

2.2 Application and Gadget Projects

The Aware Home Research Initiative (AHRI) at the Geor-
gia Institute of Technology is focused in the areas of inter-
active experience applications, technology, software en-
gineering, and an investigation of the social implications
involved with aware home living. Their interactive ex-
perience applications have been developed in the areas
of social communication, memory aids, and home assis-
tants. Technology development by the AHRI has involved
an indoor location service and an activity recognition al-
gorithm. AHRI has focused on the problem of sensing
location and as a by-product have produced the Location
Service infrastructure which seeks to provide a robust and
accurate location service, performs sensor fusion trans-
parently for the user, and supplies reusable and extensible



techniques to application programmers so that they may
utilize location information in application-relevant ways
[1]. AHRI researchers have conducted research develop-
ing two toolkits, INCA and the Context Toolkit, as well
as a location service. INCA is the Infrastructure for Cap-
ture and Access, and it provides the means for creating
systems that capture life experience details and preserve
them for future access. INCA provides capture, storage,
format-conversion, and access support [42]. The Con-
text Toolkit provides abstractions and support for context-
aware development [38].

MIT Media Lab’s Consortia on Things That Think
(TTT) and their special-interest group on Counter In-
telligence are primarily focused on single applications
such as an augmented reality kitchen, context-aware ta-
bles, and the Food Oracle. They have also been involved
in developing smart architectural surfaces, an intelligent
spoon, and have also produced a distributed agents plat-
form called Hive [26]. The augmented reality kitchen
projects informational displays onto existing counters,
cabinets, and appliances in order to improve ease of use,
efficiency, and safety. Context-aware tables are physical
tables that change their purpose by height (e.g, display
picture book photos when raised and food menus when
lowered). The Food Oracle is a set of tools that combines
learning and reasoning about cooking and food into a sys-
tem to help people explore creative and intuitive cook-
ing. The system reasons about recipe-sensitive ingredi-
ent substitutions and the intentions of recipes, and uses
a database of food and culture to create an adaptive and
dynamically generated smart recipe system based upon a
wealth of information about food. There are a dozen or
more such projects as these undergoing varying levels of
development, research, and testing at the MIT Media Lab
[26].

2.3 Industry Initiatives

The Pervasive Computing Lab at IBM Research is per-
forming work involving speculative integration to create
proof of conceptdemonstrations utilizing modern tech-
nology to create such things as an advanced media living
room, a networked kitchen, and integrated automobiles.
Although not developing new technologies they are com-
bining existing technologies in new and interesting ways
to show what is possible. For the designer and integrator

it should be of interest that they use IBM Websphere, Java
servlet technology, and Lotus Notes [45].

The Vision Group at Microsoft Research were in the
process of developing a prototype architecture and asso-
ciated technologies for intelligent environments in their
Easy Living project (no updates since 2001). Their re-
search was concerned with using computer vision for in-
habitant tracking and visual gesture recognition, sensor
fusion, context-aware computing using geometric mod-
els, automatic sensor calibration, dynamic and adaptable
user interfaces, generalized communication and data pro-
tocols, and system extensibility [17]. Microsoft corporate
also has a demonstration home on their Redmond cam-
pus that features a six room home enclosed in a building
where they demonstrate what they perceive to be technol-
ogy in the five to ten year out window. Featured tech-
nology involves the integration of Microsoft products and
services such as their digital music and video offerings.
Recent demonstrations show the integration of RFIDs on
clothing and a mirror with a built in display that pro-
vided care instructions as well as garment matches from
the user’s wardrobe [11].

Other industry initiatives include British Telecom’s
Telecare project which established 10 “millenium homes”
for aged people where an array of sensors monitored en-
vironmental conditions, notified the inhabitants to cor-
rect potentially dangerous conditions, and notified care
providers on necessity [7]; CISCO Network’s Internet
Home which explores the impact of the Internet on the
home by showcasing Internet-dependant technologies and
wireless web pad interfaces [9]; Intel Corporations Proac-
tive health Lab is exploring technologies to help seniors
“age in place” in order to help the increasing health care
burden of the rapidly aging population of the United
States by anticipating inhabitant needs through observa-
tion with wireless sensors and taking action to meet those
needs through available control and interactive systems
[24]; Siemens AG is promoting “living made easy” home
automation products which include a full range of com-
ponents for automating almost all of the common items
in a home and integration systems as part of their smart
home technology initiative [39]; Royal Philips is involved
with exploring ambient intelligence and user experience
in their HomeLab experiments involving people living in
an apartment and being observed by a research team [33];
and Accenture is focusing on elder care and lifestyle with



their room of the future which examines activity moni-
toring and interactive furniture and objects that are meant
to improve the inhabitant experience while allowing for
aging in place [2]. There are also a number of commer-
cial retail companies selling products to make people’s
homes “smart.” The most prominent of these companies
is SmartHome (www.smarthome.com).

2.4 Healthcare Initiatives

The Medical Automation Research Center (MARC) smart
house project at the University of Virginia is focused on
the issue of in-home monitoring for the elderly in order
to promote the concept of aging in place. Their homes
are equipped with low-cost, non-invasive sensors (they
do not allow cameras or microphones), and a data log-
ging and communications to establish telematics to au-
thorized individuals (e.g., family and their personal physi-
cian). They have developed data analysis tools to observe
general health and activity levels and have developed the
metrics of Activities of Daily Life (ADL), most Instru-
mental Activities of Daily Life (IADL), the index of well-
being, and a measure of ability decline. System feedback
to prompt the individual to remain active is also being
explored. The MARC In-Home Monitoring System has
been deployed in several case study homes. Its key fea-
tures are the low cost technology, the ability to retrofit it
into existing homes, and the data-mining health status re-
port components [27].

The Robert Gordon University CUSTODIAN (Con-
ceptualization for User involvement in Specification and
Tools Offering the efficient Delivery of system Integra-
tion Around home Networks) project has an objective to
develop technology and services for disabled and elderly
people through information and communication technolo-
gies in order to improve the quality, effectiveness, and
efficiency of services which support their independence
in living and maintained integration in society. To this
end they are focused on maintaining and restoring func-
tional capabilities through assistive technologies, elec-
tronics products, and systems around a home network
in smart houses. They have designed and established a
demonstration house called the Dundee Flat to perform
experimentation for the personal care services. Their cur-
rent work involves case studies that observe process facil-
itators that try to match individual needs to technology in

an attempt to improve the way recipients are fit to tech-
nology [12]. Their work addresses the issues of proper
fit, deployment, and usage of the technologies of smart
homes with the disabled and elderly.

2.5 Learning and Adapting Initiatives

The Adaptive House project at the University of Colorado
at Boulder under the direction of Michael Mozer tackles
the issue of overcoming the programming problem with
home automation (i.e., where someone must program the
rules for automation and reprogram them over time as the
inhabitant’s lifestyles change). Their work involves de-
veloping a system that controls the HVAC, water heater,
and interior lighting of a home, learning how to control
these features based on the lifestyle and desires of the in-
habitants, and adapting the control policy over time in an
environment with a minimal user interface. This project
uses an actual residence called the neural network house
equipped with 75 sensors that monitor temperature, am-
bient light levels, sound, motion, door and window open-
ings as well as actuators that control the furnace, space
heaters, water heater, lighting units, and ceiling fans [29].
The control systems in this work are based on neural net-
work, reinforcement learning, and prediction techniques
called ACHE (Adaptive Control of Home Environments).
Q-learning (a reinforcement learning technique [41]) uses
event-based segmentation over clock-based in order to
make the problem tractable and initiates actions based on
perceived state and reward. In order to simplify the state
space the automation task was decomposed into zones and
a heuristic based determination of event separation factors
was used to partition the experience into events for the
event-based control system. The control policy involved
a mixing of inhabitant comfort and energy conservation
goals. The system used a state estimator to form high-
level state representations which were based upon inhab-
itant activities (through an occupancy model and an an-
ticipator which was neural network based and provided
a prediction of occupancy of a space) and light levels in
each zone (through a natural light estimator). This in-
formation and the decomposition of spaces were utilized
with multiple Q controllers to automate the home. Their
work also involved some exploration in order to reduce
energy consumption by occasionally testing the inhabi-
tant by altering the control policy unless counteracted by



the inhabitant [30].
Researchers from the Intelligent Inhabited Environ-

ments Group (IIEG) at the University of Essex in the
United Kingdom are creating anambient-intelligenceen-
vironment using embedded agents called theiDorm [22].
Their approach involves the use of a fuzzy logic based
Incremental Synchronous Learning(ISL) system to learn
and predict inhabitant needs. Their testbed environment,
a dorm room, involves the access of 11 environmental pa-
rameters and nine effectors (mostly lights). The use of
parallel fuzzy logic controllers (FLC) in a hierarchy is
used to learn and encode rules. Each FLC has a single
modifiable parameter and is used to learn a particular as-
pect of the environmental control. The FLCs are either
static (i.e., pre-seeded with knowledge) or dynamic (i.e.,
observed from the inhabitant). In combination all of the
FLCs form the ISL system and encode the desired control
behavior of the environment. Other management systems
prune down the number of FLCs by observing factors of
redundancy and low usage to keep the system computa-
tionally manageable. The researchers have presented ev-
idence via empirical evaluation of iDorm inhabitants that
the system can perform initial and lifelong learning of in-
habitant needs over a 132 hour experiment [18].

2.6 Other Initiatives

The Department of Architecture’s Changing
Places/Housen project at MIT is focused on how
technology, materials, and design strategies can create
dynamic, evolving places that respond to the lives of their
inhabitants. Using the one bedroom condominium called
the PlaceLab, researchers use sensors spread throughout
the environment to observe the environment and develop
innovative user interfaces for control of the spaces,
resource management, and to maintain their health and
activity levels. Current projects also include participation
in the Open Source Building Alliance (OSBA) where
key components of a more responsive model for creating
living spaces are being developed, homes chassis design
to make building a home similar to industry standards
for building vehicles or electronics, integrated interior
infills which replace interior walls with customizable
cabinetry-like components, design and configuration
tools to promote the ease of design of these new types
of structures, just-in-time persuasive user interfaces for

promoting healthy behaviors by encouraging a more
active lifestyle, context-sensitive measurement of phys-
ical and sedentary activities, context aware experience
sampling which attempts to learn inhabitant activities
from observed sensor readings, portable wireless sensors
for studying behavior in natural settings, proactive health
displays for health assessment and self reflection, idle
moment detection for proactive health activities using
personal and environmental sensors and interfaces, and
many others [28].

In Japan, efforts by the National Institute of Informa-
tion and Communications Technology (NiCT) and their
Keihanna Human Info-Communications Research Center
are focused on the development and testing of the Ubiqui-
tous Home. Their research goal is to support and optimize
the usage of information appliances in the home across the
users regardless of age or lifestyles. They are develop-
ing many technologies which include middleware in the
form of a distributed collaborative infrastructure for the
home appliances to interact, an interactive field model for
context-sensitive services to enhance the user-appliance
interaction, a distributed environment action database to
store and recall information about interactions, and event
interactive robotics that provide context-sensitive interac-
tion. In league with many Japanese technology compa-
nies, their research aims to improve the relationship be-
tween humans and household appliances. Efforts for eval-
uation of case studies involving human family participa-
tion in their Ubiquitous Home are just beginning [32].

Besides AMIGO on the European continent, the United
Kingdom Equator Interdisciplinary Research Collobora-
tion comprised of eight members (The University of Bris-
tol, The Lancaster University, The Royal College of Art,
The University of Sussex, The University of Glasgow,
The University of Nottingham, The University of South-
hampton, and The University College London) and sup-
ported by the UK Engineering and Physical Sciences
Research Council (EPSRC) is another supergroup of
researchers working on pervasive/ubiquitous computing
and intelligent environment related work. They are fo-
cused on the integration of physical and digital interac-
tion in order to bridge the gap between reality and virtual
reality. This combined effort aims to search for a better
understanding of what it means to live in an age when dig-
ital and physical activities not only coexist but co-operate
and interoperate. Their list of publications cover almost



all areas of related research (e.g., HCI, location systems,
sensors, and so forth), but do not seem to currently be fo-
cused on developing specific intelligent environments or
automation and inhabitant context learning [13].

The PRIMA project at INRIA is concerned with the
scientific foundation for interactive environments. Their
mission is to develop and integrate systems with the abil-
ity to perceive and model an environment and its con-
tents, to act in/upon this environment, and to interact with
the occupants. Their research focus is on multi-modal
observation and tracking of people, new forms of man-
machine integration, control and integration of perceptual
processes, and context guided learning and recognition
[23]. They have an augmented meeting room testbed for
their experimentation that is equipped with cameras and a
microphone array. This group is a member of the AMIGO
project.

There are many other intelligent environment projects
in academia, government, industry, and even amongst the
enthusiastic general population and home hobbyists. We
have covered many of the current and historical efforts
in this area. The current trend is that many groups are
combining their efforts to eliminate redundancy of effort
and focus on the research challenges. These super efforts
from groups such as Equator in the UK and AMIGO on
continental Europe are beginning to produce measurable
results and forward knowledge in intelligent environment
research.

3 Approach

Our work focuses on learning to automate the intelligent
environment. The motivation for this work is the devel-
opment of systems to meet this focus in an accurate and
efficient manner. There are a number of significant chal-
lenges in this work in order to meet our goals, which are
to learn a model of the inhabitant of an intelligent environ-
ment, automate devices to the fullest extent possible using
this model in order to maximize the comfort of the inhab-
itant while maintaining safety and security, and adapt this
model over time to maintain these requirements. In or-
der to accomplish these goals, we must first learn a model
of inhabitant activities, and then incorporate this into an
adaptive system for continued learning and control.

Our development goal is to create an agent based sys-

tem, which the essence of this system is to perceive the
environment through sensors, reason about this informa-
tion in order to make decisions on whether or not an ac-
tion should be taken to change the state of the environ-
ment in which the agent is situated, and then perform this
action through actuators which will affect the perceived
state continuing the cyclead infinitum. This work focuses
on an agent based system centered around a known single
inhabitant in our environment.

The sensing and control capabilities of our intelli-
gent environments fit into the generalized models of any
sensed and controlled system. The sensors, and for that
matter all objects, in our environments are designated
with a zone-number combination (e.g., A1) for unique-
ness. In our environments, there is a one-to-one corre-
spondence between state and action (e.g., an action such
as turning on a light produces the state change of that light
being on) which is an attribute shared by many systems
but certainly not all.

Environments of this nature provide significant chal-
lenges. The largest involves the curse of dimensional-
ity [25]. The state space of an intelligent environment
is enormous. For example, if we were to examine a very
small environment with ten motion sensors and five lights
for a total of fifteen objects and each of these objects
has only two states (they are binary) that would give us
215 = 32, 768 unique states. If we can reason about each
one for 0.01 seconds it would take 5.46 minutes to make
a decision. Our environments have state spaces closer to
the size of2150 or 1.43x1045 unique states. The size of
the problem space makes it difficult to develop real-time
reasoning for intelligent environments.

The second largest problem is the curse of generaliza-
tion. Most approaches to state space reduction involve
generalization techniques that reduce the state spaces into
similar groups; however, in the intelligent environment
domain where inhabitants are involved in specific local
activities generalizing will often produce undesirable re-
sults. For example, if an inhabitant reads, listens to mu-
sic, and watches television all in the same room and the
commonality between these events is that the same light
is on in the room all that a generalized approach will pro-
vide is an automation of that light, missing the desired au-
tomation of the CD player and television as appropriate.
The challenge is to develop a solution that can maintain a
small state space for macro reasoning, but still maintains



the details for micro reasoning and automation.
The big assumption we make are that peopleare crea-

tures of habit and will provide some periodicity and/or
frequency to a number of activities they perform in any
given environment, that these patterns can be observed
through sensor perception, and that these patterns can be
represented as Markov chains. This base pattern repre-
sentation of a Markov chain represents a certain identifi-
able pattern of activity orepisode. These episodes may
be abstracted into higher-level episodes that represent a
grouping of related episode activity. In order to distin-
guish pattern permutations when building hierarchies we
add history to the transitions to determine the correct tran-
sition probabilities.

As a basic example, Figure 1 shows a typical Markov
chain of inhabitant activity, namely the pattern of watch-
ing television. Patterns similar to watching television such
as listening to music and reading a book can be grouped
together because they occur in the same space in an en-
vironment. Furthermore, activities that occur on that side
of the house could be grouped together and eventually all
activities in a house fall under the root note as shown in
Figure 2.

This location-based hierarchical decomposition of ac-
tivities illustrates the type of information we are trying to
learn about the inhabitants of an environment—how they
utilize the environment. The model influenced by location
is typical of human partitioned state spaces, but in this
work we seek to learn the structure automatically through
observation. Hierarchical decomposition of the Markov
activity model will be guided by how the inhabitant in-
teracts in the environment. In other words, the hierarchies
we learn are based upon observed patterns so that if the in-
habitant eats then watches television followed by a period
of sleep then those activities are more likely to be grouped
together because at a higher level they form a pattern.

In the real world the current state of our environments
is never fully understood. We can make observations and
infer about the general state of the environment, but the
environment is still only partially observable—we cannot
observe what takes place in people’s minds, in the duct-
work, behind the couch, inside the television, and so forth.
In our environments what we actually learn are Hidden
Markov Models (HMMs) . HMMs still describe a pro-
cess that goes through a series of states, but each state
has a probability distribution of possible transitions [37].

Each state also represents a perceived observation that en-
capsulates many possibly unseen events that arehidden
from the observer. We depart from the traditional state-
based chains of the Markov model which typically rep-
resent the entire world state in favor of an event-based
chain, one in which the world state is represented only by
the single change observed at that point in time. Since
our model focus is on a single inhabitant, we concentrate
on the changes made to the world state by that individ-
ual and assume that the rest of the world has not changed.
Our model, as such, represents a chain of events where
each event represents the observation that we make at a
given point. Each event encapsulates all of the hidden
acts that may occur as well. You can build HMMs into a
hierarchy and call it a Hierarchical Hidden Markov Model
(HHMM). If you tie actions and rewards to the transi-
tions between states this model becomes known as a Hi-
erarchical Partially-observable Markov Decision Process
(HPOMDP).

Our main challenge is to learn an inhabitant model
solely from observation. The learned model can only uti-
lize data from the perception of the environment and de-
signed mechanisms for converting that data into a useful
knowledge representation. The model should be compu-
tationally tractable, accurately reflect the interactivity pat-
terns of the inhabitant, and provide for the accurate and
efficient automation of the environment.

Learning past the initial model is our second challenge.
Automation systems for intelligent environments are only
useful in the real world if they can adapt to the ever chang-
ing lifestyles of the inhabitants to whom they cater. The
system should accommodate for both a slow drift in pat-
terns and for dramatic shifts. The system should adapt
quickly while minimizing the loss of accuracy and effi-
ciency. The goal is to provide for the life-long adaptation
of the system with the inhabitant of the environment.

This work seeks to utilize information presented to it.
The better the quality of information, the better the model,
and the better the control policy. Central to our approach
is the necessity to recognize the Markov chain patterns of
the life of an inhabitant in one of our environments and
to recognize the patterns of the abstract patterns, com-
prising a sequence of the low-level patterns—all from ob-
servation data. The large quantities of observed data and
the desire to extract the patterns from it have led us to
the data-mining community. If we could employ a data-



Figure 1: Watching television Markov chain

Figure 2: Basic hierarchical Markov model

mining technique to discover the periodic and frequent
episodes of behavioral patterns in the data, we could use
that knowledge to build our inhabitant models. We utilize
the work by Ed Heierman in his Episode Discovery (ED)
technique [20] as a tool for extracting the desired knowl-
edge from the data stream.

If a data-mining technique can generate knowledge to
create a hierarchical model, then in order to be able to
use it for automation we will require information that will
provide a mapping from the real world observations to
the specific location within our model. The event stream
coming into the system provides one clue as to which pat-

tern we are currently observing, but may be insufficient to
truly pinpoint the exact chain of current activity. What we
need to develop is a belief in which state the current world
is engaged in order to utilize our learned model to auto-
mate future events. Understanding what is most probable
next event to occur would assist in this belief. Using a
prediction algorithm trained on our observation data sets
and with reasonable accuracy could be used to provide
this type of information. In addition, since our approach
is to create hierarchical layers that are labeled as groups
of events there will always be a probability of member-
ship given an observation data stream to these groupings.



An algorithm that produces a probability of membership
given the current event stream to learned groups would
provide information that could narrow the choices of spe-
cific patterns in current practice and improve the belief of
which state the system is currently engaged. The com-
bination of the current event stream, a membership prob-
ability across the hierarchical layers, and a prediction of
the next event to occur yield a belief state of where in
the derived model the current inhabitant is interacting. If
we look ahead in the model we can determine events that
will occur in the near future, and if these events are within
the control of the system it can issue actions to automate
them.

Invariably, there will be events that escape periodic or
frequent patterns, but are desired items for automation.
The notion of encoding safety, security, and user prefer-
ences into the system is important to our system goals.
In order to accommodate these needs, we are employing
the use of a rules engine that will maintain a knowledge
base of user preference, safety, and security rules and con-
straints. These rules would incorporate knowledge such
as not opening the mini-blinds at night or turning on ex-
haust fans at high humidity levels. It can also accommo-
date user preference that could specify rules such as to
not automate particular items perhaps because it is their
favorite lamp or they just do not feel comfortable with the
automation for a particular device. These rules can also
be used to incorporate desired events outside the realm
of normal observation by the system. For example, pat-
terns that cannot be performed by the inhabitants such as
turning off all of the lights when the inhabitant leaves the
environment can be encoded as a rule.

Since our goal is to learn how to automate the intel-
ligent environment, the rules engine can also serve as a
feedback mechanism. Whenever a rule is violated or fires,
feedback can be given to the learning mechanisms of the
decision-making component to incorporate into its knowl-
edge for the future. Ideally, the decision-maker would
learn not to violate the safety and security rules and au-
tomate the inhabitant-designed rules as well.

A decision-maker is our core control policy component.
Our approach is to utilize an overall control algorithm in
a three-phase system. The first phase will extract the ap-
propriate observation data from a database and control the
data-mining algorithm in order to find patterns and pat-
terns of patterns to build a hierarchical hidden Markov

model. This HHMM will be extended with actions and re-
wards to form a HPOMDP model of the inhabitant for the
environment under evaluation. The observation data will
also be used to train a prediction algorithm. The obser-
vation data and data-mined patterns will be used to train
an episode membership algorithm. After the initial in-
formation is processed, the model is derived, and useful
components are trained, we can move into the next phase.

The second phase involves the operational use of the
components under the direction of the decision-maker
to automate the environment. The decision-maker takes
the incoming data stream and provides the information
to the predictor and the episode membership algorithms
to receive a predicted state and membership probabili-
ties. Based upon the current event, the recent history, the
next state prediction, and the probabilities of membership
the decision-maker will develop a belief state of where
in the learned HPOMDP model the inhabitant’s activi-
ties are currently engaged. If the belief is strong enough
and exists in a series of non-abstract events (i.e., there is
sufficient evidence and probability that current observa-
tions are part of a known low-level Markov chain) then
the decision-maker will look ahead and make an action
decision if one exists. These action decisions automate
the environment. While the second phase continues to au-
tomate the environment, as feedback is returned from the
rules engine and the inhabitant interacting in the environ-
ment, we enter the third phase.

The third phase involves adaptation and learning by
the decision-maker altering the transition probabilities be-
tween events based on feedback in order improve automa-
tion performance. These local changes to the model ac-
commodate for minor changes in the activity patterns of
the inhabitant over time. The decision-maker will also
continue to periodically reexamine the historical data us-
ing the data-mining tool to determine if new patterns are
emerging with the goal of detecting shifts in the patterns.
Large lifestyle changes in the inhabitant may lead to a
breaking of the current model. In order to accommodate
such shifts the decision-maker must evaluate performance
and pattern change information in order to contemplate
potential reset of the entire system in order to accommo-
date a major change in the inhabitant’s patterns. These
three phases are designed to initiate, operate, and main-
tain a system for the automation of the intelligent envi-
ronment.



4 Architecture

There are three distinct phases to our approach. The
first phase as shown in Figure 3 is theKnowledge Dis-
covery and Initial Learningphase which involves the
decision-maker utilizing the data-miner to produce hierar-
chical knowledge of inhabitant activity patterns, creating
a model, and training the prediction and episode member-
ship algorithms. The second phase as shown in Figure 4 is
theOperationalphase which involves observing the event
stream and providing current observation data to then re-
ceiving next observation and membership probability in-
formation from the predictor and episode membership al-
gorithms in order to form a belief state in the inhabitant
model. This infomation is used to potentially make an au-
tomation decision. The rules engine is constantly running
during this phase. The third phase as shown in Figure
5 is theAdaptation and Continued Learningphase which
involves feedback from the rules engine to adjust the tran-
sition probabilities in the model to improve performance,
monitoring of system performance, and the monitoring of
data-mined inhabitant activity patterns to observe shifts
in the inhabitant’s activities. Together this system is de-
signed to learn a model of the inhabitants of the intelligent
environment, automate devices to the fullest extent pos-
sible using this model in order to maximize the comfort
of the inhabitant while maintaining safety and security,
and adapt this model over time to accommodate shifts and
drifts in the inhabitant’s life patterns.

4.1 The System Framework

Given the problem and our chosen approach, it is im-
portant to develop a framework in which to support our
work. Our system framework is designed of modular
components and open source software. Modularity is cho-
sen over a monolithic system to promote ease of mainte-
nance and replacement. The architecture is designed to
allow components to be swappable, potentially even hot-
swappable, in order to create a robust and adaptive sys-
tem. We present the framework first in a functional ab-
stract view and then in a detailed concrete form.

Figure 3: Phase 1: Knowledge discovery and initial learn-
ing phase

4.1.1 Abstract View

The system framework shown in Figure 6 consists of four
cooperating layers. Starting at the bottom, thePhysi-
cal layer contains the hardware within the environment.
This includes all physical components such as sensors,
actuators, network equipment, and computers. TheCom-
municationlayer lies available to all layers to facilitate
communication and service discovery between compo-
nents. The communication layer includes the operating
system, device drivers, low-level component interfaces,
device proxies, and middleware. TheInformation layer
gathers, stores, and generates knowledge useful for de-
cision making. The information layer contains predic-
tion components, databases, user interfaces, data mining
components, resource utilization information providers,
and high-level aggregators of low-level interfaces (e.g.,
combined sensor or actuator interfaces). TheDecision
layer takes in information, learns from stored informa-
tion, makes decisions on actions to automate in the en-
vironment, determines if faults occur and correlates them



Figure 4: Phase 2: Operational phase

back to using components, and develops policies while
checking for safety and security.

Perception is a bottom-up process. Sensors monitor the
environment and make information available through the
communication layer to information layer components.
The database stores this information while other informa-
tion components process the raw information into more
useful knowledge (e.g., predictions, abstractions). New
information is presented to the decision layer components
upon request or arrangement. The decision layer uses
learned experience, observations, and derived knowledge
to select an action (which may be vacuous). The deci-

Figure 5: Phase 3: Adaptation and continued learning
phase

sion is checked for safety and security concerns and, if al-
lowed, signals the beginning of action execution. Action
execution flows top-down. The decision action is commu-
nicated to the information layer which records the action
and communicates it to the physical layer. The physical
layer performs the action, thus changing the state of the
world and triggering a new perception. The process re-
peatsad infinitumwith periodic retraining of the decision
layer components, policy development, database archiv-
ing, and component maintenance.

4.1.2 Concrete View

The abstract layers of the system framework are realized
through a set of concrete functional layers. These con-
crete layers are shown with components in Figure 7. The
base layer is thePhysical Componentslayer which con-
sists of all real devices utilized in the system. These de-
vices include powerline control interface hardware, sen-
sor networks, input devices, cameras, and so forth, with



Figure 6: Abstract framework

the exception of the computer with which equipment is
interfaced. The physical computer(s) and associated net-
work this system resides on is considered the host of all
layers above the physical. TheComputer Interfacelayer
contains the hardware interfaces to physical devices (e.g.,
PCI card interfaces, USB, Firewire), device drivers to uti-
lize the hardware, the operating system of the computer,
and all software interfaces that provide services or APIs
for hardware access. It should be noted that since all
components of above layers reside and utilize operating
system services, these services are shown to extend to all
layers. In theLogical Interfacelayer, the hardware de-
vice services and APIs are utilized to create simple, light-
weight programs that create a series of atomic services
around each sensor and effector in the system. Theselog-
ical proxiesprovide information and control via socket

and shared memory based interfaces in a modular de-
sign. All of the lower layers are based on simple single
application components, but in higher layers the compo-
nents become more complex. TheMiddlewarelayer pro-
vides valuable services to the upper layers of the archi-
tecture to facilitate communication and service discov-
ery. The MavHome architecture specifies middleware that
provides both point-to-point (done through CORBA) and
publish-subscribe (done through multicast messaging uti-
lizing OS socket services and the IP stack) types of com-
munication and naming/service discovery provisions. The
Serviceslayer utilizes the middleware layer to gather in-
formation from lower layers and provide information to
system applications above. Services either store informa-
tion, generate knowledge, aggregate lower-level compo-
nents, or provide some value-added non-decision making
computational function or feature (e.g., user interfaces).
The Applications layer is where learning and decision-
making components operate.

4.1.3 Implementation

To provide the reader with a better understanding of
the system framework we employ, we will discuss some
implementation-specific details. More information on our
systems and environments can be found in the appendices.

Lighting control is the most prominent effector in most
intelligent environments. We currently use X-10-based
devices in the form of lamp and appliance modules to con-
trol all lights and appliances. The CM-11A interface is
used to connect computers to the power system to control
the devices. Radio-frequency based transmitters (in re-
mote control form factor) and receivers are also used for
device interaction. X-10 was chosen because of its avail-
ability and low price. Many home users also utilize X-
10 technology, so immediate benefits to the current home
user are possible.

Perception through light, humidity, temperature,
smoke, gas, motion, and switches is performed through
a sensor network we developed. The Argus network sys-
tem is a PIC16F877-based system comprised of a master
board that interfaces to the computer via a serial interface
and connects up to 100 slave boards that host up to 64
sensors each, ganged in groups of four on a sensor dongle.
Special masters have also been developed for high speed
digital and mixed digital/analog sensing applications. A



Figure 7: Concrete framework

stepper-motor master has also been developed to control
up to four mini-blinds.

A key element in perception is inhabitant localization.
The Argus Digital Master is used in conjunction with pas-
sive infrared (PIR) sensors placed on the ceiling in traffic
areas to detect motion. The sensors have a 60° field of
view and are placed between eight and ten feet from the
ground depending on the height of the ceiling. In order to
reduce the sensing area, tubes are placed over the sensors
to reduce the floor footprint to a three to four foot sensing
circle. Tests in our environments show a consistent single
inhabitant location detection rate of 95% or better accu-
racy. Multiple inhabitant studies will require augmenting
technology.

All system framework components interface through
either serial, USB, or firewire interfaces. The system

framework and components have been developed on Intel-
based PCs (Pentium 4) and use the Linux operating sys-
tem (SuSE 9.1).

The logical interfaces for all X-10 and Argus-based
components have been written as light-weight config-
urable modules. The proxies maintain the current state
of each device and provide a mechanism for reading and,
if applicable, control. The communication protocols for
X-10 devices and Argus components are well defined and
interface availability is advertised through zero configura-
tion (ZeroConf) technology.

Components desiring to find X-10 or Argus compo-
nents merely need to perform a link-local query for de-
vices that follow the defined MavHome X-10 and Argus
protocols and a list of available devices will be presented
to the requester. Contact information is returned to the re-
quester to allow connection to the logical proxy. Through
this mechanism no configuration is required and the sys-
tem is very adaptive and dynamic. New proxies advertise
their availability and older ones remove theirs before they
shut down. We have had a high level of success using Ze-
roConf technology with very few problems once the com-
ponents were developed. When we were using a CORBA
name server we had close to a 50% component communi-
cation or discovery failure rate at any given time.

The system framework uses two main middleware
packages. Communication between high level compo-
nents is performed using the Common Object Request
Broker Architecture (CORBA) due to the clarity of in-
terface design provided by the Interface Description Lan-
guage (IDL), ease of integration, maturity and stability
of the technology, and object-oriented design compatible
with ourC++ implemented components. Zero configura-
tion technologies are used for replacing the CORBA nam-
ing service and utilizing service discovery. They provided
by the Apple Multicast DNS responder and adherence to
the ZeroConf standard.

Implemented services include a PostgreSQL database
that stores information, user interfaces, prediction com-
ponents, data mining components, and logical proxy ag-
gregators (e.g., the projector screen aggregator that takes
simple “up” or “down” commands to coordinate the ef-
forts of a timed control of three switches to place the
screen in the proper position). Resource utilization ser-
vices monitor current utility consumption rates and pro-
vide usage estimates and consumption queries, but are not



used in this work.
The core of this work resides at the application layer

which along with some of the services comprise the core
system architecture of this approach.

4.2 The System Architecture

Inside the system framework exists the core system archi-
tecture for our approach.

4.2.1 ProPHeT

Decision making is performed in the ProPHeT (Providing
Partially-observableHidden (HMM/ POMDP) based
decision Tasks) component. The world representation
at this level is the Hierarchical Hidden Markov Model
(HHMM) [14] based upon a hierarchy of episodes of ac-
tivity mined from stored observations. Episode Discov-
ery (ED) is used to generate low-level episode Markov
chains and build the hierarchy of abstract episodes un-
der the direction of ProPHeT. Learning is performed by
extending the HHMM to a hierarchical Partially Observ-
able Markov Decision Process (HPOMDP) and apply-
ing temporal-difference learning. Constant feedback from
ARBITER is used for continuous learning using TD(0)
reinforcement learning [41]. Action decisions are made
by using the incoming event stream, recent history, the
stream episode membership features of Episode Member-
ship (Epi-M) to provide input into the current belief state
in the model, and the Active LeZi (ALZ) prediction of the
next event to chose the appropriate transitional action.

4.2.2 Episode Discovery (ED)

The Episode Discovery (ED) data-mining algorithm dis-
covers interesting patterns in a time-ordered data stream.
ED processes a time-ordered sequence, discovers the in-
teresting episodes that exist within the sequence as an un-
ordered collection, and records the unique occurrences of
the discovered patterns. Because the framework is capa-
ble of processing the interactions incrementally, it can be
used as part of a real-time system. These features make
ED a suitable algorithm for mining an intelligent environ-
ment data stream.

Our approach to state space reduction from the large
number of potential environment observations is to ab-

stract inhabitant activity to episodes that represent the
current task of involvement. Given the inhabitant task
episode, observations not related to the task can be
pruned. A difficult problem is how to discover these
episodes. After discovering the episodes, it is also de-
sirable to be able to classify streamed observations to
episodes in real time with the same service.

We use theEpisode Discovery(ED) algorithm [19] for
finding inhabitant episodes in the collected data and for
episode classification of streamed observations. ED is
an input, not transaction, based algorithm that mines de-
vice activity streams trying to discover clusters of inter-
actions that are closely related in time. Significance test-
ing is performed on discovered clusters to generate sets
of significant episodes based on the frequency of occur-
rence, length, and regularity. Further processing using
the Minimum Description Length (MDL) principle [35]
and greedy selection produces sets of significant episodes.
These are labeled and directly correspond to an inhabitant
task.

When an inhabitant is first introduced to an intelligent
environment no automation should occur for an initial ob-
servation period. This allows the building of a database of
potential episodes of normal task activity. This is inhab-
itant centric and the observation period duration is deter-
mined by data compressibility which is used to determine
the stability of the data with relation to episode discov-
ery. A stable, consistent data compression as reported by
ED indicates an end to observation. Identification of con-
cept drift and shift is performed by continued monitoring
of streaming data and compressibility. Changes in com-
pressibility indicate a need to reevaluate the discovered
episodes.

Episode discovery, classification, and identification are
utilized to reduce the state space of an intelligent envi-
ronment to a set of inhabitant-centric tasks. Thus, the
MavHome architecture is inhabitant-centric.

4.2.3 Active LeZi (ALZ)

An intelligent environment must be able to acquire and
apply knowledge about its inhabitants in order to adapt
to the inhabitants and meet the goals of comfort and effi-
ciency. These capabilities rely upon effective prediction
algorithms. Given a prediction of inhabitant activities,
MavHome can decide whether or not to automate the ac-



tivity or even find a way to improve the activity to meet
the system goals.

Specifically, the MavHome system needs to predict
the inhabitant’s next action in order to automate selected
repetitive tasks for the inhabitant. The system will need to
make this prediction based only on previously-seen inhab-
itant interaction with various devices. It is essential that
the number of prediction errors be kept to a minimum–
not only would it be annoying for the inhabitant to re-
verse system decisions, but prediction errors can lead to
excessive resource consumption. Another desirable char-
acteristic of a prediction algorithm is that predictions be
delivered in real time without resorting to an offline pre-
diction scheme.

Based upon our past investigations, MavHome uses the
Active-LeZialgorithm [16] to meet our prediction require-
ments. By characterizing inhabitant-device interaction as
a Markov chain of events, we utilize a sequential predic-
tion scheme that has been shown to be optimal in terms of
predictive accuracy. Active-LeZi is also inherently an on-
line algorithm, since it is based on the incremental LZ78
data compression algorithm.

4.2.4 Episode Membership (Epi-M)

Effective utilization of the derived HHMM/HPOMDP-
based inhabitant model requires an understanding of how
to map the current observation stream into the derived ab-
stractions. Episode Membership (Epi-M) performs this
function by using the information learned from Episode
Discovery to build internal correlation tables and further
augment those tables with time-based occurrence infor-
mation based on circular probability capture from the
same data stream. Data stream observation over the spec-
ified window span supplied to ED can be used to generate
match probabilities with the episode sets over each layer
of abstraction. Augmenting the probability with the like-
lihood of occurrence based on the observed occurrence
time distribution for each of the discovered episodes with
relation to the current time further improves the accuracy
of possible episode membership reporting. For example,
if the current observation stream matches with 90% prob-
ability either reading a book or the pattern of sleeping
on the couch, but the inhabitant has never slept on the
couch at this time of day, then the probability of sleeping
can be discounted to promote reading as the most prob-

able episode of membership. Epi-M output is used by
ProPHeT to determine belief state in the operational phase
for the current event observations.

4.2.5 ARBITER

When issues of safety and security are of the highest im-
portance in a system there is the need for an enforcer of
rules before actions are made. This system works by us-
ing a knowledge base of rules and evaluating each action
event against these rules to determine if the action vio-
lates them. Actions in violation will be prevented from
occurring and feedback will be sent back to the originat-
ing system (i.e., the decision-maker). Rules are not re-
quired to be just of a safety and security type, any type of
rule can be used in order to guide the behavior of the sys-
tem. Cases where system behaviors are desired but will
never be trained by streaming data or interactions can be
handled by the addition of rules to provide feedback and
facilitate learning of the desired behavior.

Before an action is executed it is checked against the
policies in the policy engine, ARBITER (A Rule-Based
InitiaTor of Efficient Resolutions). These policies con-
tain designed safety and security knowledge and inhabi-
tant standing rules. Through the policy engine the system
is prevented from engaging in erroneous actions that may
perform such activities as turning the heater to 120° F or
from violating the inhabitant’s stated wishes (e.g., a stand-
ing rule to never turn off the inhabitant’s night light).

These components work in concert to learn, adapt, and
automate the inhabitants’ lives in an intelligent environ-
ment.

4.2.6 MavCore

The core of this work lies in the data-mining–decision-
making–belief–rule/feedback chain or in what we call the
EPBA chain comprised of the Episode Discovery (ED),
ProPHeT, belief through Active LeZi and Episode Mem-
bership (Epi-M), and the ARBITER components.

Information and action flow through the system accord-
ing to the three main system phases. These phases as pre-
viously stated can be restated as beingInitialization, Op-
eration,andAdaptation.

The structure of the core components in the initializa-
tion phase and the flow of information are shown in Fig-



Figure 8: Core system architecture in initialization phase

ure 8. During initialization information flows from the
database through ProPHeT into ED. As many instances
of ED as are necessary to process the data into a hierar-
chy of discovered patterns are started by ProPHeT, pro-
vided information, and return information on the discov-
ered patterns to ProPHeT. ProPHeT then trains ALZ over
the same observation data from the database. ProPHeT
determines what information to pull from the database
and performs the necessary data conversions and filter-
ing for each component to accept the data and perform
computation within a reasonable amount of time. After
ALZ, ProPHeT trains Epi-M with the same observation
data and the returned hierarchical data returned from ED.
After deriving the data from the target observation data set
and training the belief supporting components, ProPHeT
generates the HHMM and subsequent HPOMDP models.

The structure of the core components in the opera-
tion phase and the flow of information are shown in Fig-
ure 9. During operation information flows from events
generated in the environment and perceived by the log-
ical proxies and presented to ProPHeT. ProPHeT relays
these events to ALZ and Epi-M and receives prediction
and membership information. Based upon the incoming
event, history, prediction, membership probabilities, and

Figure 9: Core system architecture in operation phase

the HPOMDP model an action decision may be made.
Any action decisions, or at a minimum the current event,
will flow through to ARBITER to be checked for rule vi-
olations. If a satisfactory action is to be performed, AR-
BITER will contact the appropriate logical proxy to initi-
ate the action.

Figure 10: Core system architecture in adaptation phase

The structure of the core components in the adaptation
phase and the flow of information are shown in Figure
10. During adaptation information flows from the event
stream through ProPHeT to ARBITER, often accompa-
nied with an action. Rule violations and any other feed-
back are relayed back to ProPHeT from ARBITER in-
cluding inhabitant feedback correlation to countermanded
automation. ProPHeT uses feedback from ARBITER to
adjust the HPOMDP structure to improve performance
and accommodate for pattern drift. Internally ProPHeT
is evaluating performance based on feedback and usage.
Information also flows into and out of ED as ProPHet



will periodically evaluate the continuously-growing ob-
servation database—it should be noted that in our system
the database component has an event listener that logs all
events into the database—for changes in patterns and hier-
archy in order to detect pattern shift using ED continually
in the background. ProPHeT will decide based upon per-
formance as well as indications of pattern shift and drift
whether a reset of the decision-maker is required. The re-
set is essentially a reboot of the system using a new set of
observations—one that will hopefully better fit the inhab-
itant.

The operation and adaptation phases occur simultane-
ously until interrupted by the adaptation phase, usually to
return through the initialization phase. All components
with a bold, solid border in the architecture Figures 8, 9,
and 10 represent components that are developed as part of
this work, items with a dashed border are components de-
veloped on the MavHome project but were developed by
others, and components with thin borders represent data
or storage.

This is only one possible approach to developing a so-
lution given the problem and goals. There are many other
possible approaches, some of which we presented in the
related work, but others remain to be explored. We are
exploring this method because it had not been previously
explored in this domain. We present this work to the sci-
entific community in order to further knowledge in this
area of research and human understanding.

5 Experimental Environments

This work uses two real environments and their simulated
counterparts. The MavPad is an on-campus apartment and
the MavLab is the workplace of the researchers of this
project. ResiSim is an in-house developed “residential
simulator” for interactive simulation of intelligent envi-
ronments.

5.1 MavPad

The MavPad is an on-campus apartment located at 135
University Village on The University of Texas at Arling-
ton campus and sponsored by the UTA College of Engi-
neering that hosts a full-time student occupant that par-
ticipates in the project allowing us to learn about them

and automate their life. The MavPad hosts automation ca-
pability through 25 X-10 controllers (three fans, thirteen
lights, one HVAC unit, and seven electrical outlets) and
two ArgusM mini-blind control systems. Sensing capabil-
ity is provided by the ArgusMS and ArgusD systems that
provide eighteen light, eleven temperature, four humidity,
four leak detection, four door open/close, three window
open/close, two seat occupancy, four HVAC vent position,
two smoke detectors, two CO detectors, and 36 motion
sensors. The MavPad has been operational for over a year
and has hosted three inhabitants.

5.2 MavLab

The MavLab is the project name for the Artificial Intelli-
gence Lab located in 250 Nedderman Hall at The Univer-
sity of Texas at Arlington which is base of operations for
this research. The MavLab is a workspace setting with
offices, cubicles, a break area (MavKitchen), a lounge
(MavDen), and a conference room. The MavLab hosts
automation capability through 54 X-10 controllers (49
light, five appliances, a projection screen) and fourteen
ArgusM mini-blind control systems. Sensing capability is
provided by the ArgusMS and ArgusD systems that pro-
vide 36 light, ten temperature, three humidity, two door
open/close, six seat occupancy, and 25 motion sensors.
MavLab has been in various operational states for the last
two years.

5.3 ResiSim

It is important that this work be well grounded in real-
ity and in dealing with the real world, especially with
the goals being directed to the intelligent environment do-
main. This research work is aimed at real-time decision-
making in the real-world. However, it is not always feasi-
ble to study interactions solely in the real world. A tool for
interactive simulation and data visualization was needed.
Since this is a relatively new area of study there are not
any available simulation tools designed for intelligent en-
vironments or home simulation, so the development of a
tool became an important issue for performing this type
of work.

ResiSim is a residential simulation environment tool.
It is designed to provide a simulation environment for
any indoor environment where people would typically



Figure 11: ResiSim view of the MavPad.

spend time. It features Markov model-based virtual in-
habitants that interact with the environment and can react
to changes in that simulation. It can also provide real in-
habitant data playback and limited interaction. As an eval-
uation tool it can track automation and its source whether
from an external system, playback, or elsewhere.

6 Experimentation and Results

NOTE: These sections from here on are in progress right
now. The idea is to go from simulation, to the mixed in-
hab 2 real/virtual experiment, and end with inhab 3 exper-
iment.

These systems work in concert to learn, adapt, and au-
tomate the inhabitants’ lives in an intelligent environment.

6.1 Simulation

As an illustration of these techniques and the system de-
ployed in the MavLab and MavPad, we have evaluated a
typical week in an inhabitant’s life with the goal of reduc-
ing the inhabitant’s interactions in the MavLab. The data

was generated from a ResiSim virtual inhabitant based on
captured data from the MavLab and was restricted to just
motion and lighting interactions which account for an av-
erage of 1400 events per day. There are on average 25
lighting device interactions a day with the remainder be-
ing motion information. Using our ResiSim (Residentual
Simulator) tool which exactly replicates the real MavLab,
we trained ALZ and ED on real data and then repeated a
typical week in the simulator to determine if the system
could automate the lights throughout the day in real-time.

ALZ processed the data and converged to 99.99% ac-
curacy during training on test data from the data set in 10
iterations. When the system was run with automation de-
cisions being made by ALZ alone, it was able to reduce
interactions by 9.7% event as shown in Figure 16. ALZ
performance on streaming data maintained between 24-
60% accuracy converging to 54% as illustrated in Figure
14.

ED processed the data and found 12 interesting
episodes, 10 that correspond to automatable actions out
of 7 originally developed patterns—the difference comes



Figure 12: ProPHeT generated HHMM from ED interaction.

Figure 14: ALZ Accuracy.

from machine grouping versus human encoding. This
was abstracted through ED to three abstract nodes. A
HPOMDP was constructed in ProPHeT as shown in fig-
ures 13. This system was able to reduce interactions by
76%. As a comparison, the HHMM produced was flat-
tened and the abstract nodes removed to produce a flat
HMM. This HMM was still able to reduce interactions by
38.3%. Comparative results are shown in Figure 16.

Figure 15: Interaction reduction.

The additional abstractions in the hierarchy coupled
with a next state produced by ALZ and a probability of
membership from ED to provide input to the belief state
create a system that improves automation performance
over a flat model or prediction alone.



Figure 13: Learned HHMM from MavPad inhabitant data.

6.2 A Day in the Life of a Real Inhabitant

As an illustration of the viability of the architecture, the
techniques described in this paper, and the MavHome sys-
tem deployed in the MavPad, we have evaluated a typical
day in the inhabitant’s life with the goal of reducing the
inhabitant’s interactions with the lighting in the MavPad.
The data was restricted to just motion and lighting inter-
actions which account for an average of 10,310 events per
day. There are on average 18 lighting device interactions a
day with the remainder being motion information. Using
our ResiSim (Residentual Simulator) tool which exactly
replicates the real MavPad, we trained ALZ and ED on
real data and then repeated a typical MavPad inhabitant
day in the simulator to determine if the system could au-
tomate the lights throughout the day in real-time. Figure
11 shows a graphical view of the MavPad data under sim-
ulation playback.

ALZ processed the data and converged to 99.99% ac-
curacy on test data from the data set. When the system
was run with automation decisions being made by ALZ
alone, it was able to reduce interactions by one event as
shown in Figure 16. ALZ performance on streaming data
maintained between 40-60% accuracy.

ED processed the data and found 10 interesting
episodes that correspond to automatable actions. This was
abstracted through ED to three abstract nodes. A HHMM
was constructed in ProPHeT. Figure 13 shows this model
without the production nodes (it is difficult to show the
full models because even the simple models when printed

take over seven feet of paper in order to be legible). This
system was able to reduce interactions by 72.2% to five
interactions. As a comparison, the HHMM produced was
flattened and the abstract nodes removed to produce a flat
HMM. This HMM was still able to reduce interactions by
33.3% to 12. Comparative results are shown in Figure 16.

Figure 16: Interaction reduction.

The additional abstractions in the hierarchy coupled
with a next state produced by ALZ and a probability of
membership from ED to provide input to the belief state
create a system that improves automation performance
over a flat model or prediction alone. Problems in the au-
tomation decisions appear around interactions that occur



within a short time-frame and are currently under investi-
gation.

6.3 Automating a Stochastic Individual

Inhabitant 3

6.4 Observations

There are a number of interesting observations we have
made in the course of design, implementation, and ex-
perimentation. The more unique challenges have come
from working with our MavPad inhabitants. We did not
automate our first inhabitant because we were still con-
centrating on sensor reading acquisition and determining
if there was a perceivable pattern to inhabitant activities—
fortunately, the are discoverable patterns. It was observ-
ing the first inhabitant that made it clear that we needed a
good period of observation and that it would take several
weeks if not months depending on the consistency of the
inhabitants lifestyle. Our second inhabitant participated
for a summer and was automated for two weeks using
ARBITER and a very basic version of ProPHeT (without
adaptation).

Sensor network failure, flakiness, and general chaotic
behavior at times forced a lot of effort to improve the
systems by adding additional fault tolerance mechanisms,
watch dog timers, performance monitors, and many ad-
ditional software objects that focus on maintaining high-
availability.

Sensor instability plagued the first couple of months,
but those issues have been corrected by software and
minor hardware changes. The biggest problems on the
project so far have been the stability of the power grid
and power loss issues in the stormy seasons, occasional
sensor noise, and operating system stability for programs
operating 24-7.

7 Conclusions

For full details please refer to my dissertation...

8 Future Work
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