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Abstract 

The remarkable recent progress in computing power, sensors and embedded devices, smart phones, 

wireless communications and networking technologies, combined with emerging  data mining techniques, 

cloud computing and social networking paradigms have enabled us to create pervasive computing 

systems and services with diverse applications and global accessibility.  In this paper we assess the 

current state of the art in of pervasive computing at scale (PeCS) and look ahead to future directions the 

field can pursue together with challenges it will need to overcome. 

Keywords: smart environments, energy harvesting, cloud computing, smart phones, behavior modeling, 
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1. Introduction 

The remarkable recent growth in computing power, sensors and embedded devices, smart phones, 

wireless communications and networking combined with the power of data mining techniques and 

emerging support for cloud computing and social networks have enabled researchers and practitioners to 

create a wide variety of pervasive computing systems that reason intelligently, act autonomously, and 

respond to the needs of the users in a context- and situation-aware manner.  The field of pervasive 

computing is at an interesting and critical point in its development.  On the one hand, the field has 

matured to the point where tangible, beneficial prototype testbeds such as smart homes, body area 

networks, health monitoring systems, and mobile social networking media are becoming fairly 

commonplace.  These visible successes are built on mature underlying technology that performs smart 

device communications, resource discovery, information fusion, dissemination and routing, location 



 

tracking, activity recognition, and learning of user preferences.  On the other hand, however, these 

systems have been mostly designed and tested on small to medium-scale applications with limited 

dissemination of the tools, results, and datasets. 

This year is the 21st anniversary of Mark Weiser’s landmark paper on ubiquitous computing [47]. 

While there has been significant progress toward his vision, most research has focused on the 

development of small-scale pervasive systems, tested by a handful of users, interacting with a limited 

number (e.g., tens or at most hundreds) of devices. In order to advance the field and make technology 

truly pervasive, the research community needs to address the issue of scale. The good news is that the 

trajectory from small to massive scale pervasive computing systems is underway. However, future large-

scale pervasive systems still need to operate over different spatial and temporal scales and encompass a 

large number of computational platforms, users, devices and applications dealing with massive amounts 

of data.  Diverse devices such as smart phones, tablets, laptops, desktops, wearables, RFIDs, and 

embedded wireless sensors on the order of thousands, millions and even billions as envisioned in the 

Internet of Things (IoT) will enable a wide spectrum of applications from predicting traffic jams and 

modeling human activities, to facilitating social interactions, tracking community health trends, and 

responding to disasters [11]. They will handle very large amounts of data distributed over heterogeneous 

networking and computing platforms (e.g., clouds, data centers), and support 100s of millions of users, 

including those of mobile phones and social media.  

Sponsored by the US National Science Foundation, in January of 2011, a group of 72 researchers 

gathered to discuss challenges and issues for scaling future pervasive applications, architectures, 

algorithms, models, data and systems [34]. The problem of scaling pervasive systems is multi-disciplinary 

in nature, including challenges in human-computer or machine-to-machine interaction (HCI or MMI), 

machine learning, data mining, mobile systems, wireless and sensor networks, computing paradigms, 

smart environments, security and privacy, signal processing, information fusion, foundations (e.g., 

algorithms, stochastic control theory, information theory, game theory, optimization techniques), 

psychology, sociology and social networking. The workshop attendees represented expertise in these 



 

multi-disciplinary areas and brought perspectives from academia, industry, and funding agencies. This 

paper is based on the synergistic discussions, talks, panels and survey responses that took place at this 

workshop. 

2. What is Pervasive Computing at Scale? 

The goal of pervasive computing is to create ambient intelligence where networked devices embedded in 

the environment provide unobtrusive, continual, and reliable connectivity and also perform value added 

services. The result improves human experience and quality of life without explicit awareness of the 

underlying communications and computing technologies [11]. The field is closely related to smart 

environments in which computing and communications technologies employ artificial intelligence and 

machine learning techniques to reason about, control and adapt to our physical surroundings [10]. Cyber-

physical systems, another related discipline which encompasses computer and information-centric 

physical and engineered systems as integration of communication, computation and control [31], may 

explore technologies outside of the human context.  In contrast, pervasive computing necessarily focuses 

on sensing, interacting with and aiding humans at an individual and community level. While distributed 

and mobile computing supports information technologies such as remote information access and adaptive 

applications, pervasive computing extends this notion to provide computing and communication 

capabilities that are so gracefully integrated with users that it “disappears” [47]. Pervasive computing 

technologies are implicitly part of our everyday and social life and the environments with which we 

interact.  While we are aware of the functionality they provide, we need not be aware of the underlying 

mechanisms by which that functionality is provided. 

Because research has been directed toward core pervasive computing technologies and has done so 

with successful results over the last two decades, it is now appropriate to consider pervasive computing at 

scale, or PeCS. The notion of scalability here refers to the ability of a system to maintain some level of 

efficiency or functionality as the system dimensions increase. Generally, an increase in a system 

dimension adds capability to the system while incurring associated overheads. Capabilities and overheads 



 

can be measured by price tags, human time and attention, computation and communication power, storage 

capacity, accessibility, responsiveness, energy or other valuable  resource usage. A pervasive computing 

system that is scalable provides a rate of increase in capability which is greater than the rate of increase in 

overhead; otherwise the overhead will eventually consume all resources, thus reducing the effective value 

added by the system to zero. 

Not all pervasive computing applications are large scale or require large-scale resources and 

processing. However, as we look to the future of pervasive computing, ideas for large-scale use emerge 

and implementation of the ideas becomes more achievable.  For example, while current pervasive 

computing systems have the ability to track individuals and analyze their behavioral patterns, future PeCS 

systems can scale to metropolitan area networks such as smart cities and smart communities that learn 

behavioral information and trends across a larger region. Similarly, current research is enabling smart 

vehicles, but future systems may scale to encompass an entire country’s traffic system. Likewise, the 

Internet of Things (IoT) implies that every tagged object could be part of a very large-scale pervasively 

connected system across the globe. Finally, both IoT and (mobile) social networking have the potential to 

revolutionize as well challenge the scaling of pervasive systems.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The proliferation of pads, tabs, and boards. 

Supporting PeCS  will require vastly new approaches and paradigms to the design of hardware, 

networking, middleware, services and applications. When we envision pervasive computing at scale, the 



 

numbers of system dimensions that can increase are numerous.  PeCS can scale to encompass a massive 

number of devices or an increasing heterogeneity of devices and the ways they communicate.  The 

volume of data they generate, collect, store, transmit, and process will increase significantly.  These 

systems can scale in the number and diversity of their applications and in the number of individuals and 

communities that utilize the systems.  In order to scale effectively, PeCS must be able to increase these 

dimensions while maintaining or improving accuracy, efficiency, and reliability with cost effectiveness. 

 

 

 

 

 

 

 

 

 

Figure 2. Pervasive computing devices are as diverse as currently lifestyles demand. 

 
3. Where Does PeCS Currently Stand?  

Computation and communication technology has evolved toward more pervasive and ubiquitous 

infrastructures over the past two decades. The PeCS community recognizes the wide-spread 

miniaturization and low-cost building of portable devices as well as myriads of applications for these 

devices.  The current pervasive computing landscape includes massive numbers of portable devices (e.g., 

smart phones, “pads, tabs, and boards”) that gather and store information (see Figure 1). Devices are also 

increasingly diverse in their appearance, capability, portability, and use (see Figure 2). 

Current mobile phones are as powerful as personal computers of old. The ability of these devices to 

collect and store information is well established. In addition, communication has become fast, fairly 



 

robust, and certainly pervasive.  This is one reason why pervasive computing has already had an impact 

on the population in practice. 

Another reason why the vision of pervasive computing is so powerful is that is reaches much larger 

masses than technology has in the past.  As stated in the movie The Social Network, developing countries 

like Bosnia lack roads but “they have Facebook” [18].  Mobile phones are truly pervasive; they are 

accessible and reach around the world. High-speed Internet is out of reach for many low-income countries 

but mobile devices are truly ubiquitous. These devices provide accessibility to over 90% of the global 

population [25]. In 2009, 0.5 billion people accessed the Internet from mobile devices, and this number is 

expected to double by 2015 as mobile devices overtake the PC as the most popular way to get on the Web 

[25]. 

Cost of the devices steadily decreases while access to the devices and diversity of the applications 

steadily increases. As an example, when the App store started in July 2008, only 500 apps were launched.  

By June 2010, the number of available apps was over 225,000 and 3 trillion apps had been downloaded 

[16]. Another reason for this influence is that the technology appeals to the fundamental human trait of 

wanting to minimize effort in accomplishing a task, in much the same way as Facebook appeals to a 

fundamental need for social contact. 

Each of the well-established areas of pervasive computing is partnered 

with a conceptual gap or area that needs to be better explored. While 

devices and applications are being increasingly manufactured and used, 

they are demanding more user time and attention rather than alleviating a 

user’s burden by means of context awareness [20].  Users need to spend 

more time understanding the data and educating themselves about the 

latest hardware and software features.  Pervasive computing devices are 

changing our fundamental way of communicating and of gathering 

information. As evidence, consider the statistic that 85% of children in the 

Figure 3. With pervasive 
computing comes 
increasing demand for 
consumer attention and, 
through pop-up 
advertisements, demand 
for consumer resources. 



 

United States own a mobile phone while 73% of these children own books [16]. Technology designers 

and users need to keep this dynamics in mind as they scale devices, applications, and uses in everyday 

life. The proliferation of sensor and data modalities also increases the risk of various types of privacy 

invasion and security threats (adversarial attacks) the users may experience (see Figure 3).  

Another breakthrough that has occurred in recent years is the ability of pervasive computing devices to 

perform their own energy harvesting.  Small objects are fairly capable of harvesting energy.  In order to 

push the field further, however, the ability to harvest energy needs to scale for thousands of such devices 

and for renewable energy sources including solar radiation, wind power, water power, vibrations, radio 

frequency transmissions, thermal gradients, and kinetic energy.  Researchers need to understand the limits 

of energy production models and to design energy-aware hardware and software systems. They also need 

to be aware of the dangers that are posed by the proliferation of devices, including hazardous trash that 

results from people replacing phones and discarding old 

devices. 

 Although some of the original pervasive computing 

goals have become reality, there are certainly emerging 

technologies and impacts that were not foreseen.  

Examples of these include the world-wide web, crowd 

sourcing, and social networking. In some respects the 

computing vision that Charles Babbage put forward 

does not align with the state of the art of pervasive computing.  In this field we do not just consider a 

single user and device, but need to support communities of users and systems. 

Pervasive computing has become such a large field that particular attention must be given to some of 

the components and influences of PeCS.  In the next section, we reflect on the state of the art and future 

directions for these areas, and then offer some grand challenges and opportunities for the field as a whole. 

4. Subfields of Pervasive Computing at Scale 

Figure 4. Social networks and crowd 
sourcing shape the state of the art and future 
for pervasive computing at scale. 



 

The areas of research that are influenced by pervasive computing and in turn influence pervasive 

computing research itself are diverse. In this section we look at the future of pervasive computing at scale 

with respect to some of these focus areas. 

4.1. Scaling models of individual and group behavior 

The rapid advances in pervasive computing resulted in a proliferation of a wide variety of sensors 

deployed at a large scale. These in turn generate huge amounts of data that must be analyzed to extract 

relevant information. Data mining plays a pivotal role in the process of seeking bits and pieces of relevant 

information from such data explosion. The long term vision is that data mining and machine learning 

strategies will grow to handle spatio-temporal data at large scales, will extract necessary and relevant 

information, and will automatically build data models to understand human behavior. While the current 

progress is promising, there are a number of challenges that have to be addressed to achieve this vision. 

The last couple of decades have seen rapid strides in the area of machine learning and data mining for 

modeling human behavior. Developments of novel algorithms and methodologies are reflected in many 

application areas including (but not limited to) recognition of activities, emotions, body mannerisms and 

gestures, and detection of abnormal behavior as well as physiological and psychological states. Most of 

these technologies are currently limited to data gathered from a laboratory or controlled real-world 

setting. While these are promising developments that have initiated inter-disciplinary research between 

computer scientists, behavioral and cognitive psychologists and social scientists, much work needs to be 

done to take the state of the art to the next level for dealing with large scale data sets and users in a real-

world setting. 

Large scale data sets. One of the key challenges for the future is making available well annotated, 

large scale data. There is truly a lack of large scale data sets available for experimentation and analysis. 

 At present researchers collect data in silos, most often focused towards a very narrow problem. Large 

scale data collected through multiple modalities (such as vision, speech, wearable, phone and 

environmental sensors) is essential for the design, development and prototyping of architectures and 

algorithms to work in real-world settings. Furthermore, multi-modal data is necessary for behavior 



 

modeling as it captures the inherent multi-dimensional characteristics of human behavior. While it is 

sometimes impractical to collect data using different modalities, development of standardized data 

formats will facilitate in sharing and fusing heterogeneous data. 

An important component for behavior modeling is the availability of longitudinal PeCS data. Be it 

physical, mental or social behavior, all tend to change over time and data collected over time facilitates 

analysis of dynamic behavior trends. Once PeCS research studies scale to collect data over time, the 

models can then be designed which capture the dynamics of evolving patterns of behavior or interaction 

with devices and with other humans. The study of emergent social groups and other similar phenomena is 

of great interest in psychology and sociology, and could be enabled by PeCS at an unprecedented scale. 

Collecting large scale data sets also results in a fundamental problem of annotating them with expert-

provided labels. The annotation process can be expensive and time consuming. Developing novel means 

of annotating data and building ontologies that can alleviate these problems will be a new direction to 

pursue. Developing crowd sourcing and interactive machine learning algorithms that can actively query 

for relevant data samples will help address these challenges. 

Capturing context. The context for a PeCS application may refer to computing/communication context 

(network connectivity, communication costs, resource accessibility), user context (user profile, location, 

activity, social situation, preference), physical context (lighting, temperature, noise, traffic conditions), or 

time context (hour of day, day of week, season, year) [9]. By combining heterogeneous sources of 

information including geographical positioning system (GPS), satellite maps, recognized activities, and 

social media (e.g., Facebook) information, a pervasive computing system can build and use a targeted 

contextual picture of the current situation to be used strategically by vendors.  For example, electronic 

kiosks in Japan already tailor advertising to potential customers as they walk by vender locations and 

Facebook can sell information about “change in relationship status” to wedding photographers [8]. 

Analysts predict that context-aware computing will very rapidly scale in popularity, exceeding $140 

billion in net economic impact by 2015 [30].  However, there are several large hurdles to this targeted 

scale. The amount of data required to learn relevant contexts is one such hurdle:  media companies are 



 

already uploading 100GB of content each day.  Another difficulty is addressing the security and privacy 

concerns that are raised by such potentially-intrusive uses of information. 

While context-aware services are crucial for PeCS, current algorithms frequently have a narrow 

understanding of the context recognition problem. Sensor data fusion techniques can combine disparate 

sources of information into a concise, usable contextual description [44]. A new direction to pursue would 

be to develop pervasive computing technologies that provide context information and mechanisms for 

integrating this information into a traditional user modeling paradigm. The natural evolution of context-

aware services is then to seamlessly adapt to changing context or behaviors, at an individual, social group, 

or community level. This context awareness can bring the performance of PeCS to a new level by 

introducing non-traditional context-aware database querying techniques [27], context-aware and activity-

aware network management, and a host of context-aware services. 

Learning from large, noisy data sets. When pervasive computing systems scale to incorporate 

thousands or millions of sensors, data mining algorithms will have to deal with massive data collected 

from these devices. This necessitates the development of high-performance algorithms that can process 

information in real-time. Compressed sensing approaches [1] adopted in the signal processing and 

computer vision community can provide insights for developing such algorithms. 

Machine learning algorithms have to often make decisions based on insufficient, incomplete and noisy 

data samples (i.e., in the presence of uncertainty), which is a likely scenario for PeCS. Design and 

development of robust algorithms, capable of making decisions in such uncertain conditions, and 

confidence measures that quantify the uncertainty have to be explored. 

Incorporating social network data. Pervasive mobile devices provide a 

new capability for measuring and modeling social networks. While social 

webs such as Facebook or Twitter provide a means for estimating the 

structure and strength of social connections, to a large extent these on-line 

sites reflect the social bonds and connections that are constructed from 
Figure 5. Modeling social 
interactions can identify 
conditions which require 
specialized assistance and 
education approaches. 



 

face-to-face social interactions in the physical world, whether at work, school, or home. Pervasive mobile 

devices provide the potential to gauge the strength of these interactions directly, through pervasive 

sensing of social interactions under naturalistic conditions. This can be viewed as a new deployment of 

pervasive sensing technology to directly measure the substrate of interactions from which social networks 

arise. We view this as leading to the development of a new paradigm of computational behavioral science. 

Modeling social interactions can open up new applications for PeCS.  For example, modeling 

interactions among young children can help screen for risk of Autism Spectrum Disorder and identify 

bullying. Employing mobile media can promote healthy behavior by providing context-aware suggestions 

and garnering social support of positive behavioral choices. This has the potential for reducing obesity 

among youths and helping kids with diabetes to adhere to a prescribed behavioral regimen. 

4.2. Scaling PeCS devices 

Pervasive computing at scale encompasses the ideas of scaling the number of devices employed by a 

pervasive computing system, scaling the diversity of devices, and scaling the inherent capabilities of the 

devices themselves. Focusing on the last characteristic, we consider that physical objects can be enhanced 

with computational and communication elements.  This includes not only mobile devices but also familiar 

objects and buildings. Smart objects and smart tags can not only register their presence but also can 

record histories of recent interactions and route salient information through a network. Advances in smart 

objects, when deployed at scale, can profoundly influence our daily lives. For example, these objects can 

assist the elderly with tasks of daily living, provide critical monitoring of our nation’s infrastructure, help 

with food safety, support safe public spaces, make buildings proactive, responsive, and energy smart, and 

design sustainable agriculture. 

Our ability to develop and scale smart objects and embedded devices is rapidly improving: we can 

now manufacture tiny, inexpensive sensors. These small sized sensors — attached to physical objects — 

do not alter the object affordances. It is now possible to harvest energy for smart objects, which is an 

important factor to enable scaling. Industry has adopted the ZigBee specification for wireless monitoring 

devices and the university-industry collaboration has adapted IPv6 to run on emerging smart objects and 



 

sensor networks [48]. The IEEE 1451 standard facilitates network-independent, vendor-independent plug-

and-play sensor design by specifying physical and functional interfaces between sensors/actuators and 

instruments/microprocessors/networks [33]. In addition, the sensor modeling language (SensorML) 

provides a mechanism to explicitly encode characteristics of sensors and sensor systems [35]. Despite 

these advances, there are still several conceptual gaps for the community to explore. 

Object ecosystems. Pervasive computing research has resulted in point solutions which enhance a 

specific object, but cannot yet create smart object (or building) ecosystems. Some researchers have 

investigated middleware solutions for seamless handoff management between disparate devices [3]. 

However, seamless, scalable integration across devices has proven to be challenging for several reasons.  

First, while we have the knowledge to build smart objects, how to design scalable communication 

architecture for smart objects is less clear. Second, programming languages, tools, and abstractions must 

be specified to work across multiple smart objects in a device independent way. Because such objects are 

typically energy constrained, the developed programming models must view energy complexity as 

fundamental to the operation of the smart objects. Finally, a consistent semantics must be designed across 

devices to enable service composition and integration. 

Smart object applications. Applications for smart object 

research are diverse and immensely creative.  A driving theme 

is that smart objects should cause change, either through 

actuation of other devices and services or by changing human 

behavior through notifications. For example, smart food can be 

envisioned as food items with embedded tags that record 

interaction history.  Customers can examine the tags to determine food origin, expiration date, and safety. 

Similarly, embedded tags in vehicles and traffic lights can enable public safety by alerting people who are 

crossing the street to potential threats. Adding tags to parking infrastructure as well can enable more 

efficient parking. When developing smart buildings, including warehouses and hospitals, both sensing 

and actuation are necessary. Robots can then actuate changes to the state of a building based on events 

Figure 6. Smart tags on food can help 
ensure food safety. 



 

detected by embedded tags. New physical objects can also be designed to take advantage of pervasive 

computing.  For example, a “smart swarm” of bees can conceivably help with pollination and agriculture. 

If all manufactured objects are enhanced with tags, then decentralized physical object search is 

possible. A user can “ask” the table about a misplaced book, sparking the creation of a search engine for 

the physical world. Such an engine can include relational information in the tag, including cyber-physical 

links, which can also be queried. These types of search and query mechanism can be particularly 

important for individuals with cognitive and physical limitations. In addition to designing these smart 

objects and buildings, research will be needed to retrofit, monitor, and maintain existing physical 

infrastructure. 

Smart phones. Phones, in many senses, represent the first pervasive mobile computing technology. 

Between 1990 and 2010 the number of mobile phone subscriptions grew by two orders of magnitude and 

in many parts of the world the current ratio is as high as 10 mobile phone users to one PC user [22]. 

Today’s smart phone is as powerful as larger mobile devices were several years ago. They integrate 

powerful processors, multiple communication technologies, multimedia capability (e.g., audio, image) 

and ample storage and a multitude of sensor suites. The array of available wireless access and 

communication technologies means that phones may provide last-hop communication to body area and 

other deployed sensors that lack the power required for long-distance communication. Current smart 

phones can cache a great deal of information and the growing power of the cloud allows them to offload 

expensive computation. The emergence of application distribution channels has accelerated smart phone 

innovation by providing access to millions of deployed smart phone devices. 

 In moving ahead to what smart phones will look like in the 

next decade, one can imagine a device that continuously tracks our 

lives, including location traces, readings from internal and external 

sensors, and logs of our mobile-based activities. In addition to 

contributing to data deluge, they will also help analyze and 
Figure 7. Futuristic wearable smart 
phone [17]. 



 

interpret the data streams to maximize their value. By learning our activity and behavior patterns, these 

phones will make suggestions about our daily lives, anticipate our actions, and weave themselves into the 

fabric of our existence. 

This vision necessitates that future smart phones be more powerful than current devices, communicate 

more quickly, store more data, and integrate new interaction technologies. Unfortunately, these goals are 

at odds with wireless data bandwidth and battery capacities, both of which are scaling rather slowly. 

Future smart phones are expected to deploy opportunistic algorithms that multiplex both time and space 

in order to improve performance. The overall heterogeneity of deployed devices and standards is another 

challenge that has the potential to limit device-to-device inter-operation and the potential for smart phones 

to interact with all of the objects, devices, and buildings they encounter. 

4.3. Scaling pervasive computing applications 

Pervasive computing finds application in almost every aspect of human life and activity. Here we focus 

on one specific domain of application, namely smart health.  Health care is one of the most significant 

pervasive computing applications and is in great demand with the aging of the population. In the United 

States there will be an estimated 88.5 million individuals age 65+ in 2050 compared with 40.2 million in 

2010 [45], and in the next 15 years there will be predicted shortfall of 800,000 nurses and 200,000 doctors 

[41]. This situation is reflected around the world and demonstrates the need for pervasive health care with 

the help of assistive technology to scale in a way that meets or exceeds this growing demand.   

As acknowledged by the National Science Foundation [31] and the National Institutes of Health [15], 

information and communication technologies are poised to transform our access to health information and 

participation in our own healthcare and wellbeing. Pervasive computing technologies  can conceivably 

reduce health care and rehospitalization costs as well as improve independence and quality of life in home 

settings.  Similar performance measures can be crafted for scalable pervasive computing applications in 

other critical domains. 

The last half decade has seen significant progress in the area of smart health care. These advances 

include increased adoption of electronic personal health records, availability of web-based tools to 



 

monitor personal health, commercialization of wearable/body sensors and integration with smart phones, 

monitoring and management of physical activity via sensors and wireless mobile devices, and increased 

support for aging in place. Such encouraging developments constitute only a modest start, with much 

more remaining to be done.  The positive news is that there is wide-ranging interest and enthusiasm in all 

relevant scientific communities, ranging from healthcare providers and patients to policy makers. PeCS 

can improve the health and wellbeing of society in several meaningful ways, which we discuss in detail 

here. 

Ubiquitous access to health information on demand. Health records and information today is scattered 

across various clinics and hospitals. Similarly, in-office access to providers involves significant overhead 

and delays that can prevent timely delivery of care. We envision a future in which health information will 

be readily available to designated individuals anytime, and be readily shared with providers located 

anywhere. Electronic health record (EHR) and personal health record (PHR) technologies support this 

vision, but PeCS challenges such as data integrity, security, privacy, reliability, interface standardization, 

data processing and visualization need to be addressed to realize this vision. 

Attention to mental health. There is now a growing awareness about the prevalence of mental health 

issues in our society. These issues include depression, autism, post traumatic stress disorder (PTSD), 

chronic stress, and cognitive decline. Smart health 

technologies can effectively enable screening and treatment 

for mental health problems in a timely manner. For example, 

self-care methods that can be delivered privately to 

individuals without hospital visits may reduce the social 

stigma that is usually associated with mental health. Major 

challenges in realizing this vision include development of 

sensors, algorithms, models, and user interfaces for screening 

of mental health issues, thereby preserving the privacy of 

participants during treatment, and evaluating the efficacy of treatments. 

Figure 8. Pervasive computing at 
scale can facilitate preventive 
interventions to promote physical 
and cognitive health. 



 

Delivering timely interventions. Smart and pervasive health at scale will offer a unique opportunity to 

deliver intervention when and where needed, especially if it can be delivered via mobile devices. 

Furthermore, PeCS technologies can be used to monitor and encourage physical activity, which may help 

reduce the trend toward obesity in many countries. In the future, self-monitoring and real-time 

intervention can be developed to help people to reduce stress, address addictive behavior, depression, 

social anxiety, cognitive declines, autism, and PTSD, among others. Addressing each of these health 

issues will require the development of needed sensors, algorithms, models, middleware systems, tools, 

and user interfaces. 

Predictive assessment and prevention. A new direction that can be pursued is to not only provide 

assessment of an individual’s current well being, but also to perform longitudinal studies that support 

predictive analysis of well being and the course of disease. Knowledge of how and when symptoms 

become disease is crucial to appropriate intervention and prevention. Predictive analysis can also facilitate 

research to prevent disease morbidity and mortality. 

Validation of hypotheses and technologies. We envision a future where pervasive and smart healthcare 

support technologies embed themselves in the infrastructure, in our environment, in the fabrics we wear, 

and in mobile devices we carry, thus becoming so ubiquitous that they essentially disappear from our 

explicit cognition. At the same time that we become less aware of them, they also become more attentive 

to our health needs anytime and anywhere. Extensive research is needed to make this dream a reality.  

Research on smart health is expensive because it needs to be validated for real-life adoption while 

ensuring it does not affect health adversely. To this end, the research community needs to design open 

extensible platforms for smart health in the same way that the sensor network community benefited from 

the open hardware mote platforms and the TinyOS platform. Smart health testbeds need to be designed 

and made available to the community along with smart health datasets.  The MIT arrhythmia dataset [22], 

the PhysioNet physiologic signal dataset [21], and the CASAS dementia assessment dataset [43] are first 

steps in a direction we hope many other research groups will follow. 

4.4. Scaling through cloud computing 



 

Pervasive computing at scale via mobile phones and sensors may face fundamental limitations of storage 

capacity and compute power limitations. Keeping up with increasing mobile capability also introduces 

implications for electronic waste because mobile phones are usually replaced every 18-24 months. An 

alternative view to PeCS is to tap into cloud computing.  Now portable or wearable devices can plug into 

the data collection, storage, and analysis power of the thousands of computers that are located around the 

world. 

Cloud accessibility. A major issue in using clouds for pervasive computing is the locality of the cloud.  

The cloud may be placed one hop away via WiFi (a “cloud-let”) or may be farther away and reachable via 

the Internet.  Research can be pursued to define metrics for this accessibility and plan strategically to 

make use of both types of resources. Metrics will need to consider the demand for a data source or 

service, the latency of the cloud and its response to mobile devices, as well as reliability of wireless 

channels and availability of wireless bandwidth. Strategically, cloud-lets can be used as temporary cloud 

holders (e.g., the home computer, car computer, transition PC) because they can help maintain state 

without having to pay for the service.  This raises the question of how to maintain mobile cloud-lets and 

manage their role with respect to mobile devices. 

Mobile clouds. Latency presents an enduring, and worsening, challenge to mobile systems designers. 

Humans are acutely sensitive to delay and jitter and the 

user experience degrades further for highly interactive 

applications incurring even a few hundred milliseconds 

of latency. One possible approach to addressing this 

problem is to design a mobile cloud in which a proactive 

data delivery framework leverages a user’s mobility 

route fingerprints with the user’s contextualized 

behavior of data access for predictive data placement. 

This paradigm trades bandwidth and storage for latency 

and enables a number of networking application scenarios including mobile resource augmentation, on-

Figure 9. Inter-vehicular network. 



 

demand social networks, smart grids, mobile health delivery, personal content distribution and intelligent 

transportation systems. 

Network in the clouds. Future PeCS can utilize the immense cloud compute centers that communicate 

through ultra-high capacity wireless networks to remote mobile units in a metropolitan area. In the cloud 

computing scenario, physical processing is performed at the cloud data center but will virtually appear as 

a local service task. In addition, the wireless services of the future can themselves reside in the cloud. 

Computation will be displaced over speed of light wireless links and Radio over fiber links (RoF) to the 

cloud. Data center antennas may reside on towers far away from the cloud. Instead, RoF links displace the 

processing of the radio frequency signal from the cell tower to the cloud over the broadband RF fiber. 

In addition to wireless networking in the clouds, other embodiments of network forms are taking 

shape. Vehicular and aerial networks are defining components of PeCS. Researchers can investigate inter-

vehicle as well as intra-vehicle communication possibilities and use transmitted information in the context 

of intelligent transportation as well as general computation (see Figure 9). Similarly, research in 

miniaturization of sensors, micro-aerial vehicle flight, novel computation platforms and high-density 

power sources are enabling the design of micro-aerial vehicle swarms at an unprecedented size and scale. 

This research will enable a new class of applications including commercial pollination, search and rescue, 

surveillance, and environmental monitoring. 

Clouds and crowds. In the same way that cloud computing harnesses the power of distributed data and 

compute services to perform local tasks, so future PeCS can make use of the massive insights of crowds 

to help with data-intensive tasks. Crowd sourcing, or the act of outsourcing a task to the public, has the 

potential to revolutionize data collection and processing by enabling in-depth, large-scale, cost-effective 

information gathering as well as more accurate techniques for information extraction from data. Scaling 

up data collection from the masses opens a spectrum of emerging research problems, such as providing 

incentives for efficient scale sensor data collection to millions of users, recognizing and compensating for 

malicious or inaccurate providers, and ensuring privacy. 



 

We can consider a crowd as a mobile cloud where mobile devices are treated as first class entities. 

This strategy can be effective for addressing the latency problem since information can be transmitted 

between mobile devices and the cloud. Measuring crowds raises additional questions of how the crowds 

can be organized and defining metrics of interest. Load balancing between local phones, neighboring 

crowds, cloud-lets, and remote clouds lead to an interesting avenue of research and should be 

accomplished without letting the user know that these dynamics are occurring. 

4.5. Scaling through energy analysis and harvesting 

One of the biggest challenges for PeCS is the problem of powering the thousands (or more) pervasive 

computing devices that will be embedded in everyday surroundings and objects. Today’s pervasive 

computing devices are primarily powered by battery. Next-generation systems will be expected to operate 

for several months to years without the need for battery replacement, because frequent battery 

replacement is not only infeasible at this scale but also implies that the devices are not “invisible”. 

Limited battery capacity will present a significant challenge to the viability of PeCS. A promising 

alternative for powering PeCS systems is to scavenge energy from ambient sources such as solar 

radiation, wind, vibrations, radio frequency transmissions, or thermal gradients (micro-scale energy 

harvesting). Judicious design of pervasive systems to operate off scavenged energy has the potential to 

result in near-perpetual (also referred to as net-zero energy, self-sustained, or energy-neutral) system 

operation. 

In contrast with the slow improvement of battery capacity, the rapid advancements in electronics, 

embedded systems, and integrated circuit design enables the important direction of practical power 

harvesting. While energy harvesting has been explored in the context of large systems such as solar farms 

and windmills, micro-scale harvesting as a systematic discipline is not as mature. The existing approaches 

represent point solutions rather than generalized designs because they are often tied to specific physical 

phenomena and applications. 

However, realizing highly efficient micro-scale energy harvesting systems is challenging due to three 

main reasons. First, the form-factor constraint in these systems mandates the use of highly miniaturized 



 

energy transducers (often only a few cm3, and in some cases, even mm3). As a result, the output voltage of 

the transducer is very low, often far less than 1 Volt. Extracting energy from such ultra-low voltage 

sources is a non-trivial task. Second, the maximum power output of these micro-scale transducers is also 

extremely small, often in the W range. Therefore, it is particularly important to ensure that the energy 

harvesting subsystem is as efficient as possible to minimize losses. Third, environmental energy supply is 

highly time varying in nature (e.g., changing light intensity significantly impacts the output power from 

solar cells) and exhibits a large dynamic range. Energy availability can be intermittent in nature. PeCS 

systems that are powered by these micro-scale energy harvesters should be able to adapt to such vagaries 

using intelligent resource management techniques. Embedded systems must be designed to address many 

of these new challenges. There are a few specific identified research directions and questions that will be 

a key to the analysis, design, and management of environmentally-powered micro-scale systems. 

Foundations and basic concepts. The most common energy-related metric used to evaluate battery-

powered systems is “lifetime.” This metric makes sense for systems that are powered from a source that 

has a fixed, finite amount of energy. However, in the context of energy harvesting, where energy 

availability is essentially infinite along the temporal dimension (e.g., solar cells will produce electrical 

energy every day as long as there is sunlight), it is unclear what lifetime even means. Researchers must 

carefully define metrics for evaluating energy harvesting systems. One possible metric might be the 

ability to be energy-neutral or self-sustained, essentially evaluating whether the system scavenges enough 

energy per day to satisfy all of its computation and communication requirements. In addition, the metric 

may also incorporate the various design elements of the system including size and output power. 

Currently, there is no way to compare various solutions. 

Efficient power extraction. A variety of interesting energy harvesting transducers has recently become 

available, such as thermoelectric generators, piezo-electric, and photovoltaics. Researchers need to 

understand the fundamental limits of these various harvesting modalities and transducers in terms of the 

amount of energy that they can provide per unit size. Energy transducer models must abstract away the 

transducer devices while designing higher layers of an energy harvesting system. A key aspect to 



 

developing these models is to decide what information needs to be captured by these models (e.g., 

dynamic range of available power, temporal and spatial dynamics) and inform the design of the overall 

system. This kind of simulation mechanism also enables the development and evaluation of hybrid 

solutions, which will likely be necessarily in realizing many of the pervasive computing applications.  

Finally, the extracted power from the transducer needs to be stored efficiently using energy storage 

elements such as rechargeable batteries or capacitors. New energy storage architectures should also be 

explored that synergistically combine heterogeneous energy storage elements (e.g., thin film batteries and 

ultra-capacitors) to minimize losses during energy storage. 

Efficient resource management. PeCS necessitates the design of hardware and software systems that 

are “harvesting aware.” In addition to pushing the limits on ultra-low power design, a key challenge is to 

design systems that explicitly consider the spatial and temporal variations in energy availability and 

modulate system performance/power consumption accordingly, with the goal of self-sustained operation. 

A key requirement to enable such harvesting aware power management is that the energy harvesting 

hardware must expose various control points (e.g., the amount of energy currently available from the 

transducer) to software. At the network level, researchers can address how to build large networks out of 

intermittently available devices, how to allow these devices to bootstrap and join a network, and how to 

synchronize interconnected devices in this kind of environment. Power asymmetry between different 

networked devices may be leveraged and coordinated to accomplish a task. In addition, researchers can 

define new methods to accurately predict future energy availability and use that information for resource 

planning. 

Sustainability and energy management. PeCS research can also be directed toward sustainability.  

Smart grid research is gaining ground.  In addition to this important field, pervasive computing can be 

used to monitor and measure power consumption, and carbon footprints, and model user behavior as they 

move and interact with the environment.  This is particularly intriguing in environments where groups of 

individuals share energy resources and information can be combined with the individual’s home data. 

From this local information algorithms can infer consumption of communities and cities as well.  



 

Coupling information dissemination with social networks can provide comparison of consumption and 

incentives to minimize energy wastage. 

4.6. Effect of PeCS on human factors 

Researchers and commercial designers anticipate the scaling of pervasive computing to an even greater 

number of users, devices and applications.  However, the future of PeCS will impact humans in many 

unforeseeable ways. There is a need to carefully consider possible implications of PeCS for privacy, 

security, ethics, and human interfaces as they move forward in this area. 

Security and privacy. Many heavily-deployed Internet gadgets are nearly devoid of security against 

adversaries, and many others (including most smart phones) employ only crude methods for securing the 

platform from internal or external attacks. In addition, pervasive computing systems collect and aggregate 

large volumes of data, including location, but currently face uncertain privacy implications and offer too-

limited control to users whose data is collected. The definition of privacy will continue to evolve as 

pervasive computing systems scale. Usually people use multiple sources of knowledge including 

physical, social, and experiential information, to determine the utility and the safety of technologies [22].   

Designers need to keep all of these aspects in mind as they create safe, privacy-preserving scalable 

systems. Individuals are not the only entities that need to consider security and privacy.  Organizations, 

including schools, corporations, banks, and governments, have a need to secure their systems and to 

protect proprietary interests.  Researchers need to gain a better understanding of how pervasive systems 

reflect the needs, priorities, and structure of the organization as well as the preferences of the individuals 

within the organization. 

A critical consideration is the fact that large-scale pervasive systems, especially those that “disappear” 

into daily life and lifestyle, may be the target of (or tool for) cyber warfare. An adversary may disrupt 

such a system as a method of disturbing, misleading, or even terrorizing a large population. Consider, for 

example, an attack on home heating systems in midwinter, on businesses when all transactions are 

conducted via mobile devices, or on public health when clothing is connected to the Internet. 



 

While privacy-preserving data mining has been investigated, much of that work has been performed in 

the context of databases where each person is represented by a single record.  In PeCS, data may represent 

time series of observations about a user or collection of users and their collective behavior including 

social interactions in multiple pervasive systems. Because information collected in this context may 

consist of complex structured sensor data and not just a collection of linear-value attributes, existing 

methods may no longer apply. Moreover, new paradigms need to be developed to preserve relational 

privacy of user’s online social data at scale [28]. 

Scaling interfaces to field applications. Because pervasive computing applications are intimately 

integrated with our physical spaces, device usability is an essential concern. This becomes increasingly 

evident as pervasive computing systems increase in scale to include more devices, more capabilities, more 

humans, and more data.  Commonly used interface techniques have been designed and tested in lab 

settings and do not always scale well to situations outside the lab. Many of these methods do not also 

scale over time, nor do they scale to multiple devices, multiple locations, or high volumes of data. These 

features characterize PeCS applications, the interface aspects of which must be evaluated in situ. 

Scalability of HCI. A key issue in human-computer interaction (HCI) or even machine-to-machine 

interaction (MMI) for pervasive computing deals with the relationship between scalability and usability. 

Some aspects of the increasing scale of pervasive computing systems may in fact dampen usability 

challenges. For example, the increasing ubiquity of interactive applications may make them easier to learn 

and use. At the same time, other aspects of scalability may make pervasive computing less usable. This 

dichotomy demonstrates the need to identify and formalize these differences and incorporate them into 

the design of PeCS systems. 

4.7. Scalable PeCS support 

To support scalability at large in future pervasive computing scenarios, where several thousands of 

heterogeneous sensors and mobile nodes are expected to be involved over heterogeneous computing and 

communications platforms, several important systems issues and challenges need to be tackled. Such 

challenges include scalable middleware design to mitigate device and application heterogeneity; scalable 



 

fusion, recognition and mediation of context arising from multimodal sources, even in the presence of 

incomplete and uncertain information; and scalable resource discovery, composition and management in a 

dynamic and opportunistic manner. These scalability issues are ever more important for mobile social 

networking applications [5]. 

Context awareness. At the heart of any pervasive computing system design is the recognition and 

characterization of context which could be tangible or intangible. Context like user location, activity, 

preference, or social interaction are tangible because they can be captured or derived with the help of data 

collected from sensors and other devices. Whereas user intention, mood or behavior are intangible; they 

are as important as tangible context parameters but are not so easy to capture accurately and 

unambiguously. It is the notion of context and situation awareness (a sequence of contexts with semantic 

interpretation defines a situation) that makes a pervasive computing environment unique and perhaps 

different from cyber-physical systems, for example. There exists a significant body of literature dealing 

with context aware modeling and reasoning in pervasive computing [4,6,8,9,40]. A major challenge for 

PeCS is multi-context recognition and multi-context ambiguity mediation in the presence of uncertain 

(noisy or incomplete) information arising from a huge number of resource-constrained devices. Although 

some recent effort in this direction develops probabilistic models for improving multi-context recognition 

accuracy with the help of information theoretic reasoning [38], still a lot needs to be done for fundamental 

understanding of scalable interaction of a multitude of contexts, not only for single users but also for 

multiple users sharing the same pervasive computing environment, often with conflicting goals [14]. 

Naturally, context-aware algorithms and solutions involve how efficiently device and network resources 

are discovered and managed dynamically at scale. 

Scalable middleware. Over the last decade, efforts have been made to design and develop efficient 

middleware systems for pervasive computing [12,26,46]. However, most of the existing middleware 

solutions are developed for small to medium scale systems that can handle at most 100’s of devices 

and/or users without performance degradation. Therefore, PeCs issues call for novel algorithmic design 

and modeling frameworks and middleware tools that are capable of capturing and processing large 



 

amounts of context metadata, supporting large scale collaborative sensing and computing, and adaptive 

decision making through spatio-temporal information fusion. These scalable middleware solutions must 

be lightweight, interoperable, secure, and also provide tradeoff between information accuracy, context 

quality, latency, and resource consumption [39]. Then only there will be wide-scale deployment of 

pervasive computing at scale, with the possibility of industry standard evolving. 

4.8. Theoretical foundations of PeCS 

PeCS is not yet a mature theoretical field and few metrics have been formalized (e.g., scaling of network 

capacity for wireless networks). Moreover, PeCS needs solid analytical tools that can effectively deal 

with scalability issues. Researchers can adapt theories from human factors, machine learning, algorithm 

design, information theory, control theory, game theory, sampling theory, sensor fusion, and mobile 

computing to PeCS, such as examining how Fitt’s law [19] may be used to analyze mobile devices and 

interfaces. 

Unifying Theory. Researchers  need to develop a unifying theory for PeCS that can scale to very large 

numbers of heterogeneous devices, applications, and interaction methods. Because PeCS necessarily 

exacerbates the current scalability challenges in system architectures, there is a need to provide insights 

regarding the scalability as a function of the number of nodes, users, and volume of data considered. 

Performance measures should not only be limited to speed but should also consider reliability, accuracy, 

resiliency, adaptability, and usability. 

Theory of useful information. PeCS systems will collect large amounts of data.  They also make a 

great variety of data available to users and force new pieces of information, tasks, and advertisements on 

users. PeCS theory can include an analysis of the usefulness and usability of information and on the value 

of information for specific tasks and goals.  Advanced machine learning and data mining techniques can 

be used to gather and analyze data in an unsupervised fashion in order to reduce the burden of data 

analysis and actionable decision making for users. 

5. Additional Interdisciplinary PeCS Challenges and Opportunities 



 

Because pervasive computing, at its heart, pervades every aspect of our lives, the field is by nature 

multidisciplinary. Here we highlight additional interdisciplinary opportunities for PeCS collaboration that 

have been minimally tapped to date. For example, partnerships between engineers and economists can be 

valuable as industry designs business models for PeCS. While researchers usually define for and measure 

performance factors such as delay, message overhead, and recognition accuracy, they also need to factor 

in system design, management, and usage cost. 

In addition, PeCS researchers can learn from psychologists and social scientists how to conduct human 

subject experiments.  Computer scientists need to work with psychologists and sociologists to understand 

and automate modeling of human dynamics and behavior, and also to understand the impact of pervasive 

computing on users. For example, Steve Jobs drew from his training in calligraphy to design Apple’s 

typography [32]. In a similar way, PeCS researchers learn from artists and from experts in sociology, law, 

and public policy to design pervasive computing interfaces and to understand privacy, technology 

acceptance, and to define policy and regulations for ethical research in pervasive computing.  These 

collaborations can help with when designing applications that are sensitive to socio-economic and cultural 

differences. 

 Educators can also make use of PeCS research to improve the quality of education and training for 

future PeCS researchers. Building on the observation that students enjoy playing with new gadgets and 

respond well to competition, curriculum developers may make use of mobile devices in the classroom and 

design competitions such as designing smart phone applications to minimize power consumption. 

Interdisciplinary training is also necessary for students in pervasive computing, particularly as we 

scale the field. Many academic institutions assume that students will obtain this training by taking classes 

in each of the contributing disciplines.  However, this approach to education may only increase 

disciplinary isolation and hence may prevent true multi-disciplinary collaboration. The future of PeCS 

education relies upon schools offering interdisciplinary courses that actually integrate information across 

disciplines and focus on defining a common vocabulary. 



 

Finally, pervasive computing has become a field that not only attracts great interest from researchers 

but also dramatically impacts everyday lives. With dramatic successes having been achieved in this field, 

researchers can now look toward the next step. We anticipate dramatic changes in the field as it begins to 

scale and look forward to seeing the field continue to grow. 
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