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1 Introduction

Most pattern recognition approaches look for patterns in data represented as
independent entities described by attributes. However, the relationships be-
tween entities are as important, if not more important, to the recognition of
accurate and meaningful patterns. In this chapter we describe an approach
to discovering patterns in relational data represented as a graph. Our ap-
proach is based on the minimum description length (MDL) principle [28],
which measures how well various patterns compress the original database.
This approach is implemented in the SUBDUE system. We begin with a
discussion of related work. We then describe graph-based discovery, the
main discovery algorithm, and the polynomially-constrained inexact graph
matching algorithm at the heart of the discovery process. Next, we describe
how this technique can also be used for clustering and concept learning. We



illustrate the utility of the approach by applying the clustering and concept
learning techniques to DNA and WWW data.

2 Related Work

Systems that deal with structural databases typically do not scale for large
databases due to the increased combinatorics inherent in the richer represen-
tations. Inductive Logic Programming (ILP) systems can handle structural
representations [15], but do not yet scale to large databases. Although ILP
systems typically perform supervised learning, some systems (e.g., CLAU-
DIEN [27] and PROGOL [25]) attempt unsupervised discovery from structural
data using techniques common in ILP systems. Our graph-based approach
is constrained to run in polynomial time while still discovering relevant pat-
terns [9, 11, 12, 10].

Other approaches to discovery in structural databases have been pro-
posed [7, 20, 29, 33, 35]. Many of these approaches use a knowledge base
of concepts to classify the structural data. These systems perform concept
learning over examples and categorization of new data, and are typically
not designed to perform unsupervised discovery. While the above methods
process individual objects one at a time, our method is designed to process
the entire structural database, consisting of many objects. Unlike many of
the existing methods, SUBDUE can also discover knowledge in a supervised
or unsupervised fashion.

The graph-based discovery approach relies on the ability to perform an
inexact, or error-tolerant, graph isomorphism between two graphs. Our in-
exact graph match is based on a branch-and-bound search to find a minimal
edit distance [4]. Such approaches have been refined [26, 23, 22], especially
in their application to computer vision for matching artifacts of an image
represented in graph form. Related work on computing an error-tolerant
subgraph isomorphism for a set of graphs optimizes the graph algorithm by
first matching common subgraphs of the set of graphs to be matched [24].
We also are interested in finding common subgraphs within a set of graphs,
but also in a single graph, and our approach searches for such subgraphs mo-
tivated by the desire to find subgraphs that not only optimally compressing
the graph, but also represent knowledge of interest to the user.
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Figure 1: Natural rubber atomic structure.
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Figure 2: Rubber graph compressed using the discovered substructure.

3 Graph-Based Discovery

The graph-based discovery method discovers structural patterns, or sub-
structures, in a graph representation of data guided by the MDL principle.
Based on the MDL principle, the method discovers substructures that com-
press the original data and represent structural concepts in the data. Once
a substructure is discovered, the substructure is used to simplify the data
by replacing instances of the substructure with a pointer to the newly dis-
covered substructure. The discovered substructures allow abstraction over
detailed structures in the original data. Iteration of the substructure dis-
covery and replacement process constructs a hierarchical description of the
structural data.

3.1 Graph Representation

The substructure discovery approach represents structural data as a labeled
graph. Objects in the data map to vertices or small subgraphs in the graph,
and relationships between objects map to directed or undirected edges in the
graph. A substructure is a connected subgraph within the graphical repre-
sentation. This graphical representation serves as input to the substructure
discovery algorithm. An instance of a substructure in a graph is a set of
vertices and edges from the input graph that match, graph theoretically, to
the graphical representation of the substructure.

Figure 1 shows a sample database that is input to SUBDUE, representing
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Figure 3: Sample results of Subdue on a partial DNA sequence.

the atomic structure of natural rubber. The input graph represents atoms
as vertices, and single or double bonds as labeled undirected edges between
the vertices. The highlighted substructure, which we label substructure S1,
is selected as the best subgraph to describe the input database. The five in-
stances of the substructure are each replaced by a single vertex representing
the discovered concept. The graph that results from compressing the rubber
database is shown in Figure 2. This discovery and compression process helps
the user understand the database and exploit the knowledge content of the
data encoded in the graph vertices and edges.

Figure 3 shows a sample input database containing a portion of a DNA
sequence. In this case, atoms and small molecules in the sequence are repre-
sented with labeled vertices in the graph, and the single and double bonds
between atoms are represented with labeled edges in the graph. SUBDUE
discovers substructure S; from the input database. After compressing the
original database using S, SUBDUE discovers substructure S, which when
used to compress the database further allows SUBDUE to discover substruc-
ture S3. Such repeated application of SUBDUE generates a hierarchical de-
scription of the structures in the database.



Subdue (Graph, Beam, Limit)
queue Q = {v | v is a vertex in Graph having a unique label}
bestSub = first substructure in Q
repeat
newQ = {}
for each substructure S € Q
newSubs = Extend-Substructure (S, Graph)
in all possible ways
Evaluate (newSubs)
new(Q = newQ U newSubs mod Beam
Limit = Limit - 1
if best substructure in new(Q) better than bestSub
then bestSub = best substructure in Q
Q = newQ
until Q is empty or Limit < 0
return bestSub

Figure 4: SUBDUE’s discovery algorithm.

3.2 Discovery Algorithm

SUBDUE uses a variant of beam search [36, 16]. Beam search maintains a
limited-length (i.e., beam length) queue of the best few patterns found so
far. While limiting the queue length yields a suboptimal search, not limiting
the queue length may result in an exponential-sized queue. The goal of
the search is to find the substructure (pattern) that best compresses the
description length of the input graph. A substructure in SUBDUE consists
of a substructure definition and all its instances in the graph.

SUBDUE’s discovery algorithm is shown in Figure 4 and is given the input
graph, the beam length, and a limit on the total number of substructures
considered by the algorithm. The initial state of the search is the set of
substructures representing each uniquely labeled vertex and its instances.
The only search operator is the Extend-Substructure operator. As its name
suggests, Extend-Substructure extends the instances of a substructure in all
possible ways by a single edge and a vertex, or by a single edge if both
vertices are already in the substructure. The minimum description length
(MDL) principle is used to evaluate the substructures.



The search progresses by applying the Eztend-Substructure operator to
each substructure in the current search frontier (queue), which is an ordered
list of previously discovered substructures. The resulting frontier, however,
does not contain all the substructures generated by the Ezxtend-Substructure
operator. The substructures are stored on a queue and are ordered based on
their ability to compress the graph. The length of the queue is limited by the
user-defined Beam parameter, where mod Beam means that only the best
Beam substructures are kept on the queue after adding new substructures
to the queue. The search terminates upon reaching a user-specified Limit
on the number of substructures extended, or upon exhaustion of the search
space. SUBDUE’s run time is polynomial in Beam and Limit.

Once the search terminates and returns the best substructure, the graph
can be compressed using this substructure. The compression procedure
replaces all instances of the substructure in the input graph by a single
vertex, which represents the substructure. Incoming and outgoing edges
to and from the replaced substructure will point to, or originate from, the
new vertex that represents the substructure. In our implementation, we do
not maintain information on how vertices in each instance were connected
to the rest of the graph, which results in lossy compression. Since the
goal of substructure discovery is interpretation of the database, maintaining
information to reverse the compression is of secondary importance.

The SUBDUE algorithm can be invoked again on this compressed graph.
This procedure can be repeated a user-specified number of times, and is
referred to as an iteration. The maximum number of iterations that can be
performed on a graph cannot be predetermined; however, a graph that has
been compressed into a single vertex cannot be compressed further.

To allow SUBDUE to discover substructures of particular interest to a
scientist in a specific domain, the user can direct the search with expert-
supplied background knowledge [12]. Background knowledge can take the
form of known substructure models that may potentially appear in the
database, or graph match rules to adjust the cost of each graph transforma-
tion. Unlike other existing approaches to graph-based discovery [8, 20, 30,
33, 37], SUBDUE is effective at finding interesting and repetitive substruc-
tures in any structural database with or without domain-specific guidance.

3.3 Minimum Description Length Principle

SUBDUE’s search is guided by the minimum description length (MDL) prin-
ciple developed by Rissanen [28]. According to the MDL heuristic, the best



substructure is the one that minimizes the description length of the graph
when compressed by the substructure. This compression is calculated as
DL(S) + DL(G | S)

DL(G)

Compression =

where DL(Q) is the description length of the input graph, DL(S) is the de-
scription length of the substructure, and DL(G | S) is the description length
of the input graph compressed by the substructure. The search algorithm
attempts to maximize the value of the substructure, which is simply the
inverse of the Compression. The description length of a graph is calculated
here as the number of bits needed to encode an adjacency matrix represen-
tation of the graph. Additional details of the encoding scheme are reported
in the literature [9].

3.4 Inexact Graph Match

Because instances of a substructure can appear in different forms through-
out the database, an inexact graph match based on [4] is used to identify
substructure instances. Performing an inexact match allows the discov-
ered substructures to abstract away minor variations in the substructure
instances. Subgraphs of the original database are considered to be instances
of a substructure definition if the edit distance between the two graphs, or
the cost of transforming the potential instance into a graph that is isomor-
phic with the substructure definition, does not exceed a user-defined value.
Transformations between graphs can include addition or deletion of vertices,
addition or deletion of edges, vertex label substitutions, and edge label sub-
stitutions. Each transformation is assigned a cost which can be customized
by the user for a specific application.

Formally, an inexact graph match from graph g; to graph g» is a mapping
[+ Ny = Ny U{A}, where Ny and N, are the sets of vertices of g1 and go,
respectively. A vertex v € Nj that is mapped to A (i.e., f(v) = A) is
deleted. That is, the vertex has no corresponding vertex in go and therefore
maps to nothing (). Given a set of graph transformation costs, we define
the cost of an inexact graph match cost(f), as the sum of the cost of the
individual transformations resulting from f, and we define matchcost(gi, g2)
as the value of the least-cost function that maps graph g; onto graph gs.
A SUBDUE parameter, the match threshold ¢, can be specified with a value
between 0 and 1. A graph is considered to be an instance of a substructure
if the matchcost of the two graphs is no more than ¢ times the size of the
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Figure 5: Two similar graphs g; and go.

larger graph. A threshold value of 0 constrains the algorithm to allow only
exact matches, and a threshold value of 1 allows any two graphs to match.

Given g1, g2, and a set of distortion costs, the actual computation of
matchcost(gy, g2) can be determined using a tree search procedure. A state
in the search tree corresponds to a partial match that maps a subset of the
vertices of g1 to a subset of the vertices in go. Initially, we start with an
empty mapping at the root of the search tree. Expanding a state corresponds
to adding a pair of vertices, one from ¢g; and one from go U {\}, to the
partial mapping constructed so far. A final state in the search tree is a
match that maps all vertices of g; to g2 or to A. The complete search tree
of the example in Figure 5 is shown in Figure 6. For this example we assign
a value of 1 to each distortion cost. The numbers in circles in this figure
represent the cost of a state. As we are eventually interested in the mapping
with minimum cost, each state in the search tree is assigned the cost of the
corresponding partial mapping. Thus the goal state to be found by our tree
search procedure is the full mapping, or leaf node, with the minimum cost
among all full mappings. From Figure 6 we conclude that the minimum
cost inexact graph match of g; and go is given by the mapping f(1) = 4,
f(2) = 3. The cost of this mapping is 4. Given graphs g; with n vertices
and g9 with m vertices, m > n, the complexity of the full inexact graph
match is O(n™*1).

Because this routine is used throughout the discovery process, the com-
plexity of the algorithm can significantly degrade the performance of the
system. We offer a number of enhancements that improve the efficiency of
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Figure 6: Search tree for computing matchcost(g1,92) from Figure 5.

this algorithm. First, we apply a branch-and-bound search algorithm to
the search space in which partial mappings are considered in nondecreasing
order by match cost. The cost from the root to a given node is calculated
as the cost of all distortions corresponding to the partial mapping for that
node. Vertices from the matched graphs are considered in nonincreasing
order by degree. Because branch-and-bound GUARANTEEs an optimal
solution, the search ends when the first complete mapping (leaf node) is
found.

Second, the user can limit the number of search nodes considered by the
branch-and-bound procedure. The limit is defined as a function of n, the
size of the larger graph. Once the number of nodes expanded in the search
tree reaches the defined limit, the search switches to hill climbing or greedy
searching using the cost of the partial mapping as the measure for choosing
the best node at a given level.

Third, the match threshold itself can be used to prune portions of the
search space. Because no graph transformations can be assigned a negative
cost, as soon as a node is reached with a match cost greater than the allowed
value, the subtree rooted at that node is removed from consideration.

Employing computational constraints such as a bound on the number
of substructures considered (s) and the number of partial mappings con-
sidered during an inexact graph match (), SUBDUE is constrained to run
in polynomial time. The worst-case run time of the system is the product
of the number of generated substructures, the number of instances of each
substructure, and the number of partial mappings considered during graph
match. This expression is equal to (37— i*((v—1)—(i—1))) *(v(s—1))*xz,
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Figure 7: Sample geometric domain for clustering.

where v represents the number of vertices in the input graph.

4 Graph-Based Clustering

Cluster analysis has been studied and developed for model fitting, hypothe-
sis generation and testing, data exploration and reduction, prediction based
on groups, and finding true topologies [1]. The purpose of applying clus-
tering to a database is to gain a better understanding of the data, in many
cases by highlighting hierarchical topologies. An example of a hierarchical
clustering is the classification of vehicles into groups such as cars, trucks,
motorcycles, tricycles, and so on, which are then further subdivided into
smaller groups based on observed traits. Although a number of relatively
successful clustering systems have been constructed [6, 17, 33], few exist-
ing systems address the problem of clustering in discrete-valued, structural
databases. Our approach centers on discrete-valued, structural databases
that are represented as graphs.

One approach to structural clustering is to perform multiple iterations
of SUBDUE, constraining the discovery algorithm to not reuse substructures
discovered in previous iterations, until the whole graph is exhausted. Each
iteration yields one cluster (substructure), which is used to compress the
graph. This cluster can be inserted into a classification lattice. This lattice
structure contrasts with previous research that generates classification trees,
and is partially due to the fact that SUBDUE has the unique capability to
represent more elaborate relationships in the data using graph structure.
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4.1 Example

As an example, SUBDUE can be used to cluster the data shown in Figure 7.
Visually, the input data consists of triangles, squares and pentagons, where
vertices and edges in the figure map to vertices and edges in the input graph.
SUBDUE first discovers the substructure describing the pentagon pattern in
the input graph, which is inserted as a child cluster of the root node in the
lattice. During the next two iterations, the square shape and triangle shape
as discovered and inserted as children of the root. In the fourth iteration,
SUBDUE returns the substructure describing two pentagon shapes connected
by a single edge. This cluster is inserted into the classification lattice as the
child of the cluster describing the pentagon, because the pentagon appears
in the cluster definition. There are two links connecting this new cluster
to its parent, because the parent cluster definition appears twice. In the
last iteration, a substructure is discovered that contains a pair of squares
connected by an edge, a pair of triangles connected by an edge, and an edge
connecting the two pairs. This cluster is inserted as a child of two clusters
from the first level of the lattice. The resulting lattice is depicted in Figure 8.

4.2 Application to DNA

We applied graph-based clustering to the DNA sequence data from Figure 3.
The resulting lattice is shown in Figure 9. The lattice property is apparent
in Figure 9, where the bottom-left nodes have multiple parents. This lattice
describes 71% of the DNA sequence shown in Figure 3. As the lattice shows,
smaller, more commonly occurring compounds are found first that compose
the first level of the lattice. These account for more than 61% of the DNA
sequence data. Subsequently identified clusters are based on these smaller
clusters that are either combined with each other, or with other atoms or
molecules to form a new cluster. The second level of the lattice extends the
conceptual clustering description such that an additional 7% of the DNA is
covered.

5 Graph-Based Concept Learning

We have extended our unsupervised discovery methods to perform super-
vised graph-based relational concept learning. Logic-based systems have
dominated the area of relational concept learning, especially Inductive Logic
Programming (ILP) systems. However, first-order logic can also be repre-
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Figure 8: Clustering lattice for geometric domain in Figure 7.
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Figure 9: Clustering lattice for DNA domain.
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sented as a graph, and in fact, first-order logic is a subset of what can be
represented using graphs. Therefore, learning systems using graphical rep-
resentations have the potential to learn richer concepts if they can handle
the increased size of the hypothesis space.

Few general-purpose learning methods use a formal graph representa-
tion for knowledge, perhaps because of the arbitrary expressiveness of a
graph and the inherent NP-hardness of typical graph-based learning rou-
tines. Graph-based learning methods for pattern recognition in chemical
domains [2, 32, 34] have been successful due to the natural graphical de-
scription of chemical compounds. Some unsupervised learning methods
(e.g., SUBDUE [9] and WARMR [14]) use a graph representation, but no
domain-independent supervised concept learning systems use a graph repre-
sentation (although there is some theoretical work on graph-based concept
learning [21]).

The main challenge in adding concept-learning capabilities to SUBDUE
is the inclusion of ”negative” examples into the process. Substructures that
describe the positive examples; but not negative examples, are likely to rep-
resent the target concept. Therefore, the SUBDUE concept learner (which
we will refer to as SUBDUECL) accepts both positive and negative examples
in graph format. Since SUBDUECL is an extension to SUBDUE, it uses SUB-
DUE’s core functions to perform graph operations, but the learning process
is different. SUBDUECL works as a supervised learner by differentiating
positive and negative examples using a set-covering approach instead of
graph compression. The hypothesis found by SUBDUECL consists of a set of
disjunctions of conjunctions (substructures), i.e., the concept may contain
several rules. SUBDUECL forms one of these conjunctions (rules) in each
iteration. Positive example graphs that are described by the substructure
found in a previous iteration are removed from the graph for subsequent
iterations.

SUBDUECL uses an evaluation formula to give a value to all the gener-
ated substructures. This formula assigns a value to a substructure according
to how well it describes the positive examples (or a subset of the positive
examples) without describing the negative examples. Then, positive ex-
amples covered by the substructure increase the substructure value while
negative examples decrease its value. In this formula the positive examples
that are not covered and the negative examples covered by the substructure
are considered errors, because the ideal substructure would be one covering
all the positive examples without covering any negative example. Then, the
substructure value is calculated as follows:

15



value =1 — Error

where the error is calculated with respect to the positive and negative
examples covered by the substructure using the following formula:

#PosEgsNotCovered + # NegEgsCovered
#PosEgs + #NegFEgs

Error =

#PosEgsNotCovered is the number of positive examples not covered by
the substructure, and #NegF gsCovered is the number of negative examples
covered by the substructure. #PosFEgs is the number of positive examples
remaining in the training set (remember that the positive examples that
have already been covered in a previous iteration were removed from the
training set), and #NegFgs is the total number of negative examples. This
number does not change, because negative examples are not removed from
the training set. Of two substructures with the same error, the substructure
covering more positive examples is preferred.

In addition to replacing the compression-based evaluation measure with
error-based measure mentioned above, the SUBDUECL algorithm differs
from the original SUBDUE algorithm from Figure 4 in that SUBDUECL is
called multiple times in a set-covering framework, each time adding a new
substructure to the disjunctive hypothesis and removing covered positive ex-
amples. This process continues until either all positive examples are covered
or no substructure exists discriminating the remaining positive examples
from the negative examples (i.e., noise exists in the data).

5.1 Example

As an example of SUBDUECL and its comparison to the ILP systems FoiL
[6] and PROGOL [25], we present results from the chess endgame database
available at the UCI Machine Learning Repository [3]. The chess domain
consists of 20,000 examples of row-column positions for a white king, white
rook and black king such that the black king is in check (positive) or not
(negative). Therefore, if white’s turn is next, then the positive examples
are illegal configurations. The relational information in this domain con-
sists of adjacency relations between board positions and less-than or equal
relations between row and column numbers (0-7). Both FoiL and ProGOL
extensionally define the three relations.

16
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Figure 10: An example from the chess domain: (a) Board configuration, (b)
SUBDUECL’s graphical representation of the example.

Figure 10b shows SUBDUECL’s representation for the chess domain ex-
ample in Figure 10a. Figure 10a shows a corner of the chess board and
the positions of the white king (WK), white rook (WR), and black king
(BK). SUBDUECL’s representation in Figure 10b uses two vertices for the
row and column for each piece: white king row (WKR), white king column
(WKC), white rook row (WRR), white rook column (WRC), black king row
(BKR), and black king column (BKC). The row and column vertices for
each piece are connected by an undirected edge labeled “pos” representing
the row/column position relationship. These row and column vertices are
then connected by various numeric relationship edges, depending on whether
they are less than (1t), equal to (eq), or adjacent (adj).

Due to computational constraints only a subset (5,000 examples) of the
entire database was used for a 10-fold cross validation. This experiment
involved partitioning the data into 10 subsets of 500 each. Ten trials are
executed using one of the partitions as a test set evaluated on the patterns
learned using the other 4,500 examples as training. The ten accuracy results
are then averaged to arrive at a final accuracy value. The accuracy results
are 99.74% for PrRoGoL, 99.34% for Foir, and 99.74% for SUBDUECL. FoIL
and SUBDUECL perform significantly better than PROGOL. In terms of
number of rules, PROGOL learned 6 rules, FOIL learned 11 rules, and SUB-
DUECL learned 7 rules (substructures).

The rules learned by PROGOL and FoOIL are shown below, where the argu-
ments of the predicate illegal are illegal WKC,WKR,WRC,WRR,BKC,BKR).
Rule number 1 identifies the illegal board configurations where the black

17



king and white king are in an adjacent row. Rule number two identifies the
illegal board configurations where the white king and black king are in ad-
jacent columns and rows. Rule three describes board configurations where
the white king is in the same position as the white rook. Rule 4 says that
board configurations where the white rook column is the same as the black
king column are illegal. Rule 5 says that board configurations where the
white rook row is the same as the black king row are illegal.

1. illegal(A,B,C,D,A,E) :- adj(E,B).

2. illegal(A,B,C,D,E,F) :- adj(A,E), adj(B,F).

3. illegal(A,B,A,B,C,D).

4. illegal(A,B,C,D,C,E).

5. illegal(A,B,C,D,E,D).

These rules say that a board configuration is illegal when:

1. The black king and white king are in an adjacent row.

2. The white king and black king are in adjacent columns and rows.
3. The white king is in the same position than the white rook.

4. The white rook column is the same as the black king column.

5. The white rook row is the same as the black king row.
The rules produced by FoIL are shown below.

1. illegal(A,B,C,D,E,D) :

1t(A,C).

2. illegal(A,B,C,D,C,F) :- 1t(A,C).

3. illegal(A,B,C,D,E,F) :

adj(A,E), adj(B,F).

4. illegal(A,B,A,D,E,D).

5. illegal(A,B,C,D,C,F) :- 1t(C,A).
6. illegal(A,B,A,B,E,F).
7. illegal(A,B,A,D,A,F) :- adj(D,F).

18



8. illegal(A,B,C,D,E,D) :- illegal(C,G,D,G,H,B).
9. illegal(A,B,A,D,A,F) :- adj(A,B), illegal(A,A,A,D,G,B).
10. illegal(A,B,C,D,E,D) :- illegal(A,C,B,G,E,A).

11. illegal(A,B,A,D,A,F) :- 1t(D,B), illegal(A,F,A,F,G,A).

Rules 8-11 are recursive and not relevant to the domain. Rules 1-7 say
that a board configuration is illegal when:

1. The white rook and the black king are in the same row, and the white
king is in a lower column than the white rook.

2. The white rook and the black king are in the same column, and the
white king is in a lower column than the white rook.

3. This rule is the same as rule 2 found by PROGOL.

4. The white king and the white rook are in the same column, and the
white rook and the black king are in the same row.

5. The white rook and the black king are in the same column, and the
white rook is in a lower column than the white king.

6. This rule is the same as rule 3 found by PROGOL.

7. The white king, the white rook and the black king are in the same
column.

SUBDUECL found the equivalent substructures for rules number 3, 4,
and 5 of PROGOL. For rule number 2 found by ProGoL, SUBDUECL found
two rules where the only difference between them is the direction of one edge.
Figure 11 shows the last two of the seven substructures found by SUBDUECL
in the chess domain. These two substructures found by SUBDUECL’s are
not directly equivalent to any of the rules found by PROGOL, but are similar
to PROGOL’s rule 1.
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Figure 11: Two of seven substructures found by SUBDUECL in the chess

domain.
word
page <>

Figure 12: A substructure found in the web domain (Professors - Students).

5.2 Application to the World-Wide Web

The Web domain consists of graphs created from web sites. We have three
options for the information that these graphs contain: hyperlink structure,
hyperlink structure + page’s titles, and hyperlink structure + page’s con-
tent. We used a Perl program to extract this information and convert it
into its graph representation. The first experiment that we made for the
Web domain consisted in differentiating the Web pages of professors and
students. We made the professors’ web pages our positive examples and the
students web pages our negative examples. For this initial experiment we
chose the web page structure + page’s content option, because we wanted
to give as much information as possible to SUBDUECL and observe its be-
havior. SUBDUECL was able to find a very small substructure that could
differentiate the positive examples from the negative examples. This sub-
structure is shown in Figure 12 and says that every professor has in their
web page the word "box”, but students do not have this word in their web
pages. This is true because the word "box” is part of the address field of
the professors’ web pages.

For the second experiment in the web domain we used the hyperlink
structure option. We chose this option, because we wanted to learn only
structure without considering the web pages’ content so that SUBDUECL
did not learn a substructure with a word (or set of words) describing the
domain as in the previous experiment. We chose the structure graphs of
web sites of computer stores as our positive examples and the structure
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Figure 13: A substructure found in the web domain (Computer Stores -
Professors).

graphs of web sites of professors as our negative examples. Figure 13 shows
a substructure found in this domain. This substructure covered 24 of a
total of 29 positive examples without covering any of the negative examples.
Although not all the examples covered by this substructure had the same
interpretation, for most of them the following explanation applies: Node 8
represents a category of products linked to three subcategories of products
represented by nodes 1, 17, and 18. Nodes 19 and 22 represent either more
specific subcategories derived from the subcategory represented by node 1
or specific products. Node 21 represents a specialization of the subcategory
represented by node 22.

The results in the web domain tell us that SUBDUECL is able to learn
how to differentiate between the graph structure of different classes of web
sites. Further experimentation has been done in both artificial and real
domains to show that SUBDUECL is competitive with ILP systems [18].

6 Conclusions

Current databases are maintaining and increasing amount of structural in-
formation, and older databases can be augmented with such structural in-
formation (e.g., spatial and temporal relationships). There is a need for
advanced pattern learning algorithms that can handle structural data. We
described our graph-based discovery approach to this task, and its imple-
mentation in the SUBDUE system. Iterative executions of SUBDUE yield a
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hierarchical conceptual clustering of the data. Slight changes in the eval-
uation measure and top-level algorithm of SUBDUE yields SUBDUECL, a
graph-based relational concept learner. These three functionalities (discov-
ery, clustering, and concept learning) were illustrated using both artificial
and real-world databases. Our conclusion is that the graph-based approach
is both efficient and effective in identifying patterns in structural data. The
approach is also competitive with older conceptual clustering techniques and
inductive logic programming (ILP) approaches to relational concept learn-
ing.

We are pursuing several directions for enhancing the graph-based ap-
proach. Some of the enhancements are based on three advantages ILP sys-
tems have over SUBDUE. First, ILP systems can use variables to equate
two arguments without specifying their value. Second, ILP systems can
learn recursive concepts. Third, ILP systems are better at handling contin-
uous values using inequalities and ranges. We are working on approaches
to these three capabilities. We are working on introducing variables into
a substructure definition based on the recognition of instances that have
similar, but varying structure. We are moving to a graph grammar repre-
sentation of substructures, clusters and concepts that will allow recursion.
Lastly, we are investigating methods for learning ranges and distributions
over continuous-valued labels in the graph. We believe these enhancements
will give SUBDUE a clear advantage over ILP systems.

Finally, we will continue our empirical and theoretical analysis of SUB-
DUE. An increasing number of domains are becoming available that re-
quire structural pattern recognition to find desired patterns, e.g., domains
in which relationships among a group of people might indicate suspicious
behavior of the group. We have developed several parallel and distributed
versions of SUBDUE to address very large databases, while maintaining the
quality of the result [13]. We are also continuing our work in chemical do-
mains (e.g., proteins, DNA, and carcinogens). We have begun a theoretical
analysis of graph-based learning based on a probably-approximately correct
(PAC) analysis [19] of conceptual graphs [31] and an analysis of the Galois
lattice [21].

Our graph-based approach to discovery, clustering and concept learning
provides an efficient, effective, and uniform approach to the task of extract-
ing knowledge from structural data. We will continue to investigate improve-
ments to the algorithms and implementations, as well as apply our approach
to various problems. Source code and data for the SUBDUE system and the
aforementioned extensions are available at http://cygnus.uta.edu/subdue.
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