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Abstract 

The maturation of pervasive computing technologies has dramatically 
altered the face of healthcare. With the introduction of mobile 
devices, body area networks, and embedded computing systems, care 
providers can use continuous, ecologically valid information to 
overcome geographic and temporal barriers and thus provide more 
effective and timely health assessments. In this paper, we review 
recent technological developments that can be harnessed to replicate, 
enhance, or create methods for assessment of functional performance. 
Enabling technologies in wearable sensors, ambient sensors, mobile 
technologies, and virtual reality make it possible to quantify real-time 
functional performance and changes in cognitive health. These 
technologies, their uses for functional health assessment, and their 
challenges for adoption are presented in this paper. 
 
1. Introduction 
Advances in health care have been dramatic since the beginning of 
the millennium. As a result, global life expectancy has increased by 5 
years since 2000 [1]. The resulting aging of the population is placing 
a heavy burden on our healthcare systems. With the aging of the 
population there is an accompanying increase in chronic diseases [2]. 
According to the Association of American Medical Colleges, the 
increasing demand for healthcare will cause a shortage of 124,400 
physicians by 2025 [3]. While the future of healthcare availability 
and quality of services seems uncertain, at the same time advances in 
pervasive computing and intelligent embedded systems provides 
innovative strategies to meet these needs. These technologies are 
driving a radical transformation that offers a potential to scale 
healthcare assessments and treatments. 

One particular need which technology can help address is the 
assessment of a person’s functional performance. Assessing the 
ability of an individual to be functionally independent supports 
family planning and creation of an appropriate treatment and 
intervention plan. Scalable approaches to functional assessment pave 
the way for early detection and more effective treatment. 
Additionally, while researchers continue to make advances to slow 
and stop the progression of debilitating diseases, they need a way to 
quantitatively measure the outcome of pharmaceutical and behavioral 
interventions both in the clinic and at home [4]. 

Here we focus on technologies that assist with functional health 
assessment. Functional decline is a common presentation of many 
disease states and is often the result of acute and chronic problems 
that act together to adversely affect the ability to independently 
perform both basic [5] and more complex [6] activities of daily living 
(ADLs). The studies that we review involve participants undergoing 
treatment for diseases that dramatically impact ADL function. These 
diseases include Alzheimer’s disease, Parkinson’s disease, other 
causes of dementia, autism spectrum disorder, Huntington’s disease 
[7], stroke [8], epilepsy [9], multiple sclerosis [10], and schizophrenia 
[11]. Functional assessment does not conform to a traditional 
screening model based on history and examination. In fact, 66% of 
providers do not address functional limitations even when they are 
specifically reported by older adult patients during an office visit 
[12]. Functional health has been defined as the ability to conduct 
tasks and activities that are important in a person’s daily life [13]. 
There are many contributing factors to ADL functioning, including 
cognition and physical mobility. 

Technology offers many potential improvements to functional 
assessment. Because many technology-based tests can be 
administered without a clinician present, they can be utilized by 
people living in rural settings [14] without imposing many of the time 

and space constraints that make thorough assessment difficult in 
clinical settings [15]. Performing such assessments in the home 
instead of the clinic is believed to be more representative of an 
individual’s capabilities [16]. Furthermore, continuous sensor-based 
monitoring can bring new sources of information and insights to help 
care providers understand each individual’s situation and needs and 
help researchers better understand diseases and their cures. 

In this paper, we review classes of technologies that are most 
commonly used to automate or assist with functional health 
assessment. These include computers and mobile devices, wearable 
sensors, ambient sensors, virtual reality systems, and robots. We 
detail the types of assessments that these systems replicate or 
enhance, the diseases that have been analyzed in related studies, and 
the specific states or components of an individual’s behavior that are 
analyzed. Finally, we discuss the gaps in the research, challenges for 
engineers and clinicians, and provide suggestions for future 
directions that must be addressed to not only design new technologies 
but make them reliable and usable for functional health assessment. 

 
2. Traditional Functional Health Assessment 
A traditional assessment of functional performance is performed in a 
clinic setting under the supervision of trained raters. There are 
numerous tests that have been performed over the years. Here we 
review a subset of these tests, limiting our discussion to those that 
factor prominently in the technology-based studies of functional 
health assessment reviewed in this paper. The tests vary in terms of 
the functional health components they examine and the way data is 
collected, thus a full assessment typically involves administering a 
large number of the tests [17]. Studies have shown that mobility, 
cognition, and compensatory strategies all play a role in functional 
health and need to be assessed accordingly [10], [11], [18]. 

Assessing functional health is difficult outside of monitoring a 
person’s ability to perform critical activities in a variety of everyday 
settings. However, health components including cognition, motor 
function, and executive function, or task planning and completion, 
contribute to functional health [19]. As a result, we consider 
traditional and technology-supported assessments of these 
components as well as assessments of overall functional health. 
While there are many traditional assessment tests, we focus here on 
the tests that are replicated by digital technologies, enhanced by 
technologies, or are used to validate technology-based assessment in 
the surveyed papers. 

Cognitive screening tests. A number of tests have been designed 
that are administered in lab or clinic settings and assess cognition. 
These include the mini mental state examination (MMSE), the 
Montreal cognitive assessment (MoCA), the Cognitive abilities 
screening instrument (CASI), the trail making test (TMT), the 
repeatable battery for the assessment of neuropsychological status 
(RBANS), and the Stroop test. These tests are used specifically as 
validation mechanisms for assessment technologies but there are 
many other that have been created as well. The tests have been 
designed to assess functions such as visuospatial skills, language, 
judgement, recall, naming, attention, delayed memory, and the ability 
to follow simple commands.  

Tests of mobility and motor function. Another key component of 
functional health is physical mobility. Again, there are standardized 
tests that have been used for assessment in this context. These include 
the timed up and go (TUG), the finger-tapping test (FTT), the short 
physical performance battery (SPPB), the de Morton mobility index 
(DEMMI) that progresses thoroughly increasingly-demanding 



mobility and balance tasks, and the functional independence measure 
(FIM) that is applied in rehabilitation settings to monitor recovery. 

Self and informant-report questionnaires. Questionnaire-based 
assessments are commonly used in the clinic as proxy measures for 
real-world functioning. Questionnaires are easy to administer and can 
provide a reasonable representation of real-world functional 
performance if the reporter has good insight and can answer 
questions without bias [20]. One such questionnaire is the Katz index 
of independence in activities of daily living. The Katz ADL measures 
functional status based on the ability of the subject to perform 
activities of daily living (ADLs) independently. Other questionnaires 
have been developed that are sensitive to mild cognitive impairment, 
such as the ADCS-ADL, the Functional Activities Questionnaire, the 
Direct Assessment of Functional Status (DAFS), and the Weintraub 
Activities of Daily Living Index Scale. The Clinical Global 
Impression scale, Functional Assessment Staging, and Global 
Deterioration Scale specifically quantify change in the ability to 
perform routine tasks independently.  

Performance-based tests. These tests measure functional 
capacity directly by having individuals solve real-world problems in 
lab or clinic settings. Examples include the performance-based skills 
assessment (UPSA), the revised observed tasks of daily living 
(OTDL-R), the medication management ability assessment (MMAA), 
and the night out Task (NOT). These tests allows participants to 
perform activities that simulate complex everyday tasks. 

Naturalistic observation tests. These tests may be the most 
ecologically valid of the functional status measures, as they make use 
of more open-ended tasks and allow for the analysis of subtle 
behavioral changes and processes [20]. As an example, the multiple 
errands test (MET) evaluates the effect of executive function deficits 
on everyday functioning through real-world tasks performed in a 
community setting, such as shopping, collecting information, and 
navigating to a specific location. Similarly, the assessment of motor 
and process skills (AMPS), conducted in peoples’ own homes, is 
used to evaluate the impact of motor and process skills on ability to 
complete complex ADLs. Other recent measures have been 
developed that allow subjects to be observed as they perform 
complex activities in their own homes. These include the ADL 
Profile [21] and the Day Out Task [22]. 

 
3. Computer-Assisted Assessment 
A first step in automating functional health assessment is to use 
computers that are found in most homes. Because computers, 
televisions, and mobile devices are not only ubiquitous (an estimated 
6.1 billion people will be using mobile apps by 2020 [23]) but they 
are convenient, assessment can be performed more often, with more 
varied patient states, and at lower cost [24]. The American 
Psychological Association acknowledges the value of computerized 
psychological testing and so developed guidelines for the 
development and interpretation of such tests [25]. Here, technology 
can be used to provide telemedicine support for clinician-
administered traditional assessment tests, to replicate standardized 
clinical tests, to enhance tests with additional digitally-collected 
features, or to create new assessment tests. 
 
 
 

3.1. Technology-supported clinician-based assessment 
One of the most straightforward uses of technology is to provide a 
digital format to deliver tests or enhance existing functional 
assessment tests. As an example, online delivery of standard test 
questionnaires makes it possible for patients to provide frequent 
feedback on self-perceived memory, mood, fatigue, activity level, 
falls, and performance on ADLs. Beauchet et al. [26] and Seelye et 
al. [27] found a strong relationship between self-administered 
questionnaires and physician-administered assessment of similar 
factors. However, in both cases the answers to provided questions 
lost integrity for individuals with cognitive impairment, and self-
report error generally increases with the level of cognitive 
impairment [28]. Interestingly, factors that differentiated individuals 
with mild cognitive impairment (MCI) from cognitively intact 
participants were not the questionnaire answers but rather the context 
in which the questionnaire was completed. Over the course of one 
year MCI participants began to submit their questionnaires later in 
the day, to take more time to complete the questionnaires, and to 
request increased staff assistance [29]. 

While the online accessibility of questionnaires improves the 
convenience of assessment techniques [30], the self-report methods 
can be problematic because they rely on retrospective recollection of 
symptoms and functioning. Ecological momentary assessment 
(EMA) holds promise as a method to capture more accurate self-
report values [31] because questions can be delivered via a mobile 
device that a subject answers based on how they are feeling at that 
particular moment [32]. 

A primary concern regarding self-administered tests is the lack of 
controlled conditions, because variation in the test administrator and 
environmental distractions can affect test results [33]. One possible 
compromise is to employ telemedicine, in which functional testing is 
remotely administered. Some researchers video conference with 
patients to conduct remote evaluation of tests such as the MoCA [14], 
[34]. In both studies, reliability was found to be good to excellent in 
all measures and correlated strongly with in-clinic assessment. On the 
other hand, subjects did get distracted by visuals and noises and 
technical difficulties raised frustration levels. Overall, participants 
expressed their preference for telemedicine because of the savings in 
time, energy, and resources. If successful, telemedicine approaches 
would allow clinicians to “see” many more patients with greater 
frequency, increasing the likelihood of early detection and effective 
treatment. 

 
3.2. Technology-based traditional assessment 
In the next automation step, technologies can replicate or enhance 
traditional assessments. In addition to providing additional digital 
features for analysis, more patients can be assessed with greater 
frequency. Some of the digital tests appear almost identical to 
traditional validated cognition tests. For example, Tenório et al. [35] 
digitally reproduced the clock-drawing test and the letter/shape 
drawing test to facilitate bias-free testing. Mitsi et al. [36] created a 
phone app that quantifies motor function by replicating the finger 
tapping task with digital monitoring. When testing the app on 38 
participants, they were able to identify Parkinson’s disease 
participants with an accuracy of 0.98. Shigemori et al. [37] created a 
smartphone app to replicate the MMSE with a correlation of r=0.73 
to the clinician-administered MMSE for 28 older adults. 



Figure 1. Mobile TMT test [42]. 

Figure 3. Kinect game-based assessment  [50]. 

When technologies are 
employed, additional features 
can be extracted that provide 
novel insights on task 
performance. This can 
improve functional assessment 
overall, as researchers have 
demonstrated that traditional 
assessment techniques may not 
be sufficient on their own to 
perform an accurate 
assessment of functional health 
and are boosted with extra 
variables [38]. As an example, 

Ghosh et al. [39] designed smartphone versions of the Trail making 
test, Stroop test, and letter number sequencing. Correlation between 
conventional and computerized tests was as high as r=0.95 for 93 
college students. The phone also provided an easy way of introducing 
additional distractors. Coelli et al. [40] enhanced the computerized 
Stroop test by partnering it with EEG data to monitoring subjects’ 
cognitive engagement throughout the test. Shi et al. [41] paired the 
clock drawing test with a digital pen which facilitates quantifiable 
drawing precision scores, and demonstrated in their experiments a 
greater variance in clinician scores (due to subjectivity) than in the 
digital scores. 

Similarly, Fellows et al. [42] constructed a tablet-based version 
of the Trails test called the dTMT (see Figure 1). In addition to the 
standard features of task completion time and number of errors, the 
dTMT records several digital measures of performance such as the 
average duration of stylus pauses and lifts, the drawing rate between 
and inside circles, the total number of pauses and lifts, and the stylus 
pressure. A study with 68 older adult participants revealed a 
moderate correlation with clinician-administered TMT Part A 
(r=0.530) and Part B (0.795). In addition, the digital measures of 
performance were used to isolate cognitive processes such as speeded 
processing, inhibitory processes, and working memory. 

 
3.3. Technology-enabled new assessment tests 
Finally, technology can also be used to create new digital assessment 
tests. The computerized format facilitates test delivery in game 
contexts that make the tests more enjoyable for individuals as well as 
captures new variables. As an example, Lordthong et al. [43] created 
a set of smartphone exercises that are designed to assess perception, 
visual-motor control, and speed of response as well as executive 
functioning and problem solving. This phone app includes a 
TouchTap game where users match colors between a button and a 
display, a MindCal game to perform mental calculations, and a 
MatchTap game to match symbols and values. Similarly, Brouillette 
et al. [44] designed a phone-based color shape test whose results were 
significantly correlated with cognitive test scores from the MMSE 
and the TMT for 57 older adults. 

Instead of mimicking standardized assessment tests, other 
approaches to technology-enabled assessment mimic well-known 
computer games but also introduce new features from game 

performance that provide 
insights on cognitive abilities, 
one component of functional 
health. Sudoku and word 
search are two popular 
computer-based games. Joshi 
et al. [45] extracted a detailed 
set of performance metrics for 
these games and found that 
game performance correlated 
significantly with both 
MMSE and MoCA scores in a 

pilot study. 
Hagler et al. 
[46] designed 
a mouse-
driven 
scavenger 
hunt with 
arbitrary 
target 

configurations that prevent the tasks from being learned too easily for 
older adults who play the game often. Another game, called “On the 
flipside” (see Figure 2), mimics a well-known memory card game 
[47] to assess user response time and working memory performance. 
These games offer another important role: motivating adults to get 
tested often by playing games. 

Other groups have created new, innovative platforms for 
assessment-based computer games. In one case, Czaja et al. [48] 
created a computer-based graphics environment for participants to 
perform realistic tasks that require money management and correlated 
(r=.50) with the USPA functional capacity measure for 77 
schizophrenia patients. They also found that performance on 
simulated financial tasks and doctor’s visits was related to TMT 
scores for 62 older adults with amnestic MCI [49]. Two other games 
use the Kinect motion sensing device: Liu et al. [50] created a sport-
based set of cognitive function tests to assess the same cognitive 
components as the MMSE but in a sport game setting. Users answer 
questions and perform tasks that assess short-term memory, language 
ability, and attention detection. Figure 3 shows a screenshot of the 
game in which users must remember physical movements and 
perform the movement in the correct order. Hou et al. [51] also 
developed a Kinect-based set of games to perform cognitive function 
assessment but draw on nostalgic therapy elements to engage older 
adults and help them remember past experiences. This game-based 
assessment yielded an 86.4% accuracy in identifying individuals with 
MCI and those with moderate or severe cognitive impairment from 
among a sample of 59 participants. 

Instead of designing new environments, other researchers analyze 
existing computer functions for a less intrusive, time-demanding type 
of assessment. For example, Austin et al. [52] track search terms used 
when performing Internet searches. Based on searches performed by 
42 participants over a 6-month period, they found that individuals 
with higher cognitive function (based on traditional tests) used more 
unique terms per search. In another study, Vizer and Sears [53] 
analyzed linguistic terms as well as keystroke characteristics to 
perform early assessment of MCI with an accuracy of 77.1%. 

Cognitive and functional health assessment ideally allows 
subjects to interact with the real world rather than just a digital 
environment. Several groups have designed technology-based 
assessments 
that combine 
the two. To 
assess 
cognitive 
health, Li et 
al. [54] and 
Kwon et al. 
[55] use cubes 
with 
embedded 
sensors to 
perform tactile 
versions of the 
assessments Figure 2. Card games motivate more 

frequent memory assessment  [43]. 

Figure 4. VR systems use Blender to generate a 
simulated shopping environment. 



found in traditional mechanisms such as the MoCA. The participant 
groups cubes based on commonalities corresponding to the 
abstraction component of the MoCA scale. 

 
3.4. Virtual reality tests 
Virtual reality (VR) technology provides an option for immersing 
subjects into real-world situations to observe how they handle 
complex tasks [56]. VR systems facilitate three-dimensional 
presentation and stimulus of dynamic environments, especially for 
assessment scenarios that would be challenging to deliver in real-
world environments or with 2D computer interfaces. As an example, 
Arias et al. [57] carried out a finger tapping test in a immersive VR 
environment to study control of movement in the context of different 
real-world situations. Based on a study with 34 subjects, results were 
consistent with the real-world tapping results as the Parkinson’s 
disease participants exhibited larger variability in tapping frequency 
than the other groups. In another movement-based assessment, Lugo 
et al. [58] created a VR scene that engages the subject in real-life 
scenarios. This project used a motion tracking system to evaluate rest 
and postural tremor while Parkinson’s disease patients played games 
in the simulator. Both tremor amplitude and time needed to complete 
a task correlated (r=0.45) with UPDRS scores. 

TABLE I. FUNCTIONAL HEALTH ASSESSMENT TESTS 

Technology Domain Autonomy Tasks Refs 

Online 
question-
naires, EMA 

cognition, 
function, 
mood 

self-report survey questions [26], [27], 
[29], [31], 
[32], [63] 

tele-
medicine 

cognition, 
function, 
motor 

remote 
clinician 

traditional 
assessment tasks 

[14], [34] 

digital 
reproduction 
of clinical 
test 

cognition, 
motor 

self-
administer 

MMSE, clock 
/letter/shape 
drawing, finger 
tapping 

[35]–[37] 

digitally 
enhanced 
test, EEG, 
digital pen 

cognition, 
motor 

self-
administer 

TMT, Stroop, 
sequencing, 
clock drawing 

[39]–[44] 

digital test, 
computer, 
smartphone, 
Kinect 

cognition, 
motor 

self-
administer 

finger tap, card 
match, sudoku, 
word search, 
scavenger hunt 

[45]–[47], 
[50], [51] 

computer cognition self-
administer 

Internet search, 
text 

[52], [53] 

sensor-
embedded 
cubes 

cognition, 
motor 

self-
administer 

sequence match, 
lexical match 

[54], [55] 

virtual 
reality 

cognition, 
motor 

self-
administer 

finger tap, 
blocks, MET 

[57]–[62] 

 
When VR systems incorporate sophisticated graphics modeling, 

the assessment scenarios can become even more realistic (see Figure 
4 for an example). Researchers have used a simulated shopping 
environment that enables users to perform shopping errands  [59]–
[62]. This scenario approximates the Multiple Errands Test (MET) in 
which subjects buy products from a store and while adhering to 
specified rules such as do not visit any aisle more than once, do not 
buy more than two items in each category, and do not spend more 
than a specified amount of money. Raspelli et al. [60] used this 
environment to compare performance of post-stroke subjects to 

healthy controls. They observed a strong correlation (r=0.98) between 
the virtual MET and the traditional assessment scores for 15 subjects. 
They also observed a statistically significant difference in 
performance between younger adults, healthy older adults, and post-
stroke older adults in the categories of task completion time, 
inefficiencies, and rule breaks. 

Table I summarizes approaches to computer-assisted assessment 
techniques. A limitation of these technologies is that individuals take 
time out of their daily routines to perform this assessment. 
Furthermore, assessment results vary in terms of who administers the 
task and the level of task realism. If tests are self-administered, then 
the likelihood for ongoing engagement must be considered.  
Additional research is needed to determine whether VR tasks remove 
external stimuli that may affect cognitive performance [64]. Next, we 
examine ways in which sensors can be employed to automate 
assessments that decrease the amount of daily routine interruption 
and potentially increase ecological validity of the assessment. 

 
4. Wearable Sensor-Assisted Assessment 
With the maturing of technologies in mobile computing and 
pervasive computing, continuous human movement can be collected 
and used to enhance traditional functional assessment. Individuals 
can wear or carry sensors that collect data about their gestures, 
movement, location, interactions, and actions. Many of these sensors 
are now coupled with computers and are found on smart phones or 
smart watches that are routinely carried or worn by individuals as 
they perform their daily activities. Here we examine how researchers 
have used wearable sensors to perform functional assessment. 
 
4.1. Wearable sensors 
Sensors used in functional health assessment that are commonly 
found in clothing, on the body, carried, or worn by persons typically 
monitor various types of movement. As such, the most common 
wearable sensor is an accelerometer. Acceleration changes can 
indicate a movement beginning, ending or direction changing. This 
sensor measures acceleration along the x, y, and z axes. Motion 
tracking is further enhanced by a gyroscope sensor, which measures 
rotation around the three axes, commonly known as pitch, yaw, and 
roll. 

Another sensor found on many mobile devices is a 
magnetometer, which measures the strength of the magnetic field in 
three dimensions. A magnetometer is valuable for providing 
orientation of the user and for detecting and locating metallic objects 
within its sensing radius. The location of the sensor (and the person 
wearing it) can then be determined based on their proximity to these 
detected objects. To obtain additional location information, mobile 
devices commonly determine a device’s latitude, longitude, and 
altitude using a combination of GPS, WiFi, and GSM sources, 
depending on whether the device is inside or outside of a building. 

Contingent on the mobile device that is used, additional 
information can be collected. Cameras and microphones provide a 
dense source of data indicative of the state of the user and 
surrounding environment. Use of other apps on the device, including 
phone calls and texting, can also be captured. Smart watches offer 
LEDs and photodiodes that utilize light to monitor heart rate by 
detecting correlated changes in blood flow. If additional hardware is 
attached to the mobile device, other health parameters can be 
monitored. These include glucose meters, blood pressure monitors, 
and hardware that senses pulse, respiration, and body temperature. 

When sensors are placed on, in, or around a physical body then 
data can be collected using a Body Area Network (BAN). Generally, 
body area networks are wireless personal area networks that act as 
gateways working together with small sensors and control units to 
collect data. BANs can utilize implanted sensors as well as sensors 
that are near to the body such as those embedded in clothes [65] or 
shoes [66]. While many of the wearable sensor technologies focus on 



one component such as cognition, motor, or mood, these components 
all clearly contribute to and correlate with overall functional health 
and thus play an important role for overall functional performance 
assessment. 

 
4.2. Physiological monitoring with wearable sensors 
A particularly appealing feature of many wearable sensors is that they 
can be woven into everyday life to support functional health 
assessment in ecologically valid settings. When smart fibers and 
interactive textiles are used, functional assessment is literally woven 
into the clothes we wear. In some cases, electrodes are made from 
silver-based conductive yarns which utilize body sweat to improve 
the conductivity of the signal quality [67]. Paradiso et al. [65] show 
that monitoring such physiological states via textiles sensors can 
enable measuring activity level, respiratory rate, and sleep quality to 
determine a person’s mood. 

 
4.3. Motor function monitoring with wearable sensors 
Wearable sensors offer an especially good fit for monitoring various 
aspects of motor function. This is because sensors located on the 
body are able to capture detailed motion footprints of body 
movement in various settings and postures. Throughout the literature, 
wearable sensors are typically used to monitor and model many types 
of ambulation, gestures, and movement activities, thus they are 
naturally supportive of motor function assessment. 

One key aspect of motor function that is monitored with wearable 
sensors is gait [68]. A special-purpose sensor that can be used for this 
task is a shoe sensor. As Ramirez-Bautista et al. point out [66], the 
ability to extract a large number of gait features (e.g., pressure mean, 
peak, center, displacement, spatiotemporal movement, ground 
reaction forces) makes the shoe highly sensitive to multiple types of 
walking patterns. Furthermore, Mariani et al. [69] validated the 
accuracy of stride features using shoe sensors in comparison with 
motion capture analysis. The derived patterns in turn allows systems 
to diagnosis and assist with movement-related conditions including 
insensible feet, Parkinson’s disease, Huntington’s disease (HD), 
Amyotrophic Lateral Sclerosis (ALS), peripheral neuropathy, frailty, 
diabetic feet, and recovery from injuries. Saadeh et al. [7] 
demonstrated the ability to differentiate PD, HD, ALS, and healthy 
subjects from among 64 participants with an accuracy of 94% based 
on stride time, fluctuation, and autocorrelation delay. Ayena et al. 
[70] also used shoe sensors to monitor motor control. In this case, the 
researchers employed shoe sensors during the One-Leg Standing 
(OLS) test to assess the risk of falling. They evaluated the technology 
in a study with 23 subjects, and found that, higher severity of balance 
disorder was associated with lower OLS scores, indicating more 
mobility deficits. 

No single wearable sensor type or placement is best or sufficient 
for monitoring all aspects of cognitive and motor functioning. While 
Wang et al. [71] have also used sensors to monitor and assess 
balance, in this case subjects wear inertial sensors on the waist and 
perform balance tasks both with eyes open and with eyes closed. The 
researchers collected sway speed and direction for 41 subjects and 
were able to predict MMSE scores (with a range of 0 to 30) from 
balance parameters with an average error of 1.431.08. Mancini et al. 
[72] also used wearable sensors to differentiate recurrent fallers based 
on gait and turning features. Based on a study with 35 subjects, they 
found that recurrent fallers had distinguishing characteristics 
including longer mean turn duration, slower mean turn peak speed, 
and more steps per turn. 

In the same way that traditional cognitive tests can now be 
replicated and enhanced with digital technology, so motor tests can 
be replicated and enhanced with wearable sensors. The use of 
accelerometers for assessing gait has been tested for validation and 
reliability in a study with 24 participants [73]. Building on this 
foundation, one notable example of an accelerometer-enhanced 

clinical test is the Timed Up and Go (TUG) test. The TUG test is 
commonly used in rehabilitation settings, and Sprint et al. [74] set up 
a more complex version of the TUG, called an ambulation circuit 
(AC), at an inpatient rehabilitation hospital. The AC, shown in Figure 
5, also includes transitions to different types of floor surfaces, turns, 
vehicle transfers, and walking while answering questions. Based on 
20 rehabilitation patients, wearable sensor measures from the AC 
correlated strongly (r=.97) with discharge functional independence 
measures (FIM) using leave-one-subject-out testing. This same group 
also collected and evaluated accelerometer-based data over two 
weeks of inpatient therapy to monitor rehabilitation rates [75]. In the 
same way that walking performance varied during the AC while 
answering questions, so also Howcroft et al. [76] found that 39 
variables extracted from shoe and on-body accelerometers varied 
significantly as cognitive load increased. 

The link between mobility and cognition has been further 
investigated by Greene and Kenny [77], who used body-worn 
accelerometers during a TUG test to monitor baseline and changes as 
a way of predicting cognitive decline. In a study with 189 older 
adults, they found that sensor-based parameters could be used to 
predict cognitive decline (based on MMSE scores) with an accuracy 
of 75.94% for participants who were cognitively intact at baseline. 
Verghese et al. [78] tested 427 subjects using gait parameters 
extracted from wearable sensors. They found that gait rhythm change 
was associated with memory decline, pace change was associated 
with executive function decline, and pace factor predicted the risk of 
developing vascular dementia. Furthermore, Lord et al. [79] found an 
association between mild depressive symptoms and gait features in 
Parkinson’s disease for 206 subjects. 

Because of the ubiquitous availability of mobile sensors, these 
technologies can be used to monitor numerous additional components 
of everyday function. For example, detection wandering behavior can 
be monitored with wearable sensors [80]. Lin et al. [80] discovered 
rhythmical repetition of events leading to wandering that serve as a 
predictor of wandering and associated functional impairments. Cella 
et al. [81] and Difrancesco et al. [82] use mobile devices to monitor 
socialization and other daily activity patterns that predict functioning 
and disease symptoms for schizophrenia patients. O’Brien et al. [8] 
also monitored time and distance traveled outside the home in order 
to quantify community mobility after stroke. 

 
4.3. Mood monitoring with wearable sensors 
A particularly appealing feature of wearable sensors is that they can 
be woven into everyday life to support functional health assessment 
in ecologically valid settings. As an example, Boukhecbha et al. [83] 
were able to predict social anxiety levels with an accuracy of 0.85 for 
54 subjects using information that included GPS-based visited 
location types as well as text message and phone call parameters. 
Highlighting the diversity of information that can be used for mood 
detection, Quiroz et al. [84] infer emotion from walking patterns 
using phone-based accelerometer data as well as heart rate-based 
physiological data. They inferred emotional state for 50 subjects with 
an accuracy of 0.80. 

Figure 5. The ambulation circuit (AC) [74]. 



Wearable sensor-based functional health assessment offers 
tremendous advantages because many of a person’s movements, 
activities, social interactions, and physiological parameters can be 
monitored continuously. However, employing wearable sensors does 
require effort on the part of the user. The sensor must be worn 
continuously to be effective and in many cases needs to be positioned 
very carefully on the body. Collecting, storing, processing, and 
transmitting sensor data from wearable sensors uses energy, thus 
these sensors require frequent charging and there may be an 
interruption in data collection during this period. An alternative 
solution is to make use of sensors that are placed in a person’s 
environment rather than on the body, and we focus on these 
technologies in the next section. 

 
5. Ambient Sensor-Assisted Assessment 
One of the more ecologically-valid sources of data for functional 
health assessment is a person’s own everyday settings. Collection of 
such data can be accomplished by embedding sensors into physical 
environments, including homes, workplaces, shopping areas, and 
doctor’s offices, transforming them into smart environments [85]. 
Sensors embedded in the environment, or ambient sensors, are 
valuable because they passively provide data without requiring 
individuals to comply with rules regarding wearing or carrying 
sensors in prescribed manners. Because they continuously collect 
data, there is no need for a person to interrupt their data to perform an 
assessment task – their normal daily routine is the assessment task. In 
this section we review approaches to using these sensors for 
functional health assessment. 
 
5.1. Ambient sensors 
A common ambient sensor for activity monitoring is the passive 
infrared (PIR) sensor. PIR sensors, or motion sensors, detect infrared 
radiation that is emitted by objects in their field of view. Because a 
PIR sensor is sensitive to heat-based movement, it operates in dim 
lighting conditions. A PIR sensor will sense movement from any 
object that generates heat, even if the origin is inorganic. As a result, 
the motion sensor may generate messages from a printer, a pet, or 
even from a home heater. 

Another popular ambient sensor is a magnetic door sensor. A 
magnetic contact switch sensor consists of two components: a reed 
switch and a magnet, typically installed on a door and its frame. 
When the door is closed the the electric circuit is complete, thus 
changing the state of the sensor. When the magnet is moved by 
opening the door, the spring snaps the switch back into the open 
position, also causing a change in the state of the sensor. This feature 
is useful for detecting if doors, windows, drawers, or cabinets are 
open or shut. Additional sensors can be placed in environments to 
measure ambient temperature, lighting, and humidity.  

Beyond these standard ambient sensors, additional sensors can be 
utilized throughout an environment to capture parameters of 
particular interest. For example, vibration sensors can be attached to 
specific items in order to monitor when they are moved / used. 
Pressure sensors can be placed under rugs, mattresses, or chair 
cushions to monitor resident movement. Meters can also be installed 
to monitor use of individual appliances or consumption of electricity, 
water, or gas.  

 
5.2. Ambient sensor-based formal assessment 
Many researchers use ambient sensors to imitate standard 
assessments in home settings. As Spooner and Pachana point out 
[86], determining the extent to which a medical procedure or 
intervention affects performance of everyday tasks can provide useful 
information that guides selection of treatment options, and tests 
designed with ecological validity are more effective than traditional 
tests at predicting everyday functioning. To this end, researchers have 
used ambient sensors to monitor and quantify performance of 

everyday tasks as an indicator of functional health. In one such study, 
Ul Alam et al. [87] equipped 17 older adult subjects with 
physiological sensors and equipped a residence with motion and 
object sensors. Participants performed scripted versions of 13 
activities. Features extracted from ambient and physiological sensors 
were found to significantly correlate (as high as r=.96) with 
traditional neuropsychological test scores.  

Dawadi et al. [22] also monitored individuals as they performed 
scripted activities in a smart home equipped with motion, door, 
temperature, light, item, water, and burner sensors. In this study, 179 
subjects (healthy, MCI, or dementia) were asked to perform the Day 
Out Task, which contained 8 subtasks to be multi-tasked. Machine 
learning techniques mapped sensor-based features onto cognitive 
diagnoses. In this study, diagnoses were inferred with an AUC value 
of 0.94.  This group also predicted diagnoses of Parkinson’s disease, 
PD with MCI, or healthy for 84 subjects with an AUC value of 0.96 
using sensor-based features [88]. Interestingly, the wearable sensor 
data and movement parameters provided more sensitive features for 
the participants with PD while the ambient sensor data provided more 
sensitive features for the participants with MCI. This analysis 
highlights the need for analyzing multiple aspects of everyday life 
and behavior to understand and assess functional health. 

 
5.3. Ambient sensor-based detection of specific states 
In this section we examine research that focuses on technologies 
utilizing ambient sensors to analyze individual states or conditions, 
each of which plays an important role in functional health.  

As an example, gait velocity has been shown to be a predictor of 
both cognitive and physical function [89]. Aicha et al. [90] and 
Austin et al. [91] demonstrated how to estimate gait from ambient 
sensor data by calculating walking durations for each path the 
residents followed throughout the home. These researchers were able 
to detect changes in gait velocity that were consistent with changes in 
health status. A plot showing the density of gait velocities over time 
along with the time at which the subject was diagnosed with MCI is 
shown in Figure 6. 

To better understand daily contexts that affect disease symptoms, 
Darnall et al. utilized smart home sensors to analyze the contextual 
condition in which patients would enter dyskinesia “on” states [92]. 
To understand the effect of socialization on emotional health, Aicha 
et al. [93] and Austin et al. [94] analyzed motion sensor data together 
with phone and found for 16 older adults they found that loneliness 
was significantly associated with minimal sensor-detected 
socialization.  

The relationship between these sensor-detected states and 
cognition has been validated in the literature. As an introduction, 
Roggen et al. [95] as well as Hellmers et al. [96] quantitatively 
determined that features tightly linked to cognitive health included 
time spent in different areas of the home, transitions between home 
areas, and times of day residents were in different areas of the home. 
All of these researchers discovered that changes in these values over 
time were of particular importance. Akl et al. [97] found that daily 
variations in room occupancy predicted MCI with an AUC of 0.72 

Figure 6. Gait velocity probability density function with 
clinical dementia rating scores (CDR) transitions [91]. 



data for 68 subjects over an average of 3 years. Akl et al. also found 
that walking speed could be used to predict MCI with AUC of 0.97. 

In a study led by Petersen et al. [98], a link between time spent 
out of the home and health was discovered. For 85 older adult 
subjects, more hours spent outside the home was associated with 
lower CDR scores, superior physical ability, and improved emotional 
state. Similarly, Austin et al. [99] found a relationship between 
medicine adherence and cognitive performance. Ambient sensor data 
for 38 older adults supported the hypotheses that lower cognitive 
function is associated with greater variability in the timing of taking 
medicine and that variability increases over time. 

Environment sensors are not limited to living environments. In 
one study [100], sensors were embedded in a car to monitor routine 
driving behavior over 6 months for 28 subject (7 with MCI). Here, 
again differences in behavior were found between MCI and 
cognitively healthy subjects. Specifically, MCI participants drove 
fewer miles, spent less time on highways, and showed less day-to-day 
driving habits than cognitively intact drivers.  

 
5.4. Ambient sensor-based analysis of daily activities 
We culminate our review with a discussion of how routine activities 
can be monitored and used to assess functional health. Daily activity 
performance is the ultimate indicator of functional health and 
inability to perform critical activities is associated with increased 
health care utilization, placement in long-term care facilities, time 
spent in the hospital, poorer quality of life, conversion to dementia, 
morbidity and mortality [101], [102]. 

To automatically detect and assess daily activities, technologies 
must first exist to automatically recognize activities from sensor data. 
Activity recognition algorithms map a sequence of sensor readings 
onto an activity label using machine learning algorithms such as 
support vector machines, Gaussian mixture models, decision trees, 
and probabilistic graphs [103], [104]. Once activities are  
recognized, they can be monitored to compare different population 
groups. They can also be tracked over time to provide early detection 
of changes in functional health. Dawadi et al. [113] tracked activity 
performance over 2 years for 18 subjects. By quantifying parameters 
such as time spent on each activity and variability in the parameters, 
they found a significant correlation (r=0.72) between predicted and 
clinician-provided RBANS scores and a significant correlation 
(r=0.45) between predicted and clinician-provided TUG scores. 
Alberdi et al. [114] expanded this study to track activities for 29 
subjects and predicted clinician-generated scores for mobility (r=.96), 
cognition (r=.89), and mood (r=.89). 

While tracking changes in activity patterns can identify gradual 
changes in functional health, identifying sudden health changes can 
be challenging. Sprint et al. [115] found that comparing activity 
patterns to a baseline behavior could highlight health events. In their 
study with 3 older adults, they were able to automatically detect 
sensor-based changes that were consistent with health events 
including chemotherapy treatment, insomnia, and a fall.  As Figure 7 
shows, time spent sleeping in bed at night decreased when the 
resident underwent radiation treatment.  

Even when activity labels are not available, changes in sensor-
based daily routines have been found to indicate changes in 
functional health. Riboni et al. [116] propose finding boundaries of 
normal activity behavior to support early detection of MCI. Robben 
et al. [110] monitored changes in room occupancy and activity levels 
for 13 subjects over one year. Using a random forest classifier, they 
mapped extracted features to predicted scores with a mean absolute 
error of 0.32 for AMPS scores (score range from -3 to 4,), 1.19 for 
Modified Kat-15 scores (score range 0 to 15), and 0.98 for walking 
speed.  

 
TABLE II. STATES MONITORED BY SENSOR-BASED TECHNOLOGY AND 

CORRESPONDING CONDITIONS 

State Technology Conditions Conditions Refs 

physiology textiles, 
IMUs 

mood  [65], [67], 
[105] 

gait shoe sensors PD, HD, ALS, 
frailty, 
diabetic feet 

straight-line 
walking, 
OLS, lab 

[7], [66], 
[69], [70] 

balance, 
turning 

IMUs cognition, fall 
risk 

stand, walk, 
turn, lab 

[71], [72] 

mobility bed sensors fall risk bed departure [106] 

mobility, 
cognitive 
load 

IMUs rehabilitation TUG, AC, 
lab 

[73]–[76] 

mobility, 
cognition 

IMUs cognitive 
decline, 
depression, 
PD 

TUG [77]–[79] 

dyskinesia ambient 
sensors 

PD in-home [92] 

wandering, 
social 

mobile 
sensors, 
phone use 

schizophrenia, 
dementia, 
stroke 

continuous 
monitoring 

[8], [80], 
[82] 

mood mobile 
devices 

depression, 
anxiety 

continuous 
monitoring 

[30], [83], 
[84], [107] 

gait ambient 
sensors 

fall risk sit-stand, lab [108] 

scripted 
activities 

ambient 
sensors 

cognition smart home 
testbed 

[87], [88], 
[109] 

gait ambient 
sensors 

MCI in-home [91] 

socialization ambient 
sensors 

loneliness, 
cognition 

in-home [94], [98] 

room 
occupancy, 
appliance 
usage 

ambient 
sensors 

MCI in-home [95], [96] 

[110], 
[111] 

sleep, 
medicine 

ambient 
sensors 

cognition in-home [99], [112] 

driving ambient 
sensors 

cognition car [100] 

routine 
activities 

ambient 
sensors 

cognition, 
health events 

in-home [113]–
[115] 

Figure 7. Time spent on sleep activity. Columns show 
weeks and rows show hours (midnight at top). The 
dashed line indicates the occurrence of insomnia  [115]. 



As can be seen from this discussion, there are numerous 
technologies that play complementary roles in the overall assessment 
of functional health and related parameters including cognition, 
mobility, task performance, and mood. The technologies, the health 
parameters and conditions they monitor, and the experimental 
conditions in which they have been used are summarized in Table II. 

 
 6. Conclusions and Directions for Ongoing Research 
Technologies such as wireless sensor networks, mobile computing, 
pervasive computing, and machine learning have experienced 
tremendous maturing over the last decade. As a result, these 
technologies are being tapped to assist with functional health 
assessment. Harnessing the power of these technologies will allow 
assessments to be more accessible, provide deeper insights about 
performance, and support scaling clinical expertise to larger groups. 
As this field grows, there are some difficult challenges that need to be 
faced by everyone in the circle of care including patients, care 
providers, clinicians, scientists, and engineers. Here we discuss some 
of the challenges and highlight areas for ongoing research in the field. 

Selecting an appropriate technology. As can be seen from this 
literature survey, technologies abound that can be employed for 
functional health assessment. They are extremely diverse, however, 
in their cost, usability, autonomy, ecological validity, type of 
assessment provided, and granularity of information generated. As a 
result, caregivers can be overwhelmed selecting an appropriate 
technology to utilize. LeadingAge [117] points out that functional 
assessments can be categorized as focusing on physical or cognitive 
aspects of cognitive health, as being passive or active, and as having 
varied technology costs and time investments. Figure 8 summarizes 
the major categories of technologies we have reviewed in this paper 
along these dimensions as well as an added dimension of ecological 
validity. More work is needed, however, to guide clinicians and care 
providers for the type of technology that fits individual needs and 
lifestyles.  

Introduction and integration of new technology. This literature 
review focuses on s ensor technology that has been commonly 
utilized in ecologically valid studies, including computers, mobile 
devices, wearable sensors, and ambient sensors. There are many 
emerging technologies that can be considered for this problem. For 
example, robots could be explored both for health assessment and for 
assistance [68]. Another popular technology is depth cameras, which 
can be used to analyze movement and to predict and detect falls 
[118], [119]. Researchers have found that there is no one “silver 
bullet” technology that provides all of the necessary insight to a 
person’s functional health. Therefore, incorporating new sensors and 
methods is needed.  

At the same time, each assessment technology needs to undergo 

clinical validation to offer evidence that the technology provides 
predictive validity and accurate assessment of functional health. This 
is important if clinicians are to begin making decision about patients’ 
diagnoses and treatment based on the data. This presents a challenge 
for researchers because while comparing findings with previously-
validated instruments is an accepted mechanism for this process, the 
technology methods and data may be substantially different. New 
validation methods may need to be proposed. 

Resource consumption. Technologies can be heavy resource 
consumers. Power requirements limit the widespread deployment of 
wireless sensing systems. Wireless devices are preferred that can 
track functional status throughout a person’s day, but the need to 
frequently charge these devices changes user routine and reduces 
adherence to proper use of the technology, resulting in loss of 
valuable data. Researchers thus need to consider innovative methods 
of conserving resource consumption. One strategy for energy-
consumptive devices is to make use of energy harvesting. Energy 
sources abound in natural settings and can be tapped in creative ways 
[120], [121]. Furthermore, technology that supports functional health 
assessment may collect gigabytes of data about a single person. The 
data needs to be stored securely and accessed with high-throughput 
communication technologies. 

User privacy. In order to provide accurate functional health 
assessment, a system needs access to information about a person’s 
habits. In the wrong hands such information can be abused. Even the 
perception of privacy invasion keeps many from adopting the 
technology which could potentially improve their quality of life. 
Additionally, there are many open questions regarding situations that 
may force users to share and even decrypt collected data [122]. 
Researchers are aware that there is a relationship between the 
sensitivity of devices (such as video-based assessment technologies  
[123]) and the corresponding perception of privacy invasion [124], as 
shown in Figure 9. Individuals need to be aware of the level of 
exposure and to grant data access to requesting groups on this basis 
[125]. Privacy-preserving data mining techniques are also needed to 
ensure that personal information cannot be gleaned from inferred 
models [126]. 

Technology trustworthiness. Use of technologies for functional 
health assessment is recent and almost none have been applied in 
large clinical studies. The resulting inconsistency in evaluation [127] 
results in a lack of trust in the technologies on the part of clinicians, 
care providers, policy makers, and patients. The FDA has announced 
plans to apply regulatory oversight to medical apps [128]. As 
exemplified in work by DeMasi and Recht [129], work needs to be 
done to place careful and substantiated bounds around each 
technology’s ability to quantify functional assessment. While a 
technological solution may work well in one setting, its power may 
be substantially weakened when employed for a different person, 
health condition, or environmental condition. If a model is so 

Figure 9. Richness of sensors and a user’s 
perceived privacy  [124]. 

Figure 8. Functional assessment categories, organized by 
level of automatic assessment they provide (x axis), the 
ecological validity of the assessment (y axis), the type of 
assessment that is supported (pattern), and the level of 
cost investment that is required (size). 



specialized that it can only assess one specific component and cannot 
be used for new individuals without retraining then it is impractical 
outside of controlled experiments [130]. At the same time, clinicians 
and care providers need to make important decisions regarding what 
level of performance (e.g., reliability, validity, false positives, 
responsiveness to change [131]) is acceptable to adopt the technology 
[132]. 

Technology usability. There is often a disconnect between 
technology inventors and the potential beneficiaries [133]. Only a 
subset of the technologies we reviewed can practically be used 
without expensive equipment, clinical administration, or extensive 
user compliance [134]. A challenge for technology designers is to 
ensure that they can be used by the general public, including 
individuals who may be experiencing age-related changes or have 
other types of disabilities. If a technology requires compliance on the 
part of the user then the targeted population needs to be involved in 
iterative design of the technology [135]. 

Although the importance of usability testing is clear for health 
assessment, diverse approaches have been proposed for defining and 
measuring usability. The International Organization for 
Standardization defines usability as consisting of effectiveness, 
efficiency, and satisfaction [136]. Here, effectiveness refers to the 
accurateness and completeness with which users achieve certain 
goals. To this end, designers of functional health assessment 
technology need to observe and assess users’ ability to interpret and 
act on information provided by the technology. Efficiency refers to 
the resources that are required for goal achievability. For functional 
health assessment technologies this may include the time a user needs 
to spend on data collection and information interpretation as well as 
the computational run time and technology cost. Satisfaction, or user 
comfort and overall attitude toward the technology, is typically 
measured using ratings scales such as SUMI [137]. Like the SUMI, 
other survey-based usability measures can also be employed such as 
the ten-item, Likert-based system usability scale (SUS) [138]. 
Because the technology surveyed in this article require usability both 
on the part of the individual being assessed and for the clinician or 
caregiver who is interpreting the data, there is a need to refine 
standard usability measures for this task. 

Multi-modality, multi-domain assessment. One potential 
weakness of many current technology-based approaches to functional 
assessment is that they utilize one (or a small set) of technologies and 
target one component of functional health, often with one target 
population in mind. This is reflected in the summary provided by 
Table II. Clearly, functional health assessment is very complex and 
requires a holistic approach [139]–[141]. Researchers need to 
integrate multiple tests that provide insights on different domains. 
They need to fuse data and models from multiple sensor modalities. 
Even when ecologically valid testing settings are provided, data 
analysis needs to careful consider all of the contextual factors that are 
in play when a person’s functional performance is monitored [142]. 
Finally, while each component of functional health can be assessed 
and does impact the ability of a person to function independently, 
compensatory strategies also need to be considered [18], [143]. Many 
individuals are able to live independently and well despite numerous 
health issues, and research should be directed toward understanding 
these strategies as well as integrating them into our models of 
functional health. 

Pervasive computing, wireless sensors, and machine learning 
technology provide important tools that can revolutionize functional 
health assessment. While tremendous advances have been made in 
this field over the last decade, much more remains to ensure that the 
technology is robust, understandable, usable, and safe. The ongoing 
collaboration between biomedical engineers, computer scientists, and 
clinicians will not only improve the effectiveness of this technology 
in performing automated and ecologically valid assessments but also 

to provide insights that can improve healthcare delivery and quality 
of life. 
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