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Abstract— Restoration of functional independence in gait and 

vehicle transfer ability is a common goal of inpatient 
rehabilitation. Currently, ambulation changes tend to be 
subjectively assessed. To investigate more precise objective 
assessment of progress in inpatient rehabilitation, we 
quantitatively assessed gait and transfer performances over the 
course of rehabilitation with wearable inertial sensors for 20 
patients receiving inpatient rehabilitation services. Secondarily, 
we asked physical therapists to provide feedback about the 
clinical utility of metrics derived from the sensors. Participant 
performance was recorded on a sequence of ambulatory tasks 
that closely resemble everyday activities. We developed a custom 
software system to process sensor signals and compute metrics 
that characterize ambulation performance. We quantify changes 
in gait and transfer ability by performing a repeated measures 
comparison of the metrics one week apart. Metrics showing the 
greatest improvement are walking speed, stride regularity, 
acceleration root mean square, walking smoothness, shank peak 
angular velocity, and shank range of motion. Furthermore, 
feedback from physical therapists suggests that wearable sensor-
derived metrics can potentially provide rehabilitation therapists 
with additional valuable information to aid in treatment 
decisions. 
 

Index Terms— Accelerometry, activity monitor, ambulatory 
monitoring, gait analysis, inertial measurement units, physical 
therapy, rehabilitation, signal processing, wearable sensors. 

I. INTRODUCTION 

HE fundamental goals of inpatient rehabilitation are to 
restore function, mobility, and independence. Monitoring 
of motor recovery is typically accomplished by clinical 

observation using standard clinical rating scales, such as the 
Functional Independence Measure (FIM), to determine 
independence in activities of daily living at admission and 
discharge [1]. Between the admission and discharge FIM 
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assessments, observations by therapists typically characterize 
progress and influence treatment decisions. Because this 
approach relies on intuition and subjective observations, it 
lacks detailed quantifiable information to characterize patient 
movement patterns. To gather more objective measurements 
of patients’ abilities, standardized clinical assessments, such as 
the Timed Up-and-Go (TUG) test [2], are administered by 
trained clinicians. The TUG test measures the time required to 
rise from a seated position in a chair, walk out 3 m, walk back 
to the chair, and sit down. Assessments like the TUG provide 
a high level overview of patient mobility, but are not sensitive 
enough to capture individual limb movements or changes in 
mobility and gait features [3]. More precise quantitative 
measurements of patient performance during rehabilitation can 
be collected via pervasive technology, such as wearable 
inertial measurement units (IMUs). Computations based on 
data collected from wearable IMU sensors can provide 
therapists with measures that are not open to the potential for 
inter-observer bias possible with subjective clinical judgments. 
These supplementary measurements can identify subtle 
performance changes during rehabilitation that are difficult to 
observe, such as changes in duration of single and double leg 
support. 

Furthermore, IMUs are an ideal technology for tracking 
changes in movement because of their low cost, portability, 
reliability, and ease of attachment to the body. IMUs operate 
as a self-contained wireless network which can enable testing 
outside the lab and for any sequence of tasks. Also, IMUs do 
not interfere with the wearer’s movement. Several studies 
have used IMUs for analyzing gait and other movements as an 
inexpensive and unobtrusive substitute for other technologies 
[3]–[5]. In addition, we have shown in previous work that 
longitudinal changes in IMU metrics are predictive of patient 
FIM scores at discharge from inpatient rehabilitation [6]. 

In this paper, we report on a study that utilizes metrics and 
visualizations obtained from IMU data to characterize patient 
performance in an objective fashion. To produce clinically-
meaningful metrics, we developed a standardized ambulation 
performance task, titled the ambulation circuit (AC), which 
involves a range of gait and transfer tasks. We fixed the 
interval of time over which repeated measurements of AC 
performance would be assessed (7 days) in order to quantify 
changes in movement parameters over one week of 
rehabilitation. Secondarily, we report feedback from physical 
therapists regarding the clinical utility of wearable sensors and 
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IMU-derived measurements of gait and vehicle transfer 
ability. 

II. RELATED WORK 

Wearable IMUs have been utilized extensively in healthcare 
applications [7], particularly for gait analysis [5], [8]. In 
addition, performance on common clinical assessments, such 
as the TUG test, have been characterized with IMUs [2], [8], 
[9]. Salarian and colleagues have a large body of research on 
iTUG, the instrumented TUG [8], [10]. To observe total body 
movement during the iTUG, seven inertial sensors were 
mounted on the body. The iTUG was segmented into four 
sections for computing movement metrics: sit-to-stand, 
steady-state gait, turning, and turn-to-sit. The research and 
success of iTUG led to a commercial sensing company, 
APDM. Existing commercial systems such as APDM offer 
IMU-based metrics; however, the testing protocols are specific 
to clinical laboratory-based assessments with a narrow range 
of ambulatory tasks. 

 While research in applications of IMUs for gait analysis 
and instrumenting clinical assessments is prevalent in the 
literature, to date only a few studies have focused on utilizing 
IMUs to quantify changes in mobility and gait parameters of 
impaired populations. These studies have investigated 
improvement in gait following surgery, such as hip 
arthroplasty surgery [11]; changes in gait after treatment for a 
specific injury or illness, such as Parkinson’s Disease [9], 
[12]; the relationship between changes in longitudinally 
collected gait parameters and changes in falls risk [13]; and 
changes in daily walking time over the course of rehabilitation 
for stroke inpatients [14]. Based on these findings, research 
quantifying fine-grained gait and transfer ability changes 
exhibited during rehabilitation with wearable inertial sensors 
represents a new direction to investigate. Consequently, the 
current study extends several areas of research, including IMU 
data processing, gait analysis, and rehabilitation research. 
More specifically, our work presents the following 
contributions: 
 Design and application of an ecological version of the 

TUG test (the ambulation circuit). 
 Computation of novel sensor-based metrics related to 

ecological gait and transfer ability (e.g. vehicle transfer 
and floor surface metrics). 

 A framework for measuring changes in IMU metrics for 
individual participants and participants as a group. 

 Insight into the recovery process for a multifarious 
population of inpatients (e.g. stroke, brain injury, etc.). 

 Feedback from therapists on the utility of wearable IMUs 
for rehabilitation. 

In summary, we analyze changes in wearable sensor-derived 
metrics to gain insight into the recovery process and provide 
clinicians with more objective measurements of patient 
progress in clinical and natural environments. 

III. METHODS 

The study followed a single-arm prospective cohort design 
with repeated measures of participant performance on 
standardized gait tasks on two different testing sessions 
separated by 7 days. The first test session (S1) occurred 

shortly after the participant became physically able to walk the 
distance required of the gait task (11.15 ± 4.75 days from 
admission). The second test session (S2) occurred within the 
final week of care (2.65 ± 2.25 days before discharge). During 
each test session, participant performance on the ambulation 
circuit was recorded two times, producing two separate trials 
at S1 and two separate trials at S2. In addition, physical 
measurements and information regarding participants’ 
rehabilitation impairment and other diagnoses were collected. 

A. Participants 

 Participants were recruited from the inpatient rehabilitation 
population at a large inpatient rehabilitation facility. All 
participants met the following eligibility criteria: any 
rehabilitation diagnosis (e.g., stroke, spinal cord injury, 
debility), ≥ 18 years of age, no more than minimally 
cognitively impaired as signified by a score of one or greater 
on the Mini-Cog examination [15], able and willing to 
perform the walking task as signified by a score of four or 
better (minimal stand-by assistance) on the locomotion 
independence item of the FIM (using an ambulatory aid such 
as a cane or walker was acceptable). The study was approved 
by a regional hospital institutional review board and all 
participants gave written informed consent. 

Twenty participants (Male = 14, Female = 6), between the 
ages of 52 and 88 years old (71.55 ± 10.62 years), participated 
in both testing sessions of the study (see Table I for participant 
characteristics). The majority (70%) of participants required a 
wheeled walker during both testing sessions. Three (15%) 
participants used a cane during both testing sessions. One 
participant transitioned from a walker to a cane between the 
sessions. Medical record review revealed rehabilitation 
diagnoses were varied, with fourteen (70%) participants 
undergoing post-stroke rehabilitation. Hemiparesis was 
present in 11 post-stroke participants. 

TABLE I 
PARTICIPANT CHARACTERISTICS 

ID Etiology Sex 
Age  

(years) 
Assistive 
Device 

Affected 
Side 

FIMA FIMD

001 Stroke Male 73 Walker Left 48 104 
002 Cardiac Male 84 Walker N/A 59 92 
003 Debility Male 68 Walker N/A 69 98 
004 Stroke Male 75 N/A Left 39 78 
005 Stroke Male 63 Cane No paresis 69 107 
006 Stroke Female 82 Walker Left 46 86 
007 NTBI Male 52 Walker N/A 64 93 
009 Stroke Female 85 Walker No paresis 68 88 
010 TBI Female 67 Walker N/A 41 68 
011 Stroke Male 74 Walker/Cane Left 44 72 
013 NTSCI Male 76 Walker N/A 51 88 
014 Stroke Male 55 N/A No paresis 61 103 
015 Stroke Male 85 Cane Left 87 113 
016 Stroke Male 54 Walker Left 60 98 
018 Stroke Male 88 Walker Left 53 92 
019 Stroke Male 65 Walker Right 79 103 
020 Debility Male 74 Walker N/A 52 91 
021 Stroke Female 74 Walker Right 64 113 
024 Stroke Female 63 Walker Left 67 104 
025 Stroke Female 74 Cane Right 56 83 

Average - - 71.55 - - 58.65 93.70
SD - - 10.62 - - 12.52 12.51
FIMA = admission total FIM, FIMD = discharge total FIM, NTBI = Non-
traumatic brain injury, NTSCI = non-traumatic spinal cord injury, SD = 
standard deviation. 
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B.  Standardized Gait Tasks: The Ambulation Circuit 

We designed a standardized ambulation circuit to assess the 
mobility and physical ability of the participants during the test 
sessions. The AC is a continuous sequence of activities 
performed in a simulated community environment at the 
rehabilitation facility consisting of several indoor and outdoor 
modules. The ecological context provided by a simulated 
environment has been shown to produce a more representative 
assessment of an individual’s functionality than a controlled 
laboratory setting [16]. In ecological environments, patients 
adapt their movements to accomplish challenging tasks, such 
as transitioning from sitting to standing, navigating different 
flooring surfaces, and transferring into and out of motor 
vehicles. 

Fig. 1 illustrates the AC. The AC begins in a simulated 
hotel lobby area with the participant seated in a chair on a 
rectangular shag rug (see Fig. 2). The chair faces a linear path 
that leads to an outdoor area with several motor vehicles. On 
beginning the circuit, the participant rises from the sitting 
position, performing a sit-to-stand transition. Once standing, 
the participant walks across the remaining length of the shag 
rug. When the edge of the rug is reached, the participant 
performs a surface transition from the shag rug to smooth 
wood flooring. After walking for 3.66 meters (12 feet) on the 
smooth floor, a researcher asks the participant “When is your 
birthday?” during the first trial and “What is the date today?” 
during the second trial, to assess whether the participant stops 
walking or slows down. This is a variant of the Stops Walking 
When Talking Test, a simple method to determine risk for 
falling when simultaneously engaged in motor and cognitive 
tasks [17]. Participants are not informed that the question will 
be asked. 

 Next, the participant approaches the front of a sport utility 
vehicle and begins a curvilinear path around the vehicle to 
approach an open passenger side door. The curvilinear path 
length is approximately 6.7 meters (22 feet). The curvilinear 
path contains a simulated sewer drain lid (manhole cover) over 
which the participant has to maneuver. As the participant 
approaches the vehicle passenger seat, the participant 
performs a transfer into and then out of the vehicle front 
passenger seat. After transferring out of the vehicle, the 
participant walks the AC route in reverse, returning to the 
chair in the simulated hotel lobby and sits down, ending the 
AC. The Stops Walking When Talking Test is not performed 
on the way back in order to provide 6.4 meters (21 feet) of 

uninterrupted smooth linear walking for gait analysis. Time 
taken to complete the AC officially stops once the 
participant’s back is fully rested against the back of the chair.  

 In summary, the AC is an extension of the common clinical 
assessment, the TUG, including a greater range of functional 
tasks (e.g., car transfers) and situational challenges (e.g., 
different flooring surfaces; a curvilinear pathway) than is 
found in more common assessments. This greater range of 
cognitive and motor challenges enhances the potential 
usefulness of the sensor data as a means to show change 
across time. The majority of the metrics we report can be 
computed from any assessment in any environment involving 
a chair transfer and walking (5 Times Sit-to-Stand, TUG, etc.). 

C.  Instrumentation 

Using three Shimmer3 wireless IMUs, we recorded 
participant motion as they ambulated through the AC. The 
Shimmer3 platform contains a tri-axial accelerometer and a 
tri-axial gyroscope. The accelerometers and gyroscopes of all 
three sensor platforms were calibrated using the software 
provided by the manufacturer. One IMU was placed centrally 
on the lumbar spine at the level of the third vertebrae, near the 
individual’s center of mass (COM) [18]. Additionally, one 
sensor was placed on each shank, above the ankle and in line 
with the tibia. Positioning the sensor along the tibia reduced 
mounting error as the sensors were always positioned at 
approximately the same angle relative to the sagittal plane. 
The flatness of the tibia bone also prevented the sensor from 
moving during the activities. The sensor modules were 
securely attached to the body with elastic straps. Shank sensor 
mounting locations were measured at S1 and S2 for 

Fig. 1. The ambulation circuit. The solid line represents the way out and the 
dashed line represents the mirrored return portion. Key circuit subtasks are 
labeled with distances in meters. 
 

 

a) Shag rug and linear path b) Curvilinear path and sport utility 
vehicle 

Fig. 2. The simulated community environment at St. Luke’s Rehabilitation 
Institute. 
 

Fig. 3. Sensor placement and axes orientation. Sensor units were mounted on 
the center of mass (COM), left shank (LS), and right shank (RS). 
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consistency. Fig. 3 illustrates the shank mounting locations 
and axes of the sensors. The accelerometer range was set to ± 
2g for the COM sensor and ± 4g for the shanks. The 
gyroscope ranges for the shank and COM sensors were set at 
500 ⁰/s	and 250	⁰/s, respectively. The data were collected at a 
sampling frequency of 51.2 Hz for all sensor platforms.  

 The inertial movement data and segment times are 
processed with a custom Python program designed for the AC 
data. First, the timestamps are aligned from the three different 
sensor platforms. Next, to correct for the orientation of the 
shank sensors along the tibia, the sensor local coordinate 
system is transformed to the body coordinate system [19]; a 
right handed system with the X-axis along the anterior-
posterior body axis, the Y-axis along the vertical body axis, 
and the Z-axis along the medial-lateral body axis. Acceleration 
data are filtered with a 4th order zero-phase band pass 
Butterworth filter using cutoff frequencies of 0.1 Hz and 3 Hz 
for the COM accelerometer and 0.1 Hz and 10 Hz for the 
shanks. The gyroscope signals for all sensors are low passed 
filtered at 4 Hz.  

 From the processed data we compute metrics representing 
participants’ performance on the AC. AC task durations were 
recorded by a researcher using a stopwatch. The times are 
used to segment the data into the different tasks for computing 
metrics for each of the AC sections. Fig. 4 illustrates the tri-
axial COM acceleration and left and right shank gyroscope 
data from a participant partitioned into the key sections of the 
AC. 

D. Computed Metrics 

For a unique analysis of sensor-based gait information in a 
rehabilitation setting, we compute metrics from three main 
components of the AC. The first component consists of the 

chair sit-to-stand and stand-to-sit movements at the beginning 
and ending of the AC. The second component consists of the 
vehicle transfer and the third component consists of the 
ambulation occurring between the chair and the vehicle. This 
ambulation section includes the linear path on the smooth 
floor that is used to compute the majority of the gait cycle 
metrics. 

For the ambulation section, an algorithm was developed to 
detect the gait cycle events of initial contact, terminal contact, 
and mid swing. Initial contact is the moment the heel strikes 
the ground and terminal contact is the moment the toes leave 
contact with the ground. The algorithm operates on the left 
and right shank medial-lateral (Z-axis) gyroscope data. The 
algorithm utilizes peak detection and thresholding techniques 
that were implemented with high accuracy by previous studies 
[10], [19]. By locating these key gait events, the gait cycle is 
defined (the time interval between two successive initial 
contacts of the same leg) and several metrics related to 
walking are computed. Table II presents the metrics we 
compute and groups the metrics into three categories: 

TABLE II 
METRIC DESCRIPTIONS 

Category Metric Units Qualitative Description 
Refer-
ence 

CAP 
Duration ݏ Total time to complete the ambulation circuit or a subtask of the ambulation circuit.  
Floor surface speed ratio  Measures the effect of walking velocity on two different floor surfaces.  
Walking speed ݉ ⁄ݏ  The walking velocity as determined by distance divided by time.  

WBM 

COM peak angular 
velocity ° ⁄ݏ  

Maximum rotational velocity of the COM around the Z-axis while rising from a seated position 
in the chair to a standing position. 

 

Root mean square (RMS) ݉ ⁄ଶݏ  ݏ/
Square root of the mean of the squares of each axes of the acceleration signal on the COM. 
Represents the magnitude of the signal (normalized by time). 

[3] 

Smoothness index  
Ratio of even to odd harmonics of the vertical Y-axis COM acceleration signal. A higher 
harmonic ratio represents a smoother walking pattern. 

[4] 

Smoothness of RMS ݉ ⁄ଷݏ  ݏ/
Root mean square of the derivatives of each X, Y, and Z signal. Synonymous with RMS of jerk 
(normalized by time). 

[3] 

GF 

Cadence  ݏ݁ݐݏ ݉݅݊⁄  Step rate as expressed by the number of steps per minute.  

Double support percent % 
Percentage of the gait cycle that both feet are on the ground. Computed as the sum of the initial 
double support time and the terminal double support time. 

[8], 
[10] 

Gait cycle time ݏ 
Duration to complete one stride (time between two consecutive initial contacts of the same 
foot). 

[8], 
[10] 

Number of gait cycles  The number of complete gait cycles (strides) that occurred.  
Shank peak angular 
velocity ° ⁄ݏ  

Maximum rotational velocity of the shank around the Z-axis during the gait cycle. This occurs 
during the swing phase. 

 

Shank range of motion ° 
Integrated angular velocity for each gait cycle. Provides an estimate of the degrees of shank 
movement. 

[8], 
[10] 

Step length ݉ Distance between initial contacts of opposite feet. [18] 

Step regularity % 
Expression of the regularity of the acceleration of sequential steps. Computed using the 
autocorrelation of the vertical Y-axis of the COM acceleration. 

[18] 

Stride regularity % Expression of the regularity of the acceleration of sequential strides (see step regularity). [18] 
Step symmetry % Ratio of step regularity to stride regularity. [18] 

CAP = clinical assessments of progress, COM = center of mass, GF = gait features, ݉ = meters, ݏ = seconds, WBM = whole body movement, ° = degrees. 
 

Fig. 4. Sensor signals recorded during the AC. The center of mass (top plot: 
accelerometer) and shank (bottom plot: gyroscope) sensor signals were 
analyzed to quantify the rehabilitation process. 
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1. Clinical assessments of progress (CAP). CAP metrics are 
commonly used approaches for assessing mobility in a 
clinical setting by recording the duration of a standardized 
activity, such as walking a fixed distance, rising from a 
chair, or the TUG assessment. 

2. Whole body movement (WBM). WBM metrics are 
computed from data collected from the COM sensor. An 
example WBM metric is COM peak angular velocity. 

3. Gait features (GF). GF are computed from data collected 
from the shank sensors. Examples of GF include cadence 
and shank range of motion, which are based on the 
aforementioned gait cycle event detection algorithm. 

E.  Data Analysis 

Sensor-based metrics are statistically analyzed to identify 
clinically significant changes in the repeated measures data. 
Detected changes in patient performance offer additional 
insights to clinicians, as well as demonstrate the benefit of 
sensor-based analysis of rehabilitation. The statistical analyses 
we apply to the wearable sensor data at the group and 
individual levels are summarized below. 
1) Quantifying Group Changes 

An effect size (ES) based on Cohen’s ݀ for repeated 
measures (RM) data is used to quantify the strength of 
changes in each of the computed metrics [20]: 

݀ோெ ൌ 	
തೄమିതೄభ

ௌವ
      (1) 

Where തܺௌଵ is the mean group score from data collected at S1, 
തܺௌଶ	is the mean group score from data collected at S2, and ܵ 
represents the standard error of difference between S1 and S2 
scores. In cases where the S1 and S2 scores have equal 
variance, ܵ is calculated using the formula [20]: 

ܵ
ୀ ൌ 	 ௌଵඥ2ሺ1ݏ െ  ሻ      (2)ݎ

In Equation 2,	ݏௌଵ	is the standard deviation for the S1 
participant pool and ݎ is the test-retest reliability measured 
between trial 3 and 4 at S2 testing. An unbiased estimation of 
population test-retest reliability is derived using [20] ݎ.  

When S1 and S2 variances are not equal, as determined by 
the Levene’s test of equal variances, an adjustment is applied 
to the estimate of ܵ [20]:  

ܵ
ஷ ൌ 	ඥݏௌଵ

ଶ  ௌଶݏ
ଶ െ  ௌଶ      (3)ݏௌଵݏݎ2

The resulting effect sizes,	݀ோெ (Equation 1), are used to 
evaluate group changes in gait parameters over the course of 
one week of inpatient rehabilitation. Additionally, the 
confidence intervals for each ES are computed using a small 
sample size approximation with alpha set at 95% [21]. 
2) Quantifying Individual Changes 

At the individual level, changes in gait metrics one week 
apart are characterized with the reliable change index (RCI) 
[22]: 

RCI ൌ 	
௫ೄమି௫ೄభ

ௌವ
	      (4) 

Where ݔௌଵ is an individual participant’s score from data 
collected at S1 and ݔௌଶ is the same participant’s score from 
data collected at S2. In addition to numeric RCI statistics, 
comparison of individuals to the group for change between S1 
and S2 are accomplished graphically with RCI plots. Fig. 5 
shows an example RCI plot of the walking smoothness index 

metric (see Fig. 6 for additional RCI plots). The values 
measured for the smoothness index at S1 (X-axis) are plotted 
against S2 (Y-axis). The red diagonal line intersecting the plot 
represents an absence of change from S1 to S2. The shaded 
gray diagonal areas represent confidence intervals based on 
standard error of measurement and criteria suggested by Wise 
[23]. The green bands represent the mean value for S1, plus 
one and two standard deviations respectively. As Fig. 5 shows, 
the majority of participants showed improvement between S1 
and S2 for walking smoothness. Four smoothness indices fell 
below the diagonal line (indicating lack of response) and ten 
smoothness indices appeared above the 95% confidence 
interval, indicating substantial response. 

IV.  RESULTS 

 Tables III-V contain results for CAP, WBM, and GF 
metrics, respectively. Reported statistics for each metric 
include the mean and standard deviation for S1 and S2 (μௌଵ, 
 ௌଶ) and the standardized mean differenceܦܵ ௌଵ, μௌଶ, andܦܵ
effect size. To facilitate analysis and insights at the individual 
patient level, smoothness index (see Fig. 5), walking speed 
(see Fig. 6a), and step regularity (see Fig. 6b) are displayed as 
RCI plots. 

V.  DISCUSSION 

In this paper we investigate the insights that sensor-based 
quantifiable measures can supply in addition to observations 
by clinicians. While analyzing changes at the group level 

 
a) Walking speed b) Step regularity 

Fig. 6. Walking speed (a) and step regularity (b) reliable change index plots. 
Individuals are labeled with their participant identification number. 
 

Fig. 5. The smoothness index metric as an example reliable change index 
plot. Participant session 1 (S1) scores are plotted against session 2 (S2) 
scores. Also plotted are confidence intervals (CI) and S1 standard deviations 
(SD). Select individuals are labeled with their participant identification 
number. 
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provides insight about the effects of therapy from a research 
perspective, the effects of rehabilitation on an individual basis 
can be established with wearable sensors and applied directly 
to patient care. 

A. Group Responsiveness to Therapy 

1) Clinical Assessments of Progress 
As a group, AC metrics related to CAP demonstrate 

moderate improvements based on the magnitude of effect 
sizes (see Table III). For total AC duration, there is a 22.77% 
decrease in the total time required to complete the AC. 
Improved functionality is confirmed by increased ambulatory 
capabilities, completing the curvilinear section of the AC 
20.26% faster. Responsiveness on the vehicle load/unload 
challenge is moderate with 27.32% decrease in duration 
observed on average. Walking speed is a typical metric for 
comparison among populations and for indication of 
ambulatory improvements. Group average performance during 
both sessions (walking speed S1 0.47 ± 0.22	݉/ݏ; walking 
speed S2 0.57 ± 0.28	݉/ݏ) as well as the large responsiveness 
across time (see Fig. 6a for an RCI plot) are in agreement with 
previous published studies analyzing walking speed in post-
stroke populations [24]. 
2) Whole Body Movement Metrics 

Large levels of responsiveness are observed for RMS 
during linear path gait (see Table IV). While there is a 
relationship between COM RMS and walking speed [4], the 
large responsiveness across time is due in part to the 
participant-dictated speed of movement. During the vehicle 
transfer, the ES for COM RMS during the load and unload 
tasks suggest substantial progress from one week of 
rehabilitation therapy. Similar changes in COM RMS are also 
present on the chair task. 

Another WBM metric, the smoothness index of walking 
(see Fig. 5), characterizes gait harmonics to quantify cyclical 
movements independent of speed [4]. The calculated ES for 
change in smoothness index emphasizes the influence 
rehabilitation has on developing a more stable pattern of 
locomotion. As a group, the participants demonstrate a 
25.63% improvement in the smoothness index. 
3) Gait Features 

 Changes in metrics describing gait quality in terms of 
symmetry, regularity, and consistency are observed during the 
straight path portion of the AC (see Table V). During one 
week of rehabilitation, the increased walking speed is 

accompanied by an average increase of 8.72% in cadence. 
Another important outcome is the 4.74% decrease in the 
amount of double limb support in the gait cycle. In addition, 
improvement is observed in gait consistency, measured with 
stride and step regularity (see Fig. 6b for an RCI plot). These 
metrics indicate that patients are beginning to produce more 
consistent walking patterns over one week, increasing the load 
carried by the affected limb. 

Changes are also observed in individual leg movements. 
Large levels of responsiveness are detected in peak angular 
velocity, measured at each shank. Along with faster leg 
movements during the swing phase, there is a strong 
indication of increased limb range of motion during gait. To 
perform sub-group analyses of stroke patients with 
hemiparesis, each limb is re-classified as affected (paretic) or 

TABLE III 
CLINICAL ASSESSMENTS OF PROGRESS (CAP) METRIC RESULTS 

Metric μௌଵ ܵܦௌଵ μௌଶ ܵܦௌଶ 
Effect 
Size 

Curvilinear walking 
duration 

24.43 18.14 19.48 12.23 -1.03* 

Duration 177.85 129.53 137.36 88.56 -1.08* 
Floor surface speed 
ratio 

0.75 0.13 0.80 0.14 0.48* 

Sit-to-stand duration 6.84 6.10 4.79 3.03 -0.49* 
Stand-to-sit duration 12.94 12.05 11.13 7.13 -0.34* 
Vehicle challenge 
duration 

47.81 36.36 34.75 28.10 -0.55* 

Walking speed 0.47 0.22 0.57 0.28 1.58* 
S1 = session 1, S2 = session 2, SD = standard deviation, ߤ = mean, * = 
significant at the 95% confidence level. 
 

TABLE IV 
WHOLE BODY MOVEMENT (WBM) METRIC RESULTS 

Metric μௌଵ ܵܦௌଵ μௌଶ ܵܦௌଶ 
Effect 
Size 

COM RMS 0.08 0.06 0.11 0.10 1.87* 
COM Smoothness of 
RMS 

0.75 0.59 1.10 1.04 1.90* 

Sit-to-stand RMS 0.65 0.64 0.85 0.67 0.71* 
Sit-to-stand peak 
angular velocity 

84.02 37.96 72.46 44.47 -0.37 

Smoothness index 1.60 0.65 2.01 0.97 1.82* 
Stand-to-sit RMS 0.38 0.45 0.36 0.30 -0.07 
Stand-to-sit peak 
angular velocity 

126.87 36.75 118.45 42.08 -0.26 

Vehicle load RMS 0.10 0.11 0.16 0.16 1.37* 
Vehicle load peak 
angular velocity 

81.94 36.62 78.27 26.32 -0.10 

Vehicle unload RMS 0.16 0.12 0.29 0.37 2.71* 
Vehicle unload peak 
angular velocity 

74.45 47.85 68.45 35.89 -0.15 

COM = center of mass, RMS = root mean square, S1 = session 1, S2 = 
session 2, SD = standard deviation, ߤ = mean, * = significant at the 95% 
confidence level. 

TABLE V 
GAIT FEATURES (GF) METRIC RESULTS 

Metric μௌଵ ܵܦௌଵ μௌଶ ܵܦௌଶ 
Effect 
Size 

Cadence 64.88 17.67 70.54 20.32 1.38* 
Double support percent 33.79 11.97 32.19 13.72 -0.49* 
Gait cycle time 1.96 0.66 1.87 0.68 -0.64* 
Affected side peak angular 
velocity 

190.09 67.88 208.79 72.50 1.52* 

Affected side shank range of 
motion 

47.34 13.22 50.02 11.44 1.20* 

Left side peak angular velocity 195.98 61.01 213.09 68.84 1.30* 
Left side shank range of 
motion 

47.24 12.66 50.93 12.59 1.73* 

Number of gait cycles 18.95 9.32 16.38 5.59 -0.90* 
Right side peak angular 
velocity 

217.65 43.80 244.53 51.02 2.02* 

Right side shank range of 
motion 

50.41 10.91 54.70 9.43 1.45* 

Step length 0.21 0.07 0.23 0.06 0.64* 
Step regularity 37.29 22.36 46.91 28.11 1.31* 
Stride regularity 40.88 22.73 51.53 24.45 0.55* 
Step symmetry 63.57 27.50 70.80 26.31 0.35 
Unaffected side peak angular 
velocity 

231.38 39.33 255.20 40.62 1.91* 

Unaffected side shank range of 
motion 

51.91 11.96 55.69 8.40 1.56* 

S1 = session 1, S2 = session 2, SD = standard deviation, ߤ = mean, * = 
significant at the 95% confidence level. 
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unaffected (non-paretic), instead of left or right. The re-
categorization produces a slightly different ES for shank peak 
angular velocity and range of motion. Tracking changes in the 
affected side of the body offers additional insight for clinicians 
treating stroke patients and injuries affecting one side of the 
body more than the other side. 

B. Individual Responsiveness to Therapy 

RCI analyses suggest that recovery is not consistent for all 
patients over one week of inpatient rehabilitation (see Fig. 5 
and 6). For example, participant #014 experienced a 
substantial amount of recovery compared to the rest of the 
participants as assessed through RCI plots. This finding is 
corroborated by the conventional method of using the FIM to 
characterize functioning at admission (see Table I). By 
contrast, participant #015 did not demonstrate significant 
change in smoothness of walking or step regularity. At 
admission to the inpatient facility the functional capabilities 
for this participant were close to independent, rendering a 
small window for improvement across time.  

The RCI visualization of performance at the individual level 
can track progress by assessing performance on multiple 
metrics. For example, a few participants with moderate 
responsiveness for walking speed (#007, #015, and #020) did 
not show change in the smoothness index metric and vice 
versa (#004). Therefore, analysis of multiple metrics, such as 
smoothness index along with walking speed, highlights the 
differences in individual recovery. 

C. Therapist Feedback 

To further investigate the clinical utility of wearable sensor-
derived metrics, we presented AC data to physical therapists 
(N = 5) and physical therapy assistants (N = 2) to collect 
feedback. The group had a mean age of 40.14 ± 9.49 years (M 
= 1, F = 6) and had been working in rehabilitation for 11.86 ± 
12.56 years. Quantitative responses of questions asked were 
scored by the therapists on a scale from 1 (strongly 
disagree/not useful) to 5 (strongly agree/very useful). The 
interviews reveal that therapists are quite comfortable with 
technology (4.00 ± 0.82), willing to learn new technology 
(4.29 ± 0.76), and interested in using wearable technology for 
their patients (4.43 ± 0.53). To evaluate patient gait and 
transfer ability, therapists primarily use observation and an 
estimate of the amount of physical assistance the patient 
requires performing certain tasks. To evaluate change in 
patient gait and transfer ability, therapists use their memory to 
compare previous observations to current ones.  

Additionally, wearable sensor-derived metrics were 
presented and explained to the therapists. The therapists then 
rated each metric for its usefulness in providing therapy 
services for patients. The results indicate therapists believe sit-
to-stand duration is the most useful metric (4.14 ± 1.46). 
Walking speed (4.00 ± 1.41) and cadence (4.00 ± 1.00) are 
also highly rated metrics. The metrics with the lowest rated 
usefulness include COM peak angular velocity (2.86 ± 1.07) 
and vehicle load/unload duration (3.14 ± 1.07). For the vehicle 
metrics, two therapists stated a patient’s ability to complete 
these tasks is more important than the amount of time the 
patient requires. 

The feedback received from physical therapists emphasizes 
that the aim of quantifying progress with wearable sensors is 
useful for rehabilitation settings; however, wearable sensors 
should not be regarded as a replacement for experienced 
clinical judgment. The overarching goal of technology 
platforms for rehabilitation should strive to be assistive: 
providing insightful information, adapting to ecological 
conditions, and incorporating the context of the patient’s 
progress. Feedback should also be provided to the patient, as 
patient motivation and engagement is associated with positive 
rehabilitation outcomes [25]. 

A limitation of this study is the metric computations have 
not been laboratory validated; however, all of the algorithms 
are derived from previously-published and validated sources. 
Other limitations include: 
 Non-uniform days between admission and S1 AC testing. 

Participants were tested when their physical therapists 
determined they were able to safely perform the AC. 

 The use of human-operated stopwatch times to segment 
the AC into its subtasks. The times recorded by the 
researchers could impose non-systematic error. 

A direction for future work includes recruiting healthy 
individuals to perform the ambulation circuit to provide 
reference data for comparison to patient data. 

VI. CONCLUSION 

Inpatient rehabilitation contains a wide spectrum of 
challenges that are tackled uniquely by different patients, 
depending on their pre-morbid state, injury, drive to improve, 
and compensatory strategies. Changes measured in movement 
profiles over the course of one week of therapy and feedback 
from therapists indicate wearable IMUs provide a viable 
platform for gaining insight into these complex recovery 
processes. The ambulation circuit presented in this study 
allowed data collection to capture performance of real-world 
challenges in ecological environments. Several gait and 
transfer features exhibit statistically significant differences in 
value from session one to session two, which indicates 
wearable sensor-derived metrics may be practical for 
clinicians to use in addition to observation to quantify gait and 
vehicle transfer improvement. Specifically, metrics showing 
the greatest change are walking speed, stride regularity, 
acceleration root mean square, walking smoothness, shank 
peak angular velocity, and shank range of motion. Of these 
metrics, only walking speed does not make use of wearable 
inertial sensor data, indicating that wearable sensors can 
capture details about changes in movement patterns that 
cannot be acquired from standardized subjective clinical 
assessments. 
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