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Abstract—In this paper, we examine the problem of learning in-
habitant behavioral models in intelligent environments. We main-
tain that inhabitant interactions in smart environments can be
automated using a data-driven approach to generate hierarchi-
cal inhabitant models and learn decision policies. To validate this
hypothesis, we have designed the ProPHeT decision-learning algo-
rithm that learns a strategy for controlling a smart environment
based on sensor observation, power line control, and the generated
hierarchical model. The performance of the algorithm is evalu-
ated using real data collected from our MavHome smart home and
smart office environments.

Index Terms—Data mining, hierarchical Markov models, pre-
diction, smart homes, user modeling.

I. INTRODUCTION

D ESIGNING systems with robust intelligence that are ca-
pable of perceiving, reasoning, learning, and interacting

with their environment has been a pervasive goal of artificial
intelligence researchers. Often, however, these researchers find
that ideas tested on small problems or in simulation do not scale
well to larger, complex, real-world problems.

As an example, Markov models provide a useful representa-
tion of system behavior. When used to model larger problems,
they sometimes face difficulties of accurately modeling com-
plex interactions between components of the system. Learning
algorithms built on these models also experience performance
issues when scaled to large problems. Utilizing a hierarchy im-
proves scalability, but most uses of a hierarchical model have
relied upon manual construction of the hierarchy. We introduce
a new method of automatically constructing hierarchical hidden
Markov models (HHMMs) using the output of a sequential data-
mining algorithm. Repetitive behavioral actions in sensor-rich
environments such as smart homes can be observed and cat-
egorized into patterns through data-mining techniques. These
discoveries form the necessary abstractions for a hierarchical
model of inhabitant behavior, which, then, provides a basis for
learning an automation strategy.

In this paper, we introduce the ProPHeT algorithm that learns
a policy for controlling a smart environment based on patterns
mined from inhabitant action histories. We show how a model
hierarchy can be built automatically from observation data, and
demonstrate how the resulting hierarchy forms the basis of a
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reinforcement learning approach to learning an environment
control strategy. We evaluate the performance of this learned
strategy by measuring the reduction in manual control of an
automated apartment. We also demonstrate the power of the
data-driven approach to refining the hierarchical model based
on changes in the underlying patterns or feedback from the user.
We present the application and validation of our approach in our
MavHome smart environments.

II. HIERARCHICAL PARTIALLY OBSERVABLE

MARKOV DECISION PROCESSES

Markov decision processes (MDPs) are popular methods of
modeling a system’s interactions with its environment. They also
provide a mathematical foundation for applying reinforcement
learning techniques to learn a policy for controlling an envi-
ronment. Because they capture the underlying stochasticity of a
domain, and can account for multiple, possibly conflicting task
goals, they are an excellent model for smart environments [1].

Hidden Markov models, in which each state encapsulates
possibly unseen events that are hidden from the observer, are
the method of choice for applications such as speech and hand-
writing recognition [2], [3], language modeling [4], and compu-
tational molecular biology [5]. They also provide a foundation
for learning strategies to accomplish a task in a real-world en-
vironment such as robot navigation [6].

Smart environments present unique challenges to machine-
learning and decision-making algorithms. One is the curse of
dimensionality [7]. The state space of an intelligent environment
is quite large. For example, if we were to examine a very small
environment with 10 motion sensors and 5 lights for a total of 15
binary-state objects, the model would encompass 215 = 32 768
unique states. If we can reason about each one for 0.01 s, it would
take 5.46 min to make a decision. The MavHome environments
contain about 2150 = 1.43 × 1045 unique states. The size of the
problem space makes it difficult to develop real-time reasoning
for intelligent environments.

HHMMs, first introduced by Fine et al. [8], are useful for
addressing this challenge. Hierarchical models can improve the
performance of learning algorithms applied to the model, and
facilitate the reuse of portions of the learned task for new prob-
lems. The hierarchical hidden nodes also enable better modeling
of the different stochastic levels and scales of tasks that are found
in smart environments. For example, if an inhabitant reads, lis-
tens to music, and watches television all in the same room with
a particular light on, a generalization of these tasks may simply
automate the shared light while missing desired automation of
the CD player or television. The hierarchical model can group
the different tasks into separate abstract states. The result more
accurately reflects the inhabitant model.

1094-6977/$25.00 © 2007 IEEE
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Fig. 1. MavHome Steve pattern 1 (lab entry to desk) and pattern 2 (going on break). In this visualization, sensors starting with “V” are motion or door sensors,
the other sensors are X10 units.

Fig. 2. MavHome Steve HHMM structure, abstract nodes only.

MavHome Steve pattern 1 (lab entry to desk) and pattern
2 (going on break). In this visualization, sensors starting with
“V” are motion or door sensors, the other sensors are powerline
controllers (X10 units).

Using an HHMM, a Markov chain of inhabitant activities
corresponding to watching television may be grouped together
in a hierarchy with similar patterns. Eventually, all activities in
a house fall under the root node of the hierarchy. Consider an
example following a virtual inhabitant, MavHome Steve, who
works in the MavLab. MavHome Steve has a routine for his
work life, which contains six unique patterns. These patterns
include: 1) lab entry to desk, as shown in Fig. 1 (left), 2) going
on break, as shown in Fig. 1 (right), 3) going off break, 4) go to

alternate workstation, 5) return from alternate workstation, and
6) leave lab from desk.1 These patterns occur with a probability
defined by the HHMM shown in Fig. 2. Each oval in this figure
represents an abstract node and squares represent end nodes.
Transitions are represented as solid arrows labeled with the
probability of the transitions. Automatic transitions, those that
are always made once the source node is reached, are shown as
dashed arrow.

From the time hierarchical Markov models were introduced,
they have been heavily used for complex modeling and learn-
ing problems [9]–[11]. In the majority of these studies, the

1An animation of MavHome Steve’s patterns is shown in Attachment 1.
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Fig. 3. MavHome as an intelligent agent.

hierarchical structure is defined in advance [4], [6], [12]–[14].
Some notable exceptions are the work by Sun and Sessions [15],
which segments sequences into a hierarchy based on reinforce-
ment received during task execution, an approach by Hauskrecht
et al. [10], which abstracts sequences into macro-actions, work
of Pineau et al. [16], which groups actions together based on
structure inherent in the domain, and the approach of Xie et al.
[17] to split and merge states using statistical techniques. None
of these approaches, however, represent a data-driven method of
learning hierarchical model structure. This means that these ear-
lier approaches assume sufficient a priori knowledge to precon-
struct the HHMM. Given the size of an intelligent environment
problem space and the desire to minimize model contamination
from knowledge engineering, we need to seed our model with
structure derived through data collected in the environment.

Once we build an HHMM, we want to use this model to learn
a policy for controlling the environment. In order to facilitate
policy learning, we associate actions and rewards with the tran-
sitions between the states in the model. As a result, the model
is best described as a hierarchical partially observable Markov
decision process (HPOMDP).

III. APPLICATION: THE MAVHOME SMART HOME

Individuals spend a majority of their time in a home or work-
place [18], and for many, these places are our sanctuaries. As
such, observations made in these settings are insightful glances
into our lives, and these observations may, in turn, be useful
in improving the quality of the environments. Since the begin-
ning, people have lived in places that provide shelter and basic
comfort and support, but as society and technology advance,
there is a growing interest in improving the intelligence of the
environments in which we live and work.

The MavHome (managing an adaptive versatile home) project
is focused on providing smart environments. We define an in-
telligent environment as one that is able to acquire and apply
knowledge about its inhabitants and their surroundings in order
to adapt to the inhabitants and improve their experience in the
environment. We treat an environment as an intelligent agent, as
shown in Fig. 3, which perceives the state of the environment
using sensors and acts upon the environment using device con-
trollers (in our case, powerline controllers) in order to achieve its
goals. The goals of these environments are to maximize comfort
of the inhabitants, minimize the consumption of resources, and
maintain the safety of the environment and its inhabitants. In this
paper, we focus on one quantifiable goal: minimizing the num-
ber of manual interactions needed to control the environment.

As the need for automating these personal environments
grows, so does the number of researchers investigating this topic.
Some design interactive conference rooms, offices, kiosks, and
furniture with seamless integration between heterogeneous de-
vices and multiple user applications in order to facilitate col-
laborate work environments [19]–[22]. Abowd and Mynatt’s
work [23] focuses on ease of interaction with a smart space, and
work such as the Gator Tech Smart House [24] focuses on appli-
cation of smart environments to elder care. Research on smart
environments has become so popular that NIST has identified
seamless integration of mobile components into smart spaces as
a target area for identifying standardizations and performance
measurements [25], although no performance metrics have yet
been produced by the group.

Mozer’s Adaptive Home [26] uses neural network and rein-
forcement learning to control lighting, HVAC, and water tem-
perature to reduce operating cost. In contrast, the approach taken
by the iDorm project [27] is to use a fuzzy expert system to learn
rules that replicate inhabitant interactions with devices, but will
not find an alternative control strategy that improves upon man-
ual control for considerations such as energy expenditure.

These projects have laid a foundation and provided useful
tools for our work. Instead of designing individual supporting
technologies, however, we are focusing on constructing an entire
environment that acts as an intelligent agent. To do this, we offer
a unique scientific contribution by letting hierarchical models
created from observed inhabitant activity provide the driving
force for learning automation strategies.

In order to handle all the complexities of a working intelligent
environment, the MavHome architecture is separated into four
cooperating layers [28], as shown in Fig. 4. During perception,
sensors in the physical layer monitor the environment and make
readings availability through the communication layer. The
database stores these data in the information layer as more useful
knowledge (e.g., patterns, predictions) that is made available as
needed to the decision layer. In contrast, action execution orig-
inates from the decision layer, and the selected action is stored
in the information layer as well as sent through the communica-
tion layer to the physical components that execute the command.
The action changes the state of the environment, and thus, trig-
gers a new perception/action cycle. Communication between
high-level components is performed using CORBA, and each
component registers its presence using zero configuration (Ze-
roConf) technologies. Inhabitant localization is performed using
passive infrared sensors that yield a 95% accurate detection rate,
and a PostgreSQL database stores sensor readings, prediction
and data-mining components, and logical proxy aggregators.

Our MavHome implementation and evaluation is based on
two real environments and simulated counterparts. The MavLab,
shown in Fig. 5, is a room in the Engineering Building at the
University of Texas at Arlington (UTA) that is designed to look
and operate as an office environment with cubicles, a lounge,
a kitchen, a dining area, and a meeting room. The MavPad,
shown in Fig. 6, is an apartment on campus that has hosted
three volunteer inhabitants.

MavHome data streams are defined as a four-tuple 〈t, z, n, l〉,
where t is the time of the event, z is the device/sensor zone,
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Fig. 4. MavHome software architecture.

n is the device/sensor number, and l is the new value of the
device/sensor. An example of streaming data captured by one
of the MavHome sites is shown as follows.

Data are collected by means of a sensor network, and devices
are controlled by powerline controllers. Because of the increased
complexity and privacy issues related to video capture, we lim-
ited our data collection to this information. Attachment 2 shows
a video animation of this information collected for one day in the
MavPad apartment. As can be seen, these sensor readings pro-
vide a great deal of information. We can tell when the inhabitant
is watching television, taking a shower, cooking in the kitchen,
working on the computer, sleeping restfully, and stirring in his
sleep.

Our unique contribution to the design of intelligent envi-
ronment agents lies in the data-driven hierarchical automation
model. As a result, our emphasis in this paper is on the MavCore
components shown in Fig. 4, which are found in the information
and decision layers of the architecture. To automate our smart

environment, we collect observations of inhabitant activities
and manual interactions with the environment. We, then, mine
sequential patterns from these data using a sequence mining al-
gorithm, episode discovery (ED). Next, our Active LeZi (ALZ)
algorithm predicts the inhabitant’s upcoming actions using ob-
served historical data. Finally, ProPHeT (providing partially
observable hierarchical based decision tasks) builds a hierarchi-
cal Markov model from low-level state information and ED’s
high-level sequential patterns, and uses the model to learn an ac-
tion policy for the environment. All selected actions are filtered
through the arbitrator (Arbiter) to prevent violation of security
constraints or user preferences, before being executed. Details
of the MavCore algorithms are provided in the next section.

IV. DATA MINING FOR MODEL CREATION

Here, we describe the individual mining and learning algo-
rithms that comprise MavCore. Through the combination of
these techniques, we are able to learn a hierarchical model of
inhabitant behavior, predict activities, and learn a policy for
controlling the environment, all in a completely unsupervised
fashion.

A. Mining Sequential Patterns Using ED

A smart home inhabitant typically interacts with various de-
vices as part of their routine activities. These interactions may
be considered as a sequence of events, with some inherent pat-
tern of recurrence. The role of ED in our model creation is to
identify sequential patterns from time-ordered observations of
inhabitant activities. Given an input stream O consisting of a
time-ordered sequence of events, ED performs the steps shown
as follows.

1) Partition O into maximal episodes.
2) Create candidate episode patterns from the maximal

episodes.
3) Determine the compression value for each candidate.
4) Identify interesting patterns by selecting candidates with

the top compression values.
In an approach that is loosely modeled after the sequential

mining algorithm of Srikant and Agrawal [29], we move a win-
dow in a single pass through the history of activities or events,
looking for episodes (sequences) within the window that merit
attention. ED accumulates the maximum number of events that
occur within the window time frame into a maximal episode. A
candidate episode is created to represent each unique maximal
episode as well as each subset of a maximal episode.

Candidate episodes are collected together with frequency in-
formation for each candidate. These candidate patterns are eval-
uated and the episodes with values above a minimum acceptable
compression amount are reported. The size of the moving win-
dow can be specified by the user or automatically determined by
ED. Given sufficient support from the databases, pattern com-
pression should increase with the size of the pattern. As a result,
ED samples window sizes from small to large and select the cur-
rent window size when the resulting pattern compression does
not continue to increase.
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Fig. 5. MavLab workplace environment. The lab is equipped with temperature, light, and motion sensors, and can control all lights, appliances, fans, heaters,
and window blinds.

When evaluating candidate episodes, ED looks for patterns
that minimize the description length of the input stream O, us-
ing the minimum description length (MDL) principle [30]. The
MDL principle targets patterns that can be used to minimize the
description length of a database by replacing each instance of
the pattern with a pointer to the pattern definition. MDL theory is
somewhat similar in nature to randomization theory [31], which
Rubin and Trajkovic [32] enhance using domain-specific knowl-
edge to find patterns in data. The description length (DL) of the
input sequence O using the set of patterns Θ is, thus, defined
as DL(O,Θ) = DL(O|Θ) + DL(Θ), or the description length
of the input sequence compressed using Θ plus the description
length of the patterns Θ. The compression of the corresponding
encoding can be computed as Γ(Θ|O) = DL(O)/DL(O,Θ).
Finding the model that yields the MDL of the data is, thus,
equivalent to finding the patterns that provide the largest com-
pression value, or MDL(O) = argmaxΘ{Γ(Θ|O)}.

Our MDL-based evaluation measure, thus, identifies patterns
that balance frequency and length. Periodicity (daily, every other
day, weekly occurrence) of episodes is detected using autocor-
relation and included in the episode description. If the instances
of a pattern are highly periodic (occur at predictable intervals),
the exact timings do not need to be encoded (just the pattern
definition with periodicity information), and the resulting pat-
tern yields even greater compression. Although event sequences
with minor deviations from the pattern definition can be in-

cluded as pattern instances, the deviations need to be encoded,
and the result, thus, increases the overall description length. ED
reports the patterns and encodings that yield the greatest MDL
value.

Deviations from the pattern definition in terms of miss-
ing events, extra events, or changes in the regularity of the
occurrence add to the description length because extra bits must
be used to encode the change, thus lowering the value of the
pattern. The larger the potential amount of description length
compression a pattern provides, the more representative the pat-
tern is of the history as a whole, and thus, the potential impact
that results from automating the pattern is greater.

In this way, ED identifies patterns of events that can be
used to better understand the nature of inhabitant activity
in the environment. Once the data are compressed using
discovered results, ED can be run again to find an abstraction
hierarchy of patterns within the event data. For example,
given data of inhabitant actions in an automated apartment
(described further in Section VI of this paper), ED finds a
number of patterns including pattern with ID 103517289
(V 30 1V 30 0V 34 1V 34 0a 11 1V 25 0V 1 1V 1 0).
This pattern occurs frequently but with no detected periodicity,
and represents the inhabitant turning on the living room corner
lamp upon entering the room. In this example, events starting
with “V” are motion or door sensors, and the event starting
with “a” is the action of turning on the lamp.
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Fig. 6. MavPad apartment. The apartment is equipped with motion, light, temperature, humidity, door, water leak, smoke, and CO2 sensors, and can control
lights, fans, TV, receiver, window blinds, HVAC, and diffusers.

Once the data are compressed using the discovered patterns,
ED is run again on the compressed data, and finds abstract pat-
terns such as 103517289 417779442 169334 577132524 341362
100100, where each event represents a pattern discovered in the
first iteration of ED (103517289 is the pattern shown earlier).
As the following sections show, the results can also be used
to enhance performance of predictors and decision makers that
automate the environment.

B. Predicting Activities Using ALZ

To predict inhabitant activities, we borrow ideas from text
compression. Researchers have established that good com-
pression algorithms also make good predictors. According to
information theory, a predictor with an order (size of context
history used) that grows at a rate approximating the entropy
rate of the source is an optimal predictor. Other approaches to
prediction often use a fixed context size to build the model or
focus on one attribute such as motion.

In an earlier work [33], we showed how our ALZ algorithm
incrementally processes a string of characters, which, in our
case, is a string representing the history of inhabitant actions,
and stores them in a trie (a prefix tree). The algorithm parses
the string x1, x2, . . . , xi into substrings w1, w2, wc(i) such that

for all j > 0, the prefix of the substring wj is equal to some
wi for 1 < i < j. Thus, when parsing the sequence of symbols
aaababbbbbaabccddcbaaaa, the substring a is created, followed
by aa, b, ab, bb, bba, and so forth. The frequency of observed
phrases is stored in the trie as well.

To perform prediction, ALZ calculates the probability of each
symbol (inhabitant action) occurring in the parsed sequence,
and predicts the action with the highest probability. To improve
predictive accuracy, we use a mixture of all possible higher
order models (phrase sizes) when determining the probability
estimate. Specifically, we incorporate the prediction by partial
match strategy of exclusion [34] to gather information from all
available context sizes in assigning the next symbol its probabil-
ity value. In effect, ALZ gradually changes the order of the cor-
responding model that is used to predict the next symbol in the
sequence. As a result, we gain a better convergence rate to opti-
mal predictability as well as achieve greater predictive accuracy.

C. ProPHeT

The ProPHeT algorithm uses information supplied by
ED and ALZ to construct a hierarchical model and employ
reinforcement learning in generating an automation strategy.
To apply reinforcement learning, the underlying system (i.e.,
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the house and its inhabitants) is modeled as an MDP. This can
be described by a four-tuple 〈S,A,Pr, R〉, where S is the set of
system states, A is the set of available actions, and R : S → R
is the reward that the learning agent receives for being in a given
state. The behavior of the MDP is described by a transition func-
tion Pr : S × A × S → [0, 1] that represents the probability
with which action at executed in state st leads to state st+1.

The lowest level nodes in our model represent a single event
observed by ED (see Fig. 2). Next, multiple iterations of ED are
run on these data until no more patterns can be identified, and
the corresponding abstract patterns comprise the higher level
nodes in the Markov model. The higher level task nodes point
to the first event node for each permutation of the sequence that
is found in the environment history. Vertical transition values
are labeled with the fraction of occurrences for the correspond-
ing pattern permutation, and horizontal transitions are seeded
using the relative frequency of transitions from one event to the
next in the observed history. As is summarized by the follow-
ing algorithm, the multitier hierarchical model is, thus, learned
directly from the collected data.

V. LEARNING AN ENVIRONMENT CONTROL POLICY

FROM THE HIERARCHICAL MODEL

To learn an automation strategy, the agent explores the ef-
fects of its decisions over time and uses this experience within
a temporal difference reinforcement learning framework [35]
to form control policies that optimize the expected future re-
ward. Using the structure defined earlier from the observed
inhabitant data, the utility value Q(s, a) is incrementally esti-
mated for state/action pairs. This value represents the predicted
future reward that will be achieved if the agent executes ac-
tion a in state s. After each action, the utility is updated as
Q(s, a) ←− Q(s, a) + α[r + γQ(s′, a′) − Q(s, a)]. This for-
mula increments the value of Q(s, a) by the reward r received
for being in state s′ plus a portion of the difference between the

Fig. 7. Example circular probability of two episodes occurring at different
times of the day.

current value of Q and the discounted value of Q(s′, a′), where
a′ is chosen based on the current Q policy. The current version of
MavHome receives negative reinforcement (observes a negative
reward) when the inhabitant immediately reverses an automation
decision (e.g., turns the light back off) or an automation decision
contradicts Arbiter-supplied safety and comfort constraints.

A problem that is inherent in temporal models such as the one
created by ProPHeT is the need to calculate a belief state, or a
probability distribution over possible current states, given avail-
able evidence. Once again, our data-driven approach to model
creation is useful to accomplish this task. Given the current event
state and recent history, ED supplies the probability that the cur-
rent state is a member of each of its identified patterns. This in-
formation is supplemented by a circular probability distribution
over the times of day when the episodes normally occur. The cir-
cular probability formulas follow the work of Batschelet [36].
An example circular probability of two episodes occurring at
different times of the day is shown in Fig. 7. In the case where
a pair of such episodes is similar in content, the probability of
the time of occurrence can narrow down which episode is cur-
rently being observed, and therefore, which is the current state.
ProPHeT uses the most likely current pattern from ED, the ALZ-
predicted next action, the current environment description, and
the recent event history to calculate its belief state. Given the
most likely current state, ProPHeT can, then, select action with
the highest expected utility to execute.

Before an action is executed, however, it is checked against
the policies in the policy engine, Arbiter (see Fig. 4). These
policies contain designed safety and security knowledge and in-
habitant standing rules. Through the policy engine, the system is
prevented from engaging in erroneous actions that may perform
actions such as turning the heater to 120 ◦F or from violating
the inhabitant’s stated wishes (e.g., a standing rule to never turn
off the inhabitant’s night light).

MavHome’s goal is to learn a control policy that: 1) mini-
mizes user interactions, 2) eliminates safety and security rule
violations, and 3) reduces user preference rule violations. Per-
formance based on the first two criteria are determined internally
by ProPHeT and Arbiter, while performance based on the third
criteria is determined by inhabitant interaction.

VI. EXPERIMENTAL RESULTS

Although there are many possible goals that could be eval-
uated for our smart environments (e.g., maximize inhabitant
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Fig. 8. ProPHeT-generated hierarchical HPOMDP from MavLab data (only the higher levels of the model are shown). There are eight abstract tasks found in the
first iteration of ED and two meta-tasks (nodes 65237 and 13129) found in the second iteration. Boxes represent end nodes for each task sequence.

comfort, minimize resource utilization), for our evaluation, we
focused on reducing the number of manual interactions of an
inhabitant in the physical environments through automation of
inhabitant activities. In the first experiment, we evaluated a week
in the life of an inhabitant in the MavLab. The data were re-
stricted to just motion and lighting interactions, which account
for an average of 1400 events per day. We trained ALZ and
ED on real data, and then, repeated a week in our simulator to
determine if the system could automate the lights throughout
the day in real time.

ALZ processed the data and converged to 99.99% accuracy
on the training data, but only reached a peak of 56% accu-
racy on the streaming test data. When automation was based
on ALZ predictions alone (predicted actions were automated),
MavHome reduced the number of manual interactions by 9.7%,
as shown in Fig. 9 (top).

Next, ED processed the data. Fig. 8 shows the four-tier
HPOMDP that is automatically constructed from the ED pat-
terns. Because of space limitations, only the nodes at the higher
levels of the model are shown. ED found eight interesting
episodes with actions that could be automated, and further ab-
stracted these to two meta-tasks. Living room patterns consisted
of lab entry and exit patterns with light interactions, and the
office also reflected entry and exit patterns. The other patterns
occurred over the remaining eight areas, and usually, involved
light interactions at desks and some equipment upkeep activity
patterns. As a point of comparison, we automated the envi-
ronment using a hierarchical Markov model with no abstract
nodes. This flat model reduced interactions by 38.3%, and the
combined learning system (the hierarchical ProPHeT-generated
model bootstrapped using ED and ALZ) was able to reduce
interactions by 76%, as shown in Fig. 9 (top).

The improvement in performance from the hierarchical model
over the flat model comes from the enhanced contextual clar-
ity of the hierarchical model. The hierarchical model allows
replication of nodes that produce the same observation (and if
automatable, the same related action), where each node repre-
sents a unique context of inhabitant activity. In the flat hierar-
chical Markov model, there is only a single node representation
for each event regardless of the context. In a flat hierarchical

Fig. 9. Inhabitant interaction reduction in the MavLab (top) and MavPad
(bottom).

Markov model, we must rely solely on the probabilistic frame-
work for event transitions to determine the most likely next
event. The ALZ predictor is even more reliant upon local con-
text alone to make this determination. Using a hierarchy, we
are in effect partitioning the state space in a way that enhances
context information in the abstract levels.
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Fig. 10. ProPHeT-generated hierarchical HPOMDP from MavPad data (only the higher levels of the model are shown).

Experimentation in the MavPad using real inhabitant data
yields similar results. Data for the MavPad were restricted to just
motion and lighting interactions, which account for an average
of 10 310 events per day (on average, 18 of these represent
lighting interactions). ALZ converged to 99.99% accuracy on
test data and maintained accuracy between 40% and 60% on the
streaming test data.

ED processed the data and found ten interesting episodes,
abstracted to three hierarchical patterns. The learned HHMM for
these data is shown in Fig. 10. For this experiment, ALZ alone
reduced interactions from 18 to 17 interactions, the HPOMDP
with no abstract nodes reduced interactions by 33.3% to 12
events, while the bootstrapped HPOMDP reduced interactions
by 72.2% to 5 interactions. These results are graphed in Fig. 9
(bottom).

The amount of training time that is required varies with each
inhabitant. We collected 7 weeks of training data on a separate
inhabitant in the MavPad, corresponding to 4 371 179 events,
2163 of which could be automated. For the automation phase
Arbiter was also loaded with two safety rules and one inhab-
itant preference rule. In this case, ProPHeT reduced manual
interactions by 60.0%. This inhabitant conducted much more
varied daily activities and required longer training. As antici-
pated, ProPHeT was able to learn the Arbiter rules in addition
to reducing the number of manual interactions.

These experiments provide evidence to support our hypoth-
esis that a hierarchical model of inhabitant behavior can be
learned from observation data. Furthermore, this model was an
effective basis for learning an automation policy in the Mav-
Pad setting. The last experiment also supports our claim that
ProPHeT is able to learn policies for a variety of different goals,
in this case, to reduce manual interactions and to minimize safety
and user preference constraint violations.

Armed with the success of this learned model, we automated
the MavPad according to the learned policy. The inhabitant was,
for the most part, satisfied with the results. There are, however,
two highlighted reactions that open opportunities for continued
research. One is inhabitant frustration due to powerline control
delays. Although the MavPad sensed when the inhabitant en-
tered the apartment, the living room light would typically not
turn on for 2 s. This delay was significant enough to prompt
the inhabitant to occasionally turn on the light through manual
control.

Fig. 11. Example hierarchical Markov model based on MavHome Steve pat-
tern 4 with added nodes.

The second observation is that on the occasions that Mav-
Pad automated the wrong action, the inhabitant did not always
reverse the action. In fact, over time, we noticed that the inhab-
itant’s daily activities changed a bit to adapt to the automated
model, rather than the reverse. These issues will be investigated
in more detail in future research.

VII. DATA-DRIVEN MODEL ADAPTATION

If a smart environment is designed for lifelong use, it must
have the ability to adapt to changes in inhabitant lifestyle. A
manually constructed hierarchy will be brittle in the face of such
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Fig. 12. MavLab virtual inhabitant automation performance.

Fig. 13. MavLab virtual inhabitant interaction reduction during long-term experimentation.

changes. However, our data-driven approach should be able to
accommodate these changes, making incremental modifications
to the model when appropriate and triggering construction of a
new model when needed.

In order for state space reduction to occur, episodes and in-
dividual states are given a time-to-live counter that is refreshed
each time a given part of the HPOMDP is traversed. Unused sec-
tions of the HPOMDP will be pruned for increased efficiency.
This assists in removing unused episodes and clutter inserted
from feedback learning that may have been placed without suf-
ficient continued reinforcement. Keeping the HPOMDP as clean
and dynamic as possible helps promote policy convergence.

Incremental modifications of ProPHeT’s hierarchical model
will occur based on inhabitant interaction. If event E is coun-
termanded (reversed within a time threshold from the point at
which it was automated) or replaced by an alternative inhabi-
tant action (he prefers light a16 to be on instead of a14), two
parallel states are added to the model. The first is a “NO ACT”
state. This allows ProPHeT to leave one of the automated ac-
tions out given sufficient inhabitant feedback. The second is a
state corresponding to the alternative action (in our example, a
“a16 ON” state). As shown in Fig. 11, these new states connect

to all possible downstream states in the Markov chain. Through
experience ProPHeT learns what the appropriate connection
should be.

Inhabitant behavior changes may occur in the form of drifts
(slow and steady changes in patterns over time) or shifts (sud-
den changes in patterns). Drifts occur naturally in continually
changing systems such as intelligent environments where the
inhabitant grows and changes over the course of his life. Shifts
occur when there is a significant departure from earlier life
patterns—change of job, injury, arrival of a child, and so forth.
Key indicators for detecting drifts and shifts are changes in the
MDL compression of discovered patterns and changes in the
performance of the smart environment.

Many of the drifts are accommodated by the automated
changes to ProPHeT’s model described earlier and by the con-
tinual refinement of expected utility values as calculated by the
reinforcement learner. Dramatic changes in compression but
a steady system performance is an indicator of drift. If com-
pression remains consistent, and performance begins to drop
significantly, this is an indicator of shift—actions are not being
automated correctly, so the model is incorrect. If this drops con-
tinues over a period of time, ProPHeT initiates learning of a new
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model from recent data. A system reboot is initiated in order to
relearn a new model.

To test the ability of the MavHome model-building software
to adapt to changes, we designed a virtual inhabitant that exe-
cuted the MavHome Steve scenarios in a simulated environment.
The scenarios are encapsulations of patterns discovered from ob-
serving a real inhabitant working in the MavLab. By scripting
them, we could let them continue for a longer period of time. The
virtual inhabitant used one safety rule preventing the operation
of a particular object and one user preference rule that initiates
an additional object activation when a target object is activated.

For this experiment, the virtual inhabitant generated data over
1 year. At the 6-month point, the model shifts by replacing
two episodes with completely new patterns. A 4% performance
change threshold over a 1-week period was established as the
indicator requiring a system reboot. Figs. 12 and 13 reflect the
impact of the shift and the reboot. Fig. 12 shows the 4.5%
reduction in performance over a 1-week period that triggered
the reboot. After the reboot, the system required 5 weeks to
retrain, then returned to its normal acceptable performance. ED
found 10 episodes in the first model and 11 in the second model.
ProPHeT initially reduced interactions by 69.9%, as shown in
Fig. 13, then dropped to a 64.2% reduction after the reboot
because the new episodes represented more varied and complex
patterns. The Arbiter safety rule that prevents turning on a light
in one of the episodes was quickly learned after six rule firings
using the model adaptation and temporal difference learning
methods described earlier. The user preference pattern was also
learned after six rule firings.

VIII. CONCLUSION

In this paper, we introduced a data-driven approach for build-
ing a hierarchical model of inhabitant activities in an intelligent
environment. We demonstrated that data-mining techniques pro-
vide a useful mechanism for generating abstract nodes in the
hierarchy, and reinforcement learning can be applied to the
model in order to learn a policy to control the environment.
By using this approach, we were able to automate two physical
environments, reducing the need for manual control in each case
over a flat model alone. We also demonstrated that the model
structure can adapt in response to user feedback or changes in
the system.

The biggest challenges in this research project have con-
sistently been factors outside the purview of this paper. Sensor
network failure, power outages, slow and unreliable X10 behav-
ior, and other chaotic occurrences forced a lot of effort toward
improving the physical layers of MavHome. However, from this
study, a number of issues came to light that provide interesting
avenues for further study. We would like to investigate other
classes of applications for which a data-driven approach can
be used to model and control the system. We would also like
to extend our intelligent environment application to the more
complex case of modeling multiple inhabitants in an environ-
ment. We are currently investigating applications of this work
to resource conservation and health monitoring in intelligent
environments.
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