
IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 1

Keeping the Resident in the Loop: Adapting the
Smart Home to the User

Parisa Rashidi, Member, IEEE, Diane J. Cook, Fellow, IEEE,

Abstract—Recent advancements in supporting fields have in-
creased the likelihood that smart home technologies will become
part of our everyday environments. However, many of these
technologies are brittle and do not adapt to the user’s explicit or
implicit wishes. Here we introduce CASAS, an adaptive smart
home system that utilizes machine learning techniques to discover
patterns in resident’s daily activities and to generate automation
polices that mimic these patterns. Our approach does not make
any assumptions about the activity structure or other underlying
model parameters, but leaves it completely to our algorithms to
discover the smart home resident’s patterns. Another important
aspect of CASAS is that it can adapt to the changes in discovered
patterns based on the resident implicit and explicit feedback and
can automatically update its model to reflect the changes. In this
paper we provide a description of the CASAS technologies and
the results of experiments performed on both synthetic and real
world data.

Index Terms—Smart environments, Machine learning, User-
centered design, Adaptive systems.

I. INTRODUCTION

RECENTLY there has been extensive research toward de-
veloping smart environments by integrating various ma-

chine learning and artificial intelligence techniques into home
environments that are equipped with sensors and actuators. A
smart environment acquires and applies knowledge about the
physical setting and its residents, in a way that can optimize
a number of different goals including maximizing comfort
of the residents, minimizing the consumption of resources,
and maintaining safety of the environment and its residents
[1]–[4]. Application of smart environment technologies has
encompassed different areas such as interactive conference
rooms, offices, kiosks, and furniture with seamless integration
between heterogeneous devices that facilitate collaborative
work environments [5]. To achieve intelligent behaviors in
smart home applications, various computational intelligence
techniques have been proposed to support the creation of smart
homes, including neural networks [6], fuzzy logic [7], hierar-
chical task network planning [8], hidden Markov Models [9],
and Bayesian networks [10]. Due to the difficulty of creating
an automated physical environment, many smart environments
ideas are discussed in theory or are tested just on synthetic
data. In those cases where physical environments have been
designed [1], [3], [4], [6], [7], the culmination of the project
is an environment with sensing and automation. In none of

P. Rashidi is with the Department of Electrical Engineering and Com-
puter Science, Washington State University, Pullman, WA, 99163 USA, e-
mail:prashidi@eecs.wsu.edu.

D. J. Cook is with the Department of Electrical Engineering and Computer
Science,Washington State University, Pullman, WA, 99163 USA e-mail:
cook@eecs.wsu.edu.

Manuscript received October 20, 2008; revised February 14, 2009.

these projects is the focus placed on creating an environment
where the resident can guide the environment to behave in a
customized manner.

Smart environments have the potential to aid people with
cognitive and physical limitations, to provide resource conser-
vation, and to make our lives more comfortable and productive.
For example, by discovering repetitive sequences, modeling
their temporal constraints and learning their expected utili-
ties, we can intelligently automate repetitive daily tasks in
homes. The long-term goal of many smart home projects is
to automate resident interactions with the environment that
are repetitive or, in the case of individuals with physical
limitations, are difficult to perform.

A primary hindrance to realizing the potential benefits
of smart homes is the ease with which smart environment
technology can be integrated into the lifestyle of its residents.
Our goal is to design a smart environment that finds repetitive
patterns in resident’s activities, and adapts to changes in those
patterns. Considering the fact that humans usually change their
habits and activities over time, adaptation is a crucial part of a
smart environment solution. However despite its importance,
most smart home researchers [1], [3], [4] assume that the
learned model of resident behavior is static over the lifetime
of the system. One of the few works done in this area is a
primitive approach proposed by Valtonen et al. [11], where
a fuzzy controller adjusts the weights of a few predefined
factors that determine whether performing a specific action is
in accordance with the user’s preferences or not. However, they
do not consider the problem of adapting to more complex se-
quential activities, and do not discuss how such changes can be
discovered from daily activity data. In addition, they consider a
set of predefined factors, but in the real world, it is not possible
to determine such factors in advance. In our work, we consider
automation of sequential complex activities that adapts to
the user’s preference. As already mentioned, our approach
does not make any assumptions about the activity structure or
other underlying model parameters. In addition, we will utilize
context information such as temporal information or startup
triggers that helps to better model the complex environment.
With our approach, the resident plays a critical role in guiding
the environment’s automation policy. Specifically, the resident
can guide the system by providing explicit feedback, or s/he
can leave it to the system to automatically discover and adapt
to changes in pattern of activities.

II. 2. CASAS COMPONENTS

Our smart home system, CASAS, contains several cooper-
ating components that find activity patterns, generate policies

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 2

Fig. 1: CASAS software architecture.

to automate these patterns, predict and schedule automated
activities, and adapt to explicit user feedback or observed
changes in resident behavior. Fig. 1 depicts the interaction
between these components.

Input to CASAS consists of sensor data collected by the
smart environment, such as motion sensors and light sensors.
This data is mined by our FPAM algorithm to discover activity
patterns of interest for automation. These patterns are then
modeled by our Hierarchal Activity Model (HAM) to further
utilize the underlying temporal and structural information as
part of related context. The Pattern Adaptation Miner (PAM)
algorithm adapts to any changes in those patterns and responds
to user guidance. The adaptation is based on using four mecha-
nisms: direct manipulation (using our CASA-U user interface),
guidance, request, and smart detection. Each method requires
a certain balance between user collaboration and system
autonomy, from no user involvement in the smart detection
method to no autonomy in the direct manipulation method.
Putting all the adaptation methods together, we are able to
provide an adaptive smart environment solution which adapts
to its residents over time, and which provides a wide range
of collaboration and feedback methods such that residents can
choose to act proactively or passively to customize the smart
environment. In the rest of the paper, we will describe each
component in more detail.

III. FREQUENT AND PERIODIC ACTIVITY MINER: FPAM

The first step of automating activities in a smart home is
discovering patterns of the resident’s activity from sensor data
collected daily. Data collected in a smart home consists of
readings by various sensors (e.g., motion, light, temperature)
and resident manual manipulation of lights and appliances,
as captured by power-line controllers. Discovering how the
resident performs routine activities in daily life facilitates
home automation and makes it possible to customize the
automation for each person. In this work we primarily consider
discovering frequent and periodic activities, as automating
these activities makes the environment responsive to the

resident and removes the burden of repetitive tasks from
the user. In our discussions, we define an event as a single
action such as turning on the light, while an activity is a
sequence of such events; for example the ”turning on the light
- turning on the coffee maker” activity is composed of two
events. We will use the terms pattern, sequence, and activity
interchangeably, depending on the context. In this work, we
restrict our discussion to single-resident environments. While
others have dealt with the problem of multiple residents [12],
in our approach data collected on multiple residents would be
modeled as a single, more complex, entity.

To find frequent and periodic patterns of activity, we will be
exploiting a data mining subfield usually referred to as ”dis-
covery of frequent sequences” [13], [14], ”sequence mining”
[15], or ”activity monitoring” [16]. In this area, the pioneering
work of Agrawal’s Aprori algorithm [15] was the starting
point, later extended by other researchers [17]. We use a vari-
ant of the Apriori algorithm to find frequent patterns. However,
in smart environment applications, not only it is important to
find frequent activities, but also those that are the most regular,
occurring at predictable periods (e.g., weekly, monthly). If
we ignore periodicity and only rely on frequency to discover
patterns, we might discard many periodic events such as the
sprinklers that go off every other morning. Therefore we need a
unified framework that can simultaneously detect both frequent
and periodic activity patterns. There are a number of earlier
works that try to handle periodicity, such as the Episode
Discovery (ED) algorithm [4]; however, the problem with ED
and most other approaches is that they look for patterns with
an exact periodicity, which is in contrast with the erratic nature
of most events in the real world. Lee, et al. [18] define a period
confidence for patterns, but they require the user to specify a
set of desired pattern time periods. In our approach, we do not
require users to specify predefined periods, as it is not realistic
to force users to know in advance which time periods will be
appropriate. In addition, the periodicity of patterns for many
practical applications is dynamic and thus changes over time.
To overcome this problem, we define two different periodicity
temporal granules, to allow for the necessary flexibility in
periodicity variances over two different levels. A fine grained
granule is defined for hourly periods which can span several
hours up to 24 hours, and a coarse grained granule is defined
for daily periods which can span any arbitrary number of days.
None of these periodicity granules require a period to be exact:
fine grained periods provide a tolerance of up to one hour and
coarse grained periods provide a tolerance of up to one day.

In our model, we capture important context information
such as startup triggers as well as temporal information
including event durations and start times. Startup triggers are
events that can trigger another action, e.g. a person entering
a room can act as a potential startup trigger for the light in
the room to be turned on. Triggers, which are absent in most
traditional data mining methods, are a key contextual aspect
in smart environments that need to be processed accordingly.
But despite their importance, previous mining methods applied
to smart home applications have ignored the startup trigger
concept, and they typically do not differentiate between real
sensor data (startup triggers) and actuator data (data obtained

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 3

TABLE I: Sample of collected data.

source (di) state (vi) Timestamp (ti)

Light1 ON 05/15/2007 12:00:00

Light2 OFF 05/15/2007 12:02:00

Motion4 ON 05/15/2007 12:03:00

from appliances through power-line controllers). In addition,
most techniques treat events in the sequence as instantaneous
and ignore the conveyed temporal information. Laxman and
Sastry [13] do model some temporal information, by incorpo-
rating event duration constraints into the episode description.
Similarly, Lee et al. [18], associate each item in a transaction
with a duration time. Bettini et al. [19] place particular em-
phasis on the support of temporal constraints for multiple time
granularities where the mining process is modeled as a pattern
matching process performed by a timed finite automaton. Our
work is different from these previous approaches, as we mostly
focus on estimating time distributions for different time gran-
ules by utilizing combinations of local Gaussian distributions
for modeling temporal information of each pattern, rather than
merely considering temporal granules. Using a combination of
multiple Gaussian and several temporal granules allows us to
more accurately express and model duration and start times. In
the following sections, we will describe the FPAM algorithm
and its mechanism in more detail.

A. Finding Candidate Patterns

We assume that the input data is a sequence of tuples that
appear in the form 〈di, vi, ti〉, where di denotes a single data
source (e.g., motion sensor, light sensor, appliance), v i denotes
the state of the source (e.g., off, on), and t i denotes the time
that the event occurred. We assume that data does not arrive
in stream format. Instead, it is sent to a storage media, and
the data mining process is carried out offline at regular time
intervals such as weekly, or on demand as will be described
later. Table. I shows a sample of collected data. Our FPAM
algorithm, similar to the Apriori method, takes a bottom-up
approach. However, unlike the Apriori algorithm, not only
does it discover frequent sequences, but it also tries to find
periodic sequences and their periodicity.

In the first iteration, a window of size ω (initialized to 2) is
passed over the data and every sequence of length equal to the
window size is recorded together with its frequency and initial
periodicity. Frequency is computed as the number of times the
sequence occurs in the dataset, and periodicity represents the
regularity of occurrence, such as every three hours or weekly.
After the initial frequent and periodic sequences have been
identified, FPAM incrementally builds candidates of larger
size. FPAM extends sequences that made the cutoff in the
previous iteration by the two events that occur before and after
the current sequence instances in the data. For simplicity, we
call the event right before the current sequence the sequence’s
prefix and the event right after it the sequence’s suffix. FPAM
incrementally increases the window size until no frequent or
periodic sequences within the new window size are found or a
user-defined limit on the window size is reached. For example,

Fig. 2: Frequent pattern ”BC”.

Fig. 3: Extending ”BC” pattern by its prefix.

Fig. 4: Extending ”BC” pattern by its suffix.

Fig. 5: Extending ”BC” pattern by both its suffix and prefix.

consider Fig. 2, where ”BC” is a frequent pattern. Now if it
is extended by its prefix (Fig. 3), then it results in another
frequent pattern ”ABC”. However, extending it by its suffix
(Fig. 4) or by both suffix and prefix (Fig. 5) does not result
in a frequent pattern. Each discovered sequence is considered
as being either periodic or frequent. At the end of the mining
session, if a specific sequence is found to be both frequent
and periodic, for convenience and simplicity we report it as
frequent.

B. Evaluating Candidate Patterns

Drawing on results from information theory, we evaluate the
frequency of a sequence based on its ability to compress the
dataset by replacing occurrences of the pattern by pointers to
the pattern definition. Calculating this amount of compression
is tricky for smart home data, as the size of the dataset may not
be fixed due to varying activity levels (e.g. a particularly active
day will generate a lengthy event dataset). We compute com-
pression according to (1), where fa represents the frequency
of sequence a, t represents the input data length in hours and
C represents the compression threshold. For a sequence to be
considered as frequent, the following condition should hold:

|a| ∗ fa

t
> C (1)

Previous approaches [19] have calculated the input data
length in numbers of tuples, rather than in units of time, which
results in making discoveries of frequent patterns dependent
on the resident’s activity level. For example, if the resident
has a very active day, the input data will contain more tuples
and therefore the input length will take on a high value, but
if resident is not active that day, the input length will have a
low value. Therefore for an activity with a constant frequency
such as making coffee twice a day, the compression value will
be dependent on the resident’s activity level. In our approach,
the input length is measured in time units rather than tuples,
and an activity such as making coffee twice a day will be
discovered as a frequent pattern, independent of the activity
level of the resident. In addition to finding frequent patterns,

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 4

Fig. 6: Moving periods between consolidated and tentative
lists.

FPAM also discovers periodic patterns. Calculating periods is
a more complicated process. To calculate the period, every
time a sequence is encountered, we will compute the elapsed
time since its last occurrence. More precisely, if we denote the
current and previous occurrence of a sequence pattern as s c

and sp, and their corresponding timestamps as t(sc) and t(sp),
then the distance between them is defined as t(sc) − t(sp).
This distance is an initial approximation of a candidate period.
To determine periodicity, as mentioned before, two different
periodicity granules are considered: coarse grained and fine
grained period granules. A fine grained granule is defined
for hourly periods which can span several hours up to 24
hours, and a coarse grained granule is defined for daily periods
which can span any arbitrary number of days. To construct
periods, a lazy clustering method is used, such that as long
as an activity’s period can be matched with the previous
periods (with a tolerance of one hour for fine grained, and
one day for coarse grained), no new period is constructed. If
the new activity has a period different than previous periods,
a new period is constructed and is added to the tentative
list of fine grained or coarse grained periods. In order to
make sure that candidate periods are not just some transient
accidental pattern, they are kept in a tentative list until they
reach a confidence frequency value. If the periodicity for a
sequence is consistent a threshold number of times (e.g. 90%),
the pattern is reported as periodic, and it is moved to the
consolidated period list. Updating tentative and consolidated
lists is performed dynamically and a period can be moved from
one list to another several times (see Fig. 6). Such a schema
helps to eliminate any transient periods based on current or
future evidence, resulting in an adaptive evolvable mining
approach. In this approach, whenever more data becomes
available as a result of regularly scheduled mining sessions,
the periods are revisited again, and if there is any period that
does not meet periodicity criteria anymore, it will be moved
from the consolidated list into the tentative list. Later if we
find again more evidence that this period can be consolidated,
it will be moved back into the consolidated list; this results in
a more robust model that can evolve and adapt over time.

As we scan through the data, we calculate and update the
expected number of occurrences, E(fa), for an activity a, up to
the current point in the data. For example, if our initial period

estimate for activity a is 5 hours and so far we have scanned
through 10 hours of data, we expect to see two occurrences
of activity a in an ideal case. Considering the erratic nature of
real-world events, not all sequences will be repeated ideally. To
deal with this problem, for each new occurrence of a we check
it against the following equation where fa is actual number
of occurrences observed so far and ζ is a predefined threshold
that determines what percentage of expected occurrences is
sufficient to move a candidate periodic sequence from the
tentative list into a consolidated list (e.g. a rigorous approach
can consider it to be above 95%). If (2) holds for a pattern a,
we will consider it as a periodic pattern.

E(fa)
fa

> ζ (2)

The discovered patterns will form the basis of CASAS’
automated activities. To facilitate effective automation FPAM
records the duration and start times of events within each
pattern by processing their corresponding timestamps. A dis-
tribution of these values is generated from individual values
and passed to HAM in order to generate an automation model
from the mined sequence patterns.

C. Triggers

An important notion that can be used to improve activity
prediction in smart environments is the discovery of sequence
startup triggers. Basically, a trigger is an event which causes an
activity to start. A startup trigger paradigm can be compared
to the event programming paradigm, in which for example
a mouse click event (startup trigger) can trigger an action
(such as a menu appearing). In smart environments, the same
paradigm applies; for example, if a person enters a dark room,
it can be considered as a startup trigger for turning on the light;
or as another example, running out of milk in the refrigerator
can be a trigger to initiate a supermarket purchase reminder.
These startup triggers will also appear in the collected data
and therefore it is necessary to augment the data mining model
with a trigger processing component that is able to recognize
triggers, in order to facilitate automation of activities.

A trigger is typically part of an FPAM’s discovered se-
quence. For example, if a person turns on the light every time
s/he enters the room, FPAM will discover the sequence ”enter
room - turn on light” from the sensor and power-line controller
data. By examining this sequence, we will find out that a
startup trigger is not actually part of an automated activity;
rather it is a condition that starts an automated activity (in this
case, turning on the light). We also can see that the startup
triggers consist of sensor events, while automated events are
generated by actuators (power-line controllers attached to
appliances). In our model, we will process the discovered
sequences from FPAM in such a way that a sequence merely
represents automations and only contains data from actuators,
though it can have several startup triggers assigned to it. For
example, the previous sequence ”enter room - turn on light”
will be converted to a single event sequence ”turn on light”
with the ”enter room” triggers assigned to it. A sequence can
have several triggers assigned to it. We adopt the following
general policy for processing triggers:

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 5

Fig. 7: A trigger causing a sequence to be split.

• If a trigger appears at the beginning of a sequence, it
should be removed from the beginning of the sequence
and be added to the list of assigned start up triggers.

• If a trigger appears at the end of a sequence, it has no
effect on the sequence; we simply remove it from the
sequence.

• If several triggers occur consecutively, we will just con-
sider the last one, discarding the other ones.

• If a trigger occurs in the middle of a sequence, we will
split the sequence into two new sequences and the trigger
will be assigned to the second sequence (see Fig. 7).

• If a sequence contains more than one trigger, the above
steps are repeated recursively.

Note that we assume that frequency and periodicity would
be the same for split sequences as the original sequence;
but, the compression value may change as it depends on the
sequence’s length. So, the compression value is computed
for recently split sequences and if it does not satisfy the
frequency criteria, recently split sequences will be removed
from the frequent patterns’ list. Also during the sequence
splitting process, sequences might reduce to one of the already
existent sequences. In this case, one approach is to repeat the
data mining process again to find any existing relation between
these two sequences (e.g., they might have different periods).
However, for the sake of simplicity and also efficiency, we do
not mine the data again; rather we will choose the sequence
with the highest compression value and simply discard the
other.

IV. 4. HIERARCHICAL ACTIVITY MODEL: HAM

After activity structures and periods have been discovered
by FPAM, the sequences will be organized in a Hierarchal
Activity Model (HAM) structure, which filters out activities
according to two temporal granule levels of day and hour
(see Fig. 8). In addition to finding frequent and periodic
patterns, FPAM records durations and start times of events
by processing their timestamps. These durations and start
times are revisited by PAM when looking for changes. HAM
captures the temporal relationships between events in an
activity by explicitly representing sequence orders in a tree
structure containing Markov chains at the bottom (or sensor)
level [20]. Each activity will be placed in a HAM leaf node
(sensor level) according to its day and time of occurrence,
and will have a start time and event durations assigned to
it. Earlier approaches to modeling durations of states in a
Markov chain such as the approach by Vaseghi [21] condition
state transition probabilities on how long the current state

Fig. 8: Example HAM structure.

has been occupied. In our model, for each activity at each
time node, we describe the start time and the duration of
each individual event using a normal distribution that will be
updated every time new data is collected (see Error! Reference
source not found.). If an activity is located in different time/day
nodes within the HAM model, multiple Gaussian distributions
for that activity will be computed, allowing HAM to more
accurately approximate the start time and duration values, by
using multiple simple local normal functions that represent a
more complex function. CASAS automatically constructs and
updates the HAM model from FPAM data and uses the model
to identify activities that need to be automated at a given time.
The HAM model can be then used to find activities that should
be automated at a given time. HAM provides greater support
for representing and learning automation policies than earlier
approaches that model all observed activities in one level of a
highly-connected single Markov model or simple hierarchies
just based on location [4].

A. Selecting Actions for Automation

After the hierarchical model is constructed, HAM selects
activities to be automated. Such automation should reflect a
preference-based adaptation policy, such that recently discov-
ered activities will not miss their chance of being selected for
automation simply because not enough time has not passed
to allow them be explored by the learning algorithm. To
achieve this, we require the following conditions to hold: 1)
the highest-likelihood activities are given a greater chance of
being automated, 2) less likely activities retain a chance of
being automated (especially recently discovered ones) and 3)
the temporal relationships between activities are preserved.
CASAS is not currently designed to handle the intricacies
associated with interleaving multiple automation activities that
overlap in time. As a result, not all actions that appear in the
hierarchy for a particular time can necessarily be automated.

HAM selects activities for automation that maximize the
expected utility [20] as shown:

EU(A) = PT (A) ∗ Q(A) (3)

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 6

In (3), for a given activity A, Q(A) is A’s potential value
which reflects the amount of evidence against or for an activity
as being frequent or periodic (will be described more later),
and PT (A) is the total occurrence probability of activity A,
defined as:

PT (A) = Pd(A) ∗ Pt(A) ∗ Pr(A) (4)

In (4), Pd(A), the daily probability, reflects the occurrence
probability of A on a given day of the week. The time
probability, Pt(A), reflects the occurrence probability of A
in a given time interval (node); and the relative probability,
Pr(A), reflects the relative occurrence probability, with respect
to the other activities that fall within the same time node. The
daily and time probabilities are estimated using frequencies
computed by FPAM and the relative probability is computed
using Pdi and Pti for all activities that fall within the same
time node.

To select an activity, CASAS balances exploration and ex-
ploitation where exploration of potential automated activities
allows for potential improvement of the smart home, and
exploitation avoids user frustration due to too many wrong
choices. The probability of selecting a particular activity A
for automation is calculated according to (5). Here, EU(j)
represents the expected utility of activity j as defined in (3),
β ∗D(A) is a term that favors recently-added activities, D(A)
represents how recently activity A occurred (as a reciprocal of
the number of days since its discovery); β adjusts the relative
importance of recently-added activities vs. highly expected
activities; and k is a parameter which initially is set high
to promote exploration, but over time decreases, to allow for
exploitation of stabilized automations.

P (A) =
kEU(A)+β∗D(A)

∑
j kEU(j)+β∗D(j)

(5)

V. DYNAMIC ADAPTATION

Learning a model of resident’s activities provides a basis for
automating activities in a smart home. However, this is not
a long-term solution because residents are likely to change
their activity patterns over time depending on factors such
as changing job or social relations, seasonal and weather
conditions, and mental and emotional condition. As a result,
we need to find a way to adapt to the changes that occur over
time, in addition to incorporating explicit resident guidance of
automation policies.

CASAS achieves adaptation based on the resident’s explicit
feedback, provided through the CASAS user interface, or
based on implicit feedback which can be described as any
alteration in the resident’s habits and lifestyle. For example,
consider a resident that used to turn on the coffee maker
every day at 7:30 am, but later changes his habit and turns
it on at 6:30 am. This is an example of implicit user feedback
that should be detected by CASAS. We employ four different
adaptation mechanisms to consider the resident’s explicit and
implicit feedback: direct manipulation, guidance, request and
smart detection.

A. Updating the Model

As already mentioned, CASAS provides four different
methods for adaptation. In direct manipulation, residents pro-
vide the system with the most explicit form of feedback,
by manipulating automated activities using the CASAS user
interface, CASA-U. Using the guidance method, residents
guide CASAS by rating the automated activities in CASA-
U based on their preferences on scale of 1..5, thus providing
CASAS with explicit feedback or advice. With the request
method, residents can highlight any activity to be monitored by
CASAS for possible changes, therefore providing a mixture of
explicit and implicit preference feedback. In the last approach,
called smart detection, CASAS utilizes the most implicit form
of feedback by monitoring resident activities and updating the
HAM model. The difference between the last two methods
is first how fast the changes will be detected; and second the
required amount of user interaction, as smart detection method
doesn’t require any user interaction. Using the request method,
the change detection process starts immediately and hence
residents do not have to wait for the regular mining schedule.
CASAS uses all of these mechanisms to provide a flexible,
user-centric solution to the dynamic adaptation problem to
allow for various degrees of resident involvement. Residents
can choose any of above methods to provide feedback to
CASAS, and can choose to act proactively or be passive.

For every activity, we maintain a potential value, Q, which
reflects the amount of evidence against or for an activity as
being frequent or periodic, in other words the degree to which
it should be considered for automation. The potential value can
be increased or decreased through a compensation effect or a
decay effect, as will be described. If potential value falls below
a certain activity threshold, the activity is discarded from
the model, in other words it will be forgotten. Maintaining
a potential value for each discovered activity can help us
distinguish transient changes from long-term changes that still
might be accompanied by a noise element. The potential value
is increased by using the following formula:

Q = Q + α ∗ r (6)

In (6), r ∈ [−1... + 1] denotes the evidence value, and α
denotes the learning rate. To simulate the overriding nature
of learning in the direct manipulation and guidance methods,
we set the learning rate to a relatively high value; while for
the request and smart detection methods we set it to a small
value to simulate their gradual history-preserving nature. Note
that when updating the potential value, we do not differentiate
between different events that comprise an activity and consider
it as a whole; therefore we assign a single value to an activity.

In addition to the compensation effect, we also employ
a decay effect which subtracts a small value ε (decay rate)
from all activities’ values at each time step θ. Applying decay
function, the value of any activity during an arbitrary time
interval Δt is decreased by:

Q = Q − ε ∗ Δt

θ
(7)

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 7

The decay effect allows for those activity patterns that have
not been perceived over a long period of time to descend
toward a vanishing value over time, or in an intuitive sense
to be forgotten. This helps CASAS to adapt to the changing
preferences of residents. The effect of the decay function
is kept in check through a compensation effect because the
potential value remains bounded.

B. Detecting changes

In request method, whenever a pattern is highlighted to
be monitored, PAM analyzes recent event data and looks
for changes in the pattern, such as the pattern’s start time,
durations, periods, or the pattern structure (the component
events with their temporal relationships). Without loss of
generality, we refer to two different categories of changes:
changes that preserve the structure and changes that alter the
structure. Structure change is detected by finding new patterns
that occur during the same times we expect the old pattern to
occur; assuming that the start time can act as a discriminative
attribute. First, PAM looks for a pattern, a, such that its start
time, sa, is contained within the interval Δδ = μa±σa, where
μa and σa denote the mean and standard deviation of the
original pattern’s start time distribution. These locations are
marked by the algorithm in order to avoid looking at all data.
PAM is looking for different patterns within these start time
intervals, in which we expect to see the original pattern. It
moves a sliding window of size ω (initially set to 2) over
the interval and incrementally increases the window size after
every iteration. The window size does not increase when no
more frequent or periodic patterns of length ω can be found.
A frequent pattern can easily be extended beyond the marked
point, as we require only its start time to be contained within
the marked interval. This process results in finding a new
pattern which may be longer, shorter, or have other different
properties than the original pattern.

In the case where structure is preserved, we first mark all the
occurrences of the original activity in the data, and based on
these occurrences calculate properties such as new durations,
new start times or new periods. After results from both cases
have been collected, PAM reports the list of changes that can
be accepted or rejected by the user.

In the smart detection method, PAM automatically mines the
data regularly to update the model and uses the decay and com-
pensation effects to adapt to changes. This approach is slower
than the explicit request method, because the changes might
not be detected until the next scheduled mining session. After
every mining session, the discovered patterns will include a
mixture of new and previously-discovered patterns. For new
patterns, we simply can add them to the model. For previously
existing patterns, if the pattern shows no change, then PAM
applies the compensation effect to indicate observation of more
evidence for this pattern (6). However, if the pattern shows
some changes, we will add the modified patterns to the model,
while also preserving the original pattern, as there is no explicit
evidence that this change is a permanent change. To achieve
adaptation in this case, we will leave it to the compensation
effect and decay functions to decide over time which version

Fig. 9: 2D visualized model of AI lab and corresponding
sensor layout.

is more likely. The compensation effect will increase the value
of the more frequently-observed version of the pattern while
the decay function dominates for a less-observed pattern. As
a result, the value of patterns that have not been observed for
a long time will fall below the activity threshold; and will
eventually be removed from the model. This again results in
adapting to the changes in the environment. The minimum
mining period that results in convergence of patterns can be
ascertained theoretically [22].

VI. CASA-U: THE USER INTERFACE

Several issues make design of smart home interfaces chal-
lenging. One such challenge is the choice of representation
for smart home activities. Our objective is to present the
smart home and its automation policies to the user in a clear
manner, using a floor plan of the home as a primary means of
communicating this information. We also need to represent the
spatial relationship between elements in the home, the status of
these elements, and the temporal nature of associated actions.

We consider our smart environment interface, CASA-U, as a
discrete event simulator where each object is a self-descriptive,
iconic representation of an item in the environment. For
preliminary studies, the sensor layout and floor plan of the
visualizer was based on the sensor layout and floor plan of
the AI lab at Washington State University as a simple smart
environment test-bed. The portion of the lab that we use for our
experiments is modeled as shown in Fig. 9, which is equipped
with motion sensors, rug sensors, light sensors, and Insteon
controllers for the lamps. To show the effect of motion sensors
detecting someone walking around the room, we use footprints
to imply the motion effect.

CASA-U allows the resident to control the events that are
distributed across time as well as the resident’s living space. To
achieve this, CASU-U creates a temporal framework and spa-
tial framework to allow the resident to perceive, comprehend,
and ultimately modify events occurring in the physical world

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 8

Fig. 10: Main view of CASA-U.

around the resident. In our schema, the floor map provides a
spatial framework and the temporal constraints are displayed
as an animation of event sequences where the direct mapping
of the order of events in the physical world maps to the order
of the displayed elements. In order to provide a clearer view
of the temporal relations that exist between the automation
events, we label the objects with numbers that indicate their
temporal ordering. Two spatial views are available to the user
(see Fig. 10): one visualizes a live stream of sensed events
(activity view) and the other animates past automated CASAS
activities (automation history view). In both views, the user
has the option to go backward or forward in the stream using
rewind/forward buttons to find a specific event.

A challenge we faced in the design of the CASA-U user
interface was how to provide users with the ability to change
scheduled automated activities or request new automations.
Each activity’s model includes a definition of constituent
events, the relative and absolute temporal relationships be-
tween these events, the duration of each event, startup triggers
and periods. Given this complexity, it is essential to provide
the user with adequate guidance. In our design, whenever a
user wants to define or modify an activity, s/he is guided
through a series of wizard dialogs where each dialog asks
the appropriate question based on previous steps and in each
step, a brief description about that step is provided in order
to help users better understand the underlying conceptual
model. Activity modification in CASA-U uses a direction
manipulation approach. Users can click on an item in the
map and change its attributes using either a context menu
or drag and drop. For example, to define a new activity that
includes the sequence ”turn on the desk lamp then turn on
the whiteboard light”, the user may first right click on the
desk lamp, select ”turn on” from the context menu and repeat
the step for the white board light, or alternatively drag them
into the activity panel. Users can define or change any aspect
of activities, such as temporal information or startup triggers.
Fig. 11 shows the first step of a wizard dialog where user is
being asked for the types of changes s/he would like to make.
Fig. 12 shows its next step where user selects the events that

Fig. 11: Wizard dialogs guide user through modifications.

Fig. 12: Modifying an automation by selecting events to be
modified.

need to be modified. The numbers in Figure 12 indicate in
what order the automation should be performed. In addition,
the user can modify the duration of each event, as shown in
Fig. 13. There is also an option for scheduling automations,
such that the automation is applied any number of times on
the scheduled dates (e.g. on holidays), or repeatedly based on
regular periods (e.g. hourly, daily, weekly). Users also have
the option to search through the previous history, using a
tree view element (see Fig. 10), using the forward/backward
playback capability of automation history view, or alternatively
restricting the history view by identifying a number of search
criteria and viewing the list of matched results in an animated
way.

CASA-U also provides an option for users to highlight an
activity to be monitored (corresponding to request method).
Once changes have been detected in the highlighted activity, a
dialog is popped up to show the user a summary of the detected
change. The user then has the option to apply some of all of
the detected changes to the model for future automation, or to
reject the changes.

Another feature of CASAS is its ability to adapt its au-
tomation policies based on explicit feedback from the resident.
Explicit feedback includes direct manipulation of the model

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 9

Fig. 13: Modifying an automation by setting duration of
each event.

or ratings (guidance) that indicate the degree to which the
resident likes (or does not like) an automation policy. For each
policy, the user can provide a rating between 1 and 5. PAM
then updates its HAM model automatically based on this user
guidance by changing the activity’s potential value according
to (6), where the ratings will be mapped to corresponding
evidence values.

The usability studies performed on CASA-U [23] revealed
that the interface was relatively clear and easy to navigate, but
additional training is needed for residents to make effective use
of smart home technologies.

VII. EXPERIMENT RESULTS

The goal of this project was to design smart home system
that could automatically learn policies that reflect resident
behavior and that could effectively incorporate implicit and
explicit feedback from the user into the models. In this section
we evaluate the ability of the CASAS software to meet this
goal using synthetic-generated data as well as and real data
collected from a residential apartment as well as our lab-based
physical testbed.

A. Evaluation of FPAM

We first want to evaluate FPAM’s ability to find frequent
and periodic patterns from smart home event data. To test
the algorithm on synthetic data, we implemented a synthetic
data generator that simulates events corresponding to a set of
specified activities. Timings for the activities can be varied
and a specified percentage of random events are interjected to
give the data realism. In addition to synthetic data, to evaluate
FPAM on real world data, we tested it on data obtained through
sensors located in one room of the CASAS smart workplace
environment. In addition, we performed evaluation on data that
was collected in the CASAS smart apartment..

For the first experiment, we generated one month of syn-
thetic data that represented a number of different frequent
and periodic activity patterns in a home. The data contained
various random activities stretched over one month, along
with several target activities that either appear frequently,

Oven

Water

Sensor

Lights

Example

Motion

Sensor

Fig. 14: The layout of sensors in smart apartment.

or repeat based on regular periods. To test the effect of
startup triggers, we included several triggers such as ”sitting
on couch”, ”walking to TV”, ”walking to living room” and
”sitting on bed”. The periods for these activities ranged from
6 to 24 hours. Details of these target activities are listed in
Table. II.

Our expectation was that FPAM would correct identify all
target activities among random events with their corresponding
periods, startup triggers, start times, and durations. In fact,
FPAM was able to find all of the activities with their correct
periods. In addition, FPAM identified triggers where they
existed. When faced with two events that are scheduled to
occur at the same time, the synthetic data generator randomly
picks just one of the events to simulate. Because of this design
feature, the frequency of some of the detected activities was
not as high as expected and thus the compression rates were
lower than anticipated.

In addition to these synthetic data experiments, we also
tested FPAM on real smart environment data collected in a
smart apartment equipped with motion sensors, light sensors,
water sensors, and some appliance controllers (Fig. 14). The
data contained 62 hours of events that span four days of daily
activities for two residents living in the apartment and contains
approximately 19,000 recorded events. Again we ran FPAM
on data to see how well it can find patterns in large dataset.
FPAM was again able to discover some patterns in data, for
example ”M15: ON - Oven: High - Water: Running”, which
shows a pattern where the resident walks up to turn on the
oven, and then opens the water tap. In this case, M15, a
motion sensor (all motion sensors start with M in layout),
acts as a startup trigger. Another example is pattern ”M17:
ON- Oven: High-Oven: Low”, which shows that the resident
walks up to change the oven from high to low. The periodic
patterns were far less common in this dataset; probably due to
the fact the participants were students with somehow chaotic
schedules, therefore most patterns were frequent with no
particular periodicity.

Because only a few appliances are currently equipped with
controllers the number of emergent patterns is small. However,

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 10

TABLE II: Target activities (”-” indicates the activity is frequent as opposed to being periodic).

Start time Period Events

1 6:00 6 hours (1) Kitchen-Light-ON (2) Coffee-maker-ON (3) Toaster-ON

2 - - (1) Sitting-on-Couch (2) Couch-Light-ON (3) Music-ON

3 7:00 24 hours (1) Bathroom-light-ON (2) Water-Hot

4 10:00 24 hours (1) Windows-Blind-OFF

5 15:35 12 hours (1) Sprinklers-ON (2) Walking-to-living-room

6 - - (1) Walking-to-TV,TV-ON

7 19:00 6 hours (1) Dining-Table-light-ON (2) Music-ON (3) Coffee-maker-ON

8 - - (1) Sitting-on-Bed (2) Lamp-ON

the results indicate how FPAM will work on real large datasets.
We also tested FPAM on data obtained in our AI lab testbed.

We recruited a participant to execute a simple script in the
smart testbed environment. The participant moved through the
environment shown in Fig. 9 for about an hour, repeating the
script ten times. In order to inject some randomness into the
data, the participant was asked to perform random activities
for about one minute in step three of the script. The script is
defined as follows:

1) Turn on right desk light, wait 1 minute.
2) Turn off right desk light.
3) Perform random activities for 1 minute
Because the testbed area was fairly small, the participant in-

advertently created patterns in the random actions themselves.
In addition, the motion sensors picked up slight motions (such
as hand movements) which resulted in a randomly-triggered
pattern that occurred between steps 1 and 2 in the script,
which FPAM then split into two subsequences. Despite these
issues that occur in a real-world situation, FPAM was able to
accurately discover the following patterns:

• Right desk lamp on, Compression: 12, Trigger: Walking
nearby

• Right desk lamp off, Compression: 9
• Left desk lamp on, Compression: 2
• Right desk lamp on, Right desk lamp off, Compression:

10
• Whiteboard light on, Compression: 2
The first and second patterns are the result of splitting the

sequence ”Right desk lamp off, Random event, Right desk
lamp on” into two subsequences. The ”walking” trigger is
correct because after turning the light off, the participant
performs a random action and heads back to the right desk
to turn on the light, which usually involves walking across the
room to reach the desk. The difference in compression values
between the first and second sequences is due to multiple
triggers from the light sensor for a single light on or light off
action. The third sequence is the result of a random activity;
the compression value is relatively small compared to the main
script activities. The fourth sequence reflects the embedded
activity, and the last sequence is a frequent activity associated
with random events, again with a smaller compression value.
These results support our claim that FPAM can detect patterns
correctly.

In another experiment, in order to test the effect of noisy
data on the sequence discovery procedure, we injected dif-

0

20

40

60

80

100

120

5 8.3 10 12.5 20 33 50
C
o
r
r
e
c
t
ly
 I
d
e
n
t
if
ie
d

P
e
r
c
e
n
t
a
g
e

Noise Percentage

Noise Injection Results

Correctly identified

Fig. 15: Noise injection results.

ferent percentages of noise into the data. We used the same
data set as in the first experiment (refer to Table. II). For
this experiment, we set the compression value to 0.3, and the
fine and coarse grained periodic confidence to 0.9. To inject
noise, a certain percentage of sequences in data were changed
randomly, in a way that the whole sequence structure was
different with respect to the original sequence (every single
event in the sequence was changed).

As it can be seen in Fig. 15, FPAM acts robustly despite
the presence of noisy data up to 12.5% noise (100% of the
original sequences are correctly identified), but after that point,
injecting more and more noise into the system leads to less and
less regularity in patterns such that eventually the sequence’s
compression value will fall below the compression threshold
(in this case, 0.3). It is possible to lower the compression
threshold in order to increase robustness. The resulting algo-
rithm might find less frequent sequences too, which may not
be very interesting for us.

In another experiment, in order to test the effect of noisy
data on the sequence discovery procedure, we injected dif-
ferent percentages of noise into the data. We used the same
data set as in the first experiment (refer to Table. II). For
this experiment, we set the compression value to 0.3, and the
fine and coarse grained periodic confidence to 0.9. To inject
noise, a certain percentage of sequences in data were changed
randomly, in a way that the whole sequence structure was
different with respect to the original sequence (every single
event in the sequence was changed).

As it can be seen in Fig. 15, FPAM acts robustly despite
the presence of noisy data up to 12.5% noise (100% of the
original sequences are correctly identified), but after that point,

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 11

injecting more and more noise into the system leads to less and
less regularity in patterns such that eventually the sequence’s
compression value will fall below the compression threshold
(in this case, 0.3). It is possible to lower the compression
threshold in order to increase robustness. The resulting algo-
rithm might find less frequent sequences too, which may not
be very interesting for us.

B. Evaluation of PAM

In order to evaluate PAM’s ability to adapt to new patterns,
we again tested it on both synthetic and real data. We hypoth-
esize that PAM can adapt to changes in discovered patterns.
To test the hypothesis, for our first experiment we created
one month of synthetic data with six embedded scenarios,
the same as in previous experiment with FPAM. After FPAM
found corresponding activity patterns, we highlighted the third
activity to be monitored for changes. We then changed the
activity description in the data generator such that all event
durations were set to 8 minutes, instead of 5 minutes. PAM
detected the changes accordingly by finding a new duration of
7.3 minutes, which is quite close to the actual 8 minute change.
The data generator does have an element of randomness,
which accounts for the discrepancy between the specified and
detected time change. In similar tests, PAM was also able to
detect start time changes from 19:00 to 19:30, and structure
changes (omission or addition).

We next tested our adaptor on real world data using the
AI lab. A volunteer participant entered the room and executed
two different scripts:

1) Turn on right lamp (1 min), perform random actions
2) Turn on left lamp (1 min), perform random actions
The first activity was repeated 10 times over the course of

two hours with random events in between. Then the participant
highlighted the activity for monitoring and performed the
second scripted version by changing the duration from 1 to 2
minutes. PAM detected the duration change as 1.66 minutes.
The change was made to the correct parameter and in the
correct direction, but did not converge on an accurate new
value due to the detection of other similar patterns with
different durations. These experiments validate that PAM can
successfully adapt to resident changes even in real-world data.
We also found that in addition to changes in duration, PAM
detected some changes in start time. This is another correct
finding by PAM. As in the second dataset, we changed the
duration of all events in all scenarios which resulted in a
shifted start time for all scenarios, in our case 14:55 instead
of original 14:25.

We also empirically validated our theoretical analysis [22]
to see how fast original patterns will be replaced by mod-
ified versions, by generating two sets of synthetic data and
validating the adaptation capability for different decay values
(see Fig. 16). Our findings are consistent with our expecta-
tion, validating that PAM can successfully adapt to resident
changes.

VIII. CONCLUSIONS

In this paper, we presented CASAS, an integrated set of
components that aim toward applying machine learning and

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5
R
e
q
u
ir
e
d
 d
e
c
a
y

e
f
f
e
c
t
s

Decay Rate

Pattern adaptation

Analytical Results Experimental Results

Fig. 16: Number of decay effects required to forget a pattern,
with respect to decay rate.

data mining techniques to a smart home environment in order
to detect activity patterns, generate automation policies for
those patterns, and also adapt to the changes in those patterns.
In our ongoing work, we plan to perform more user studies
in real world setting to better understand the strengths and
weaknesses of the system. We are also planning to extend
CASA-U for a real residential apartment, using more realistic
3D modeling. Ultimately, we anticipate adding additional
features such as a voice recognition capability to the system
to increase availability and ease of use. We also intend to
discover additional types of contextual information that allow
the model to better generalize over discovered sequences.

Parisa Rashidi Parisa is currently a Ph.D student at
Washington State University. She received her B.S.c
in computer engineering from University of Tehran,
Iran in 2005. In 2007, she received her M.Sc in
computer science from Washington State University
where she worked on CASAS project as her master
thesis. Her interests include smart environments, AI
and machine learning applications in health care, and
human factors in pervasive computing applications.

Diane J. Cook Dr. Diane J. Cook is a Huie-
Rogers Chair Professor in the School of Electrical
Engineering and Computer Science at Washington
State University. She received a B.S. degree in
Math/Computer Science from Wheaton College in
1985, a M.S. degree in Computer Science from
the University of Illinois in 1987, and a Ph.D.
degree in Computer Science from the University
of Illinois in 1990. Her research interests include
artificial intelligence, machine learning, and smart
environments.

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 12

REFERENCES

[1] G. D. Abowd, E. D. Mynatt, and T. Rodden, “The human experience,”
IEEE Pervasive Computing, vol. 1, no. 1, pp. 48–57, 2002.

[2] D. Cook and S. Das, Smart Environments: Technology, Protocols and
Applications (Wiley Series on Parallel and Distributed Computing).
Wiley-Interscience, 2004.

[3] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen,
“The gator tech smart house: a programmable pervasive space,” Com-
puter, vol. 38, no. 3, pp. 50–60, March 2005.

[4] G. Youngblood and D. Cook, “Data mining for hierarchical model
creation,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 37, no. 4, pp. 561–572, July 2007.

[5] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, “Integrating
information appliances into an interactive workspace,” IEEE Computer
Graphics and Applications, vol. 20, no. 3, pp. 54–65, 2000.

[6] M. C. Mozer, “The neural network house: An environment hat adapts
to its inhabitants,” AAAI, Tech. Rep. SS-98-02, 1998.

[7] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded agent-based
approach for realizing ambient intelligence in intelligent inhabited en-
vironments,” Systems, Man and Cybernetics, Part A, IEEE Transactions
on, vol. 35, no. 1, pp. 55–65, Jan. 2005.

[8] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri, “What planner for
ambient intelligence applications?” Systems, Man and Cybernetics, Part
A, IEEE Transactions on, vol. 35, no. 1, pp. 7–21, Jan. 2005.

[9] L. Liao, D. Fox, and H. Kautz, “Location-based activity recognition
using relational markov networks,” In Advances in Neural Information
Processing Systems (NIPS), 2005.

[10] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the
home using simple and ubiquitous sensors,” 2004, pp. 158–175.

[11] M. Valtonen, A. M. Vainio, and J. Vanhala, “Continuous-time fuzzy
control and learning methods,” in Communications and Information
Technologies, 2007. ISCIT ’07. International Symposium on, 2007, pp.
346–351.

[12] A. Crandall and D. Cook, “Attributing events to individuals in multi-
inhabitant environments,” Intelligent Environments, 2008 IET 4th Inter-
national Conference on, pp. 1–8, July 2008.

[13] S. Laxman and P. S. Sastry, “A survey of temporal data mining,” in
Academy Proceedings in Engineering Sciences, vol. 31. The Indian
Academy of Sciences, 2006, pp. 173–198.

[14] J. Roddick and M. Spiliopoulou, “A survey of temporal knowledge
discovery paradigms and methods,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 14, no. 4, pp. 750–767, July-Aug. 2002.

[15] R. Agrawal and R. Srikant, “Mining sequential patterns,” 1995, pp. 3–
14.

[16] T. Fawcett and F. Provost, “Activity monitoring: Noticing interesting
changes in behavior,” in In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1999, pp. 53–62.

[17] H. Mannila and H. Toivonen, “Discovering generalized episodes using
minimal occurrences.” AAAI Press, 1996, pp. 146–151.

[18] C.-H. Lee, M.-S. Chen, and C.-R. Lin, “Progressive partition miner: An
efficient algorithm for mining general temporal association rules,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, no. 4, pp.
1004–1017, 2003.

[19] C. Bettini, X. Sean Wang, S. Jajodia, and J.-L. Lin, “Discovering
frequent event patterns with multiple granularities in time sequences,”
IEEE Trans. on Knowl. and Data Eng., vol. 10, no. 2, pp. 222–237,
1998.

[20] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[21] S. V. Vaseghi, “State duration modelling in hidden markov models,”
Signal Process., vol. 41, no. 1, pp. 31–41, 1995.

[22] P. Rashidi and D. Cook, “Adapting to resident preferences in smart
environments,” in Proceedings of the AAAI Workshop on Advances in
Preference Handling. AAAI, 2008, pp. 78–84.

[23] ——, “Keeping the intelligent environment resident in the loop,” in Pro-
ceedings of the International Conference on Intelligent Environments,
2008, pp. 1–9.

