

 1

Data Mining Challenges in Automated Prompting Systems

Barnan Das

Washington State University

Pullman WA 99164

barnandas@wsu.edu

(208) 596-1169

Diane J. Cook

Washington State University

Pullman WA 99164

cook@eecs.wsu.edu

(509) 335-4985

ABSTRACT

With the rising cost of medical treatment and majority of

the aging population preferring an independent lifestyle, the

need for assistive technologies and smarted devices are

increasing like never before. A prompting system is a

technique that provides interventions to a smart home

inhabitant in order to ensure successful completion of an

activity. Machine learning techniques could be used to

automate this system but it comes with the challenge of

imbalanced class distribution naturally occurring in the

data. In this paper, we comparatively analyze two

techniques (sampling and cost sensitive learning) to deal

with this challenge.

Author Keywords

Automated prompting, smart environments, data mining.

ACM Classification Keywords

H5.m. Information interfaces and presentation (e.g., HCI):

Miscellaneous.

INTRODUCTION

Prompts in the context of a smart home environment can be

defined as any form of verbal or non-verbal intervention

delivered to a user on the basis of time, context or acquired

intelligence that helps in successful (in terms of time and

purpose) completion of an activity. Prompts can provide

critical service in a smart home setting especially to older

adults and inhabitants with some form of cognitive

impairment. In our previous work [1], we have developed

an automated prompting system, named Prompting Users

and Control Kiosk or PUCK that predicts when a user

would need a prompt while performing an activity. Thus,

although not a “single” smart device, PUCK is an effective

smart framework. Developing automated prompting

systems like PUCK requires a unique combination of

pervasive computing and machine learning techniques. One

of the major challenges that need to be addressed to

optimize performance of such systems is learning from

imbalanced class distributions. The purpose of the

classifiers is to predict if a particular step of an activity

needs a prompt or not. Therefore, we can view automated

prompting as a binary class learning problem. However,

PUCK should deliver a prompt only when it is critically

important rather than at every possible step, which would

make PUCK a cause of annoyance rather than an aid.

Intuitively, there are far more "no-prompt" instances in the

dataset than "prompt" because there are very few situations

that would require a prompt, thus making the data in this

domain inherently skewed or in other words causing the

class imbalance problem.

In this work, we comparatively analyze the techniques that
deal with imbalanced class distribution in the domain of
automated prompting. Unlike other domains of class
imbalance, automated prompting has a number of
requirements that need to be taken care of. The focus is
mainly on two different techniques: Sampling and Cost
Sensitive Learning, to resolve the issue. In Sampling we
introduce a version of SMOTE, developed by Chawla et al
[2], called SMOTE-Variant. This version of SMOTE
addresses the domain data challenges. We also consider
Cost Sensitive Learning in which we empirically find the
cost matrix that would be suitable for our work.

RELATED WORK

Prompting systems have been in existence for quite some

time with different research groups offering their own

unique approach to solving the problem. The approaches

can be broadly classified into four types: Rule based (time

and context), Reinforcement Learning, Planning and

Supervised Learning. The majority of reminder systems are

rule based. In this approach, a set of rules is defined based

on time, context of doing an activity and user preferences.

Lim et al. [3] proposed a medication reminder system that

recognizes the reminders suitable for medication situation.

Rudary et al. [4] integrated temporal constraint reasoning

with reinforcement learning to build an adaptive reminder

system. Although this approach is useful when there is no

direct or indirect user feedback, it relies on a complete

schedule of user activities. The Autominder System [5]

developed by Pollack et al. provides adaptive personalized

reminders of activities of daily living using a dynamic

Bayesian network as an underlying domain model to

coordinate preplanned events. Boger et al. [6] designed a

Markov decision process (MDP) based planning system to

determine when and how to provide prompts to dementia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

patients for guidance through the activity of hand washing.

A supervised learning approach can help in fully

automating the determination of a prompt situation using a

set of features that would be characteristic of “prompt” or

“no-prompt” situations. However, very limited work has

been in this area.

SYSTEM ARCHITECTURE

PUCK is not just a single device but a framework that helps
in providing smart interventions to inhabitants of a smart
home environment. The system architecture of PUCK in
Figure 1 can be broadly divided into four major modules:

 Smart Environment: This is the smart home

infrastructure that acts as a testbed where experiments

are performed. It has a sensor network that keeps track

of the activities performed and stores the data in a SQL

database in real time.

 Data Preparation: Raw sensor data is collected from

the database, manually annotated and features, that

would be helpful in differentiating a “Prompt” step

from a “No-Prompt” step, are generated. Because there

are very few training examples that have “Prompt”

steps, we use a sub-module, namely Sampling, to

generate new and unique “Prompt” examples (more

discussion later).

 Machine Learning Model: Once the data is prepared

by the Data Preparation Module, we employ machine

learning strategies to identify whether a prompt should

be issued. This module is the “brain” of the entire

system where the decision making process takes place.

 Prompting Device: This device acts as a bridge

between the user or inhabitant and the digital world of

sensor network, data and learning models. Prompting

devices can range from simple speakers to basic

computers, PDAs, or even smart phones (a project that

we are planning to pursue in the near future).

Figure 1. System Architecture of the PUCK.

In our current work we have been able to reach the phase

where the system is able to predict a relative time in the

activity when a prompt is required, after learning

intensively from training data collected over a period of

time. In the past we have deployed rule based and context

aware prompts at the homes of two participant older adults.

In these deployments we used touch screen monitors with

embedded speakers to deliver the prompts. The prompts

included audio cues along with images that are relevant to

the activity for which the prompt is being given. We are in

the process of using this same interface for the automated

prompting system. The following sections give a better

understanding of the PUCK emphasizing more on the

process model and thus implicitly covering the detailed

description of the modules.

EXPERIMENTAL SETUP

Smart Home Testbed

The data collection is done in collaboration with the

Department of Psychology at Washington State University.

The smart home testbed is a 2 story apartment located on the

WSU campus. It contains a living room, dining area and

kitchen on the first floor and three bedrooms and bathroom

on the second. All of these rooms are equipped with a grid

of motion sensors on the ceiling, door sensors on the

apartment entries and on cabinets, the refrigerator and the

microwave oven, temperature sensors in each room, a power

meter, and analog sensors for burner and water usage.

Figure 2. Three-bedroom smart apartment used for data

collection (Sensors: motion (M), temperature (T), water (W),

burner (B), telephone (P) and item (I)).

Figure 1 depicts the structural and sensor layout of the

apartment. Data was collected while volunteer older adult

participants performed activities in the smart apartment. One

of the bedrooms on the second floor is used as a control

room where the experimenters monitor the activities

performed by the participants (via web cameras) and deliver

pre-defined prompts through an audio delivery system

whenever necessary. The goal of PUCK is to learn from

this collected data how to time the delivery of prompts and

ultimately to automate the role of the experimenter in this

setting. The following activities are used in our experiments:

Sweep, Refill Medication, Birthday Card, Watch DVD,

Water Plants, Make Phone Call, Cook and Select Outfit.

These activities are subdivided into relevant steps by the

 3

psychologists in order to track their proper completion. Here

is an example of the Cooking task.

Cooking

1. Participant retrieves materials from cupboard.

2. Participant fills measuring cup with water.

3. Participant boils water in microwave.

4. Participant pours water into cup of noodles.

5. Participant retrieves pitcher of water from refrigerator.

6. Participant pours glass of water.

7. Participant returns pitcher of water.

8. Participant waits for water to simmer in cup of water.

9. Participant brings all items to dining rooms table.

Participants are asked to perform these specific activities in
the smart apartment. While going through the steps of an
activity, a prompt is given if he/she performs steps for other
activities rather than the current one, if a step is skipped, if
extra/erroneous steps are performed, or if too much time
has elapsed since the beginning of the activity. Note that
there is no ideal order of steps by which the activity can be
completed. Therefore, a prompt is given only when one of
the conditions mentioned above occurs. Moreover, the goal
is to deliver as few prompts as possible. The experimenters
keep track of all the errors done by the participants and the
steps at which a prompt was delivered, which are later
extracted and used to train PUCK.

Data Preparation
Annotation

An in-house sensor network captures all sensor events and

stores them in a SQL database in real time. The sensor data

gathered for our SQL database is expressed by several

features, summarized in Table 1. These four fields (Date,

Time, Sensor, ID and Message) are generated by the data

collection system.

Table 1. Sample of sensor events used for our study

Date Time Sensor ID Message

2009-02-06 17:17:36 M45 ON

2009-02-06 17:17:40 M45 OFF

2009-02-06 11:13:26 T004 21.5

2009-02-05 11:18:37 P001 747W

2009-02-09 21:15:28 P001 1.929kWh

2009-05-11 14:59:54.934979 D010 CLOSE 7.3

2009-05-11 14:59:55.213769 M017 ON 7.4

2009-05-11 15:00:02.062455 M017 OFF

2009-05-11 15:00:17.348279 M017 ON 7.8

2009-05-11 15:00:34.006763 M018 ON 7.8

2009-05-11 15:00:35.487639 M051 ON 7.8

2009-05-11 15:00:43.028589 M016 ON 7.8

2009-05-11 15:00:43.091891 M015 ON 7.9

2009-05-11 15:00:45.008148 M014 ON 7.9

Figure 3. Annotation with Steps

After collecting data, sensor events are labeled with the

specific activity and step within the activity,

{activity#.step#}, that was being performed while the

sensor events were generated, as shown in Figure 3.

Feature Generation

From the annotated data we generate relevant features that

would be helpful in predicting whether a step is a “Prompt”

step or a “No Prompt” step. After the features are

generated, the modified form of the data set contains steps

performed by participants as instances. This data set is then

re-annotated for the prompt steps. Table 2 provides a

summary of all generated features.

TABLE 2. List of Features and Description

Feature # Feature Name Description

1 stepLength Length of the step in time (seconds)

2 numSensors Number of unique sensors involved with the step

3 numEvents Number of sensor events associated with the step

4 prevStep Previous step

5 nextStep Next step

6 timeActBegin Time (seconds) since beginning of the activity

7 timePrevStep Time (seconds) between the end of the previous

step and the beginning of the current step

8 stepsActBegin Number of steps since beginning of the activity

9 activityID Activity ID

10 stepID Step ID

11 M01 … M51 Frequency of firing each sensor during the step

12 Class Binary Class. 1=”Prompt”, 0=”No Prompt”

DATASET AND PERFORMANCE METRIC

We use data collected from 128 older adult participants,

with different levels of mild cognitive impairment (MCI),

to train the learning models. Thus the errors committed by

the participants are real and not simulated. There are 53

steps in total for all the activities, out of which 38 are

recognizable by the annotators. The participants were

delivered prompts in 149 cases which involved any of the

38 recognizable steps. Therefore, approximately 3.74% of

the total instances are positive (“Prompt” steps) and the rest

are negative (“No-Prompt” steps). Essentially, this means

that, predicting all the instances as negative, would give

more than 96% accuracy even though all the predictions for

positive instances were incorrect.

The conventional performance measures (accuracy and
error rate) consider different classification errors as equally
important. However, this assumption is not realistic in the
automated prompting domain where false positives are
more acceptable than false negatives. Therefore, we
consider performance metrics that measure the
classification performance on positive and negative classes
independently. True Positive (TP) Rate: represents the
percentage of activity steps that are correctly classified as
requiring a prompt; True Negative (TN) Rate: represents
the percentage of correct steps that are accurately labeled as
not requiring a prompt; Area Under ROC Curve (AUC):
evaluate overall classifier performance without taking into
account class distribution or error cost; Geometric mean of

TP Rate and TN Rate (Gacc): given by TPRate Rate ;

reflects the overall effects of classification on the data; and
Accuracy (Acc): conventional accuracy of classifiers.

EXPERIMENTAL EVALUATIONS

We conduct experiments to evaluate the machine learning
approaches that we used in PUCK: decision tree (J48),
support vector machines (SMO) and boosting (LogitBoost).
All of the experiments are evaluated with 10 fold cross
validation. Table 3 summarizes the overall performance.

Table 3. Performance of Classifiers on Original Dataset

 TP Rate TN Rate AUC Gacc Accuracy

J48 0.141 0.994 0.615 0.3744 96.21

SMO 0.013 0.999 0.506 0.1140 96.23

LB 0.040 0.999 0.865 0.1999 96.36

As mentioned before, classical machine learning
approaches are not capable of handling this degree of skew.
The inductive bias of a decision tree prefers shorter
hypothesis trees over longer ones and thus compromises the
unique properties of the instances that might lie with an
attribute that has not been considered. In case of SMO, with
61 attributes in our case, it constructs a set of hyperplanes
for classification. Usually a good separation is achieved by
a hyperplane that achieves the largest distance to the nearest
training data points of any class (the functional margin).
However, due to the lesser number of positive class
instances in our case the functional margin is quite small
causing a lower TP rate. In our Boosting technique, a
learning algorithm is run several times, each time with a
different subset of training examples. Dietterich
demonstrated [7] that this technique works well for
algorithms whose output classifier undergoes major
changes in response to small changes in the training data,
also known as unstable learning algorithms. As a decision
tree is an unstable algorithm, we use Decision Stump, a
decision tree with the root node immediately connected to
the terminal nodes, as the base learner.

Sampling

Sampling is a technique of rebalancing the dataset
synthetically. However, under-sampling can throw away
potentially useful data, oversampling can overfit the
classifier if it is done by data replication [8]. As a solution
SMOTE [2] uses a combination of both under and over
sampling, but without data replication. Over-sampling is
performed by taking each minority class sample and
synthesizing a new sample by randomly choosing any or all
(depending upon the desired size of the class) of its k
minority class nearest neighbors. Generation of the
synthetic sample is accomplished by first computing the
difference between the feature vector (sample) under
consideration and its nearest neighbor. Next, this difference
is multiplied by a random number between 0 and 1. Finally,
the product is added to the feature vector under
consideration.

In our dataset the minority class instances are not only
small in terms of percentage of the entire dataset, but also in
absolute number. Therefore, if the nearest neighbors are
conventionally calculated (as in original SMOTE) and the

value of k is small, we would have null neighbors. Due to
these limitations we make variations that would suit our
domain. Unlike SMOTE, we do not find the k nearest
neighbors for all instances in the minority class. An
instance is randomly picked from the minority class. All
minority class instances that have the same activityID and
stepID are considered as its nearest neighbor of the chosen
instance. One of these neighbors is randomly chosen and
the new instance is synthesized as done in SMOTE. Under-
sampling is done by randomly choosing a sample of size k
(as per the desired size of the majority class) from the entire
population without repetition. Here is the pseudo code for
our approach:

Algorithm: SMOTE-Variant (T, N, M)

Input: All the instances of minority class stored in list T, Number of

minority class samples N, Desired number of minority class samples M
Output: M minority class samples stored in list S

if (M > N)

 then S = T //S stores all the instances in T
 for i ← 1 to M – N

 t = randomize(T) //Randomly chosen instance from T

 neighbor[] = null //List storing all the nearest neighbors of instance t
 for j ← 1 to length(T)

 if (t.activityID==T[j].activityID) AND (t.stepID==T[j].stepID)

 neighbor[].append(T[j]) // Appending the list with the neighbor

 endfor

 s = randomize(neighbor) //Randomly choosing an instance from list

neighbor
 diff = t – s //Both t and s are vectors, so this is a vector subtraction

 rand = random number between 0 and 1

 newInstance = t + diff * rand
 S.append(newInstance)

 endfor

endif

The purpose of sampling is to rebalance a dataset by
increasing the number of minority class instances, enabling
the classifiers to learn more relevant rules on positive
instances. However, there is no ideal class distribution. A
study done by Weiss et al [9] shows that, given plenty of
data when only n instances are considered, the optimal
distribution generally contains 50% to 90% of the minority
class instances. Therefore, in order to empirically determine
the class distribution we consider J48 as the baseline
classifier and repeat the experiments, varying percentages
of minority class instances from 5% up to 95%, by
increments of 5%. A sample size of 50% of the instance
space is chosen.

Figure 4: TP Rate, TN Rate and AUC for different class

distributions

 5

While, any lower size will cause loss of potential
information; any higher size will make the sample
susceptible to overfitting. From Figure 4 we see that the TP
rate increases while the TN rate decreases as the percentage
of the minority class is increased. These two points intersect
each other at some point that corresponds to somewhere
between 50-55% of minority class. Also, AUC is between
0.923 and 0.934 near this point. Therefore, we decide to
choose 55% of minority class to be the appropriate sample
distribution for further experimentation.

Cost Sensitive Learning

The goal of most of the classical machine learning
techniques is to achieve high classification accuracy; in
other words, minimize the error rate. In order to accomplish
this, the difference between different misclassification
errors is ignored, assuming that the costs of all
misclassification errors are equal. This assumption
dramatically fails in our system where the cost of not
issuing a prompt when it is critically required is far greater
than the cost of issuing a prompt when it is not required.

In this paper, we take only misclassification costs into
consideration. Note that the costs considered in these
discussions are not necessarily monetary. It can be wastage
of time, severity of illness, etc. In generic terms, “any
undesired outcome” can be considered a “cost”.

Table 4. Confusion Matrix

 Actual

 Negative Positive

P
re

d
ic

te
d

 Negative True Negative

(TN)/C00 or CTN

False Negative

(FN)/C01 or CFN

Positive False Positive

(FP)/C10 or CFP

True Positive

(TP)/C11 or CTP

We consider a confusion matrix [10][11] shown in Table 4
which also represents a cost matrix for different categories
of classified instances denoted by C with the classification
category in subscript. These misclassifications costs can be
assigned from the domain expert knowledge or can be
learned via different techniques.

Mathematically, let (i,j) in Cij be the cost of predicting class

i when the actual class is j. When i = j, the prediction is

correct and incorrect otherwise. Given the cost matrix, an

example is classified as class i with the minimum expected

cost by using the Bayes risk criterion:

{0,1}

() arg min (|) (,)
i

j

L x P j x C i j



 
 
 


where L(x) is a sum over the alternative possibilities for the

true class of x and P(j|x) is the posterior probability of

classifying an example x as class j.

We use a meta-learning based cost sensitive learner
CostSensitiveClassifier, proposed by Witten and Frank
[12], which predicts the class with the smallest expected
misclassification cost. As mentioned earlier, the cost matrix
can be hard coded by the domain expert or it can be
learned. In this paper, we take an empirical approach to
determine the cost matrix. The following points should be

noted about the cost matrix:
a. For correct predictions there are no costs, i.e. C00/CTN

and C11/CTP are 0.
b. As the number of false positives (FP) is low, we work

with the default misclassification cost of 1, i.e. CFP=1.
c. As false negatives (FN) are critically important in our

domain, we repeat the experiments with different
values of CFN to determine a near ideal cost matrix.

We repeat the experiments using a J48 decision tree as the

baseline classifier and varied the value of CFN from 2 to 100

to determine the cost matrix that works best for our dataset.

Figure 5: TP Rate, TN Rate and AUC for different CFN

In Figure 5, we see that as CFN is increased the TN rate

decrease, but not drastically. On the other hand, TP rate

takes a steep increase until CFN = 70 when it becomes fairly

constant. At CFN = 90 it takes a bit rise and stays constant

henceforth. Therefore, at CFN = 70, when TP rate is 0.705,

TN rate 0.899 and a fairly good AUC of 0.817, the cost

matrix is:

0 70

1 0

 
 
 

We consider this cost matrix for further experimentation on

rest of the algorithms.

COMPARATIVE ANALYSIS AND DISCUSSION

Figures 6 (a) and (b) compare TP Rates and AUC (two
metrics that are of highest interest) for the alternative
approaches. The remainder of the metrics, TN Rate, Gacc
and Accuracy, are summarized in Table 5.

From Figures 6(a) and (b), it can be said that both
techniques of handling class imbalance help in achieving
better performance than using the classical machine
learning methods directly. But our proposed technique
SMOTE-Variant performs better than cost sensitive

Figure 6: Comparison of (a) TP Rates (b) AUC

learning (CSL). One possible reason could be that, with an
overwhelming increase in minority class instances helps the
classifiers learn most of the rules for classification. On the
other hand, in order to achieve this level of performance
with CSL we need to compromise with accuracy
performance on negative class which is not advisable.

The TN rates have dropped by a fair amount in CSL (Table
5) which has caused a drastic decrease in accuracy.
Decreases in accuracy by 5-6% in the original dataset are
acceptable, as in case of sampling. However, in CSL the
accuracy decreases more than 26% for LogitBoost. This
decrease in accuracy in CSL, caused by a major decrease in
the TN Rate, essentially means that PUCK will deliver
prompts even when they is not required. Determination of a
threshold of tolerance for unnecessary prompts is a matter
that needs to be considered further in the context of user
tolerance and human factors.

An interesting thing to note is that the TN Rate of J48 in
CSL is comparable to the TN Rate for sampling. This might
imply that, even though empirically determining a cost
matrix is a good idea to get the near best performance, the
cost matrix cannot be generically used for all algorithms.
Every algorithm has its own way of handling the hypothesis
and building the objective function. Therefore, it would be
a good idea to empirically determine the cost matrix
individually for all the algorithms. We tried to find a better
cost matrix for SMO and LogitBoost and found that, on the
basic cost matrix used in our experiments decreasing CFN
achieves better performance. For SMO and LogitBoost, a
cost value for CFN which is close to 30 can achieve a
greater than 0.8 TN Rate.

CONCLUSION

In this paper we compared the performances of SMOTE-

Variant with Cost Sensitive Learning to handle class

imbalance to improve performance of machine learning

techniques in an automated prompting system. We found

that our approach of sampling performed better than CSL.

But CSL can perform better than shown in this study, if a

cost matrix is empirically determined separately for each

algorithm.

REFERENCES

1. Das, B., Chen, C., Dasgupta, N., Cook, D.J. and Seelye,

A.M. Automated prompting in a smart home

environment. In Proceedings of the ICDM Workshop on

Data Mining for Service (to appear), (2010).

2. Chawla, N.V., Bowyer, K.W., Hall, L.O. and

Kegelmeyer, W.P. SMOTE: Synthetic minority over-

ampling technique. Journal of Artificial Intelligence

Research 16 (2002), 321-357.

3. Lim, M., Choi, J., Kim, D. and Park, S. A smart

medication prompting system and context reasoning in

home environments. In Proceedings of the 2008 Fourth

International Conference on Networked Computing and

Advanced Information Management, 0 (2008),115-118.

4. Rudary, M., Singh, S. and Pollack, M.E. Adaptive

cognitive orthotics: combining reinforcement learning

and constraint-based temporal reasoning. In

Proceedings of the 21st International Conference on

Machine Learning (2004), 719-726.

5. Pollack, M., Brown, L., Colbry, D., McCarthy, C.,

Orosz, C., Peintner, B., Ramakrishnan, S. and

Tsamardinos, I. Autominder: An intelligent cognitive

orthotic system for people with memory impairment.

Robot.Auton. Syst., 0 (2003), 273-282.

6. Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G.

and Mihailidis, A. A decision-theoretic approach to task

assistance for persons with dementia. In Proceedings for

International Joint Conferences on Artificial

Intelligence (2005), 1293 -1299.

7. Dietterich, T.G. (2000) Ensemble methods in machine

learning. In Proceedings of the International Workshop

on Multiple Classifier Systems. Springer-Verlag, 1-15.

8. Monard, M.C. & Batista, G.E.A.P.A, (2002) Learning

with skewed class distribution. LAPTEC-2002,

Frontiers in Artificial Intelligence and its Applications,

IOS Press.

9. Weiss, G.M. & Provost, F. (2001) The effect of class

distribution on classifier learning: An empirical study.

Technical Report ML-TR44, Rutgers University,

Department of Computer Science.

10. Elkan, C. The foundations of cost sensitive learning. In

Proceedings of Seventeenth International Joint

Conference on Artificial Intelligence (2001).

11. Weiss, G., Kate, M. & Zabar, B. (2007) Cost-sensitive

learning vs. sampling: Which is best for handling

unbalanced classes with unequal error costs? In

Proceedings of the International Conference on Data

Mining, CSREA Press, 35–41.

12. Witten, I. & Frank, E. (2005) Data mining: Practical

machine learning tools and techniques. Morgan

Kaufmann Pub.

Table 5: Comparison of Performance

 Original Sampling Cost Sensitive

 TNR Gacc Acc TNR Gacc Acc TNR Gacc Acc

J48 0.994 0.3744 96.21 0.897 0.9138 91.55 0.899 0.7961 89.19

SMO 0.999 0.1140 96.23 0.86 0.9072 91.35 0.746 0.8038 75.03

LB 0.999 0.1999 96.36 0.902 0.9070 90.75 0.687 0.7859 69.45

