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ABSTRACT 

With the rising cost of medical treatment and majority of 

the aging population preferring an independent lifestyle, the 

need for assistive technologies and smarted devices are 

increasing like never before. A prompting system is a 

technique that provides interventions to a smart home 

inhabitant in order to ensure successful completion of an 

activity. Machine learning techniques could be used to 

automate this system but it comes with the challenge of 

imbalanced class distribution naturally occurring in the 

data. In this paper, we comparatively analyze two 

techniques (sampling and cost sensitive learning) to deal 

with this challenge. 
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INTRODUCTION 

Prompts in the context of a smart home environment can be 

defined as any form of verbal or non-verbal intervention 

delivered to a user on the basis of time, context or acquired 

intelligence that helps in successful (in terms of time and 

purpose) completion of an activity. Prompts can provide 

critical service in a smart home setting especially to older 

adults and inhabitants with some form of cognitive 

impairment. In our previous work [1], we have developed 

an automated prompting system, named Prompting Users 

and Control Kiosk or PUCK that predicts when a user 

would need a prompt while performing an activity. Thus, 

although not a “single” smart device, PUCK is an effective 

smart framework. Developing automated prompting 

systems like PUCK requires a unique combination of 

pervasive computing and machine learning techniques. One 

of the major challenges that need to be addressed to 

optimize performance of such systems is learning from 

imbalanced class distributions. The purpose of the 

classifiers is to predict if a particular step of an activity 

needs a prompt or not. Therefore, we can view automated 

prompting as a binary class learning problem. However, 

PUCK should deliver a prompt only when it is critically 

important rather than at every possible step, which would 

make PUCK a cause of annoyance rather than an aid. 

Intuitively, there are far more "no-prompt" instances in the 

dataset than "prompt" because there are very few situations 

that would require a prompt, thus making the data in this 

domain inherently skewed or in other words causing the 

class imbalance problem. 

In this work, we comparatively analyze the techniques that 
deal with imbalanced class distribution in the domain of 
automated prompting. Unlike other domains of class 
imbalance, automated prompting has a number of 
requirements that need to be taken care of. The focus is 
mainly on two different techniques: Sampling and Cost 
Sensitive Learning, to resolve the issue. In Sampling we 
introduce a version of SMOTE, developed by Chawla et al 
[2], called SMOTE-Variant. This version of SMOTE 
addresses the domain data challenges. We also consider 
Cost Sensitive Learning in which we empirically find the 
cost matrix that would be suitable for our work. 

RELATED WORK 

Prompting systems have been in existence for quite some 

time with different research groups offering their own 

unique approach to solving the problem. The approaches 

can be broadly classified into four types: Rule based (time 

and context), Reinforcement Learning, Planning and 

Supervised Learning. The majority of reminder systems are 

rule based. In this approach, a set of rules is defined based 

on time, context of doing an activity and user preferences. 

Lim et al. [3] proposed a medication reminder system that 

recognizes the reminders suitable for medication situation. 

Rudary et al. [4] integrated temporal constraint reasoning 

with reinforcement learning to build an adaptive reminder 

system. Although this approach is useful when there is no 

direct or indirect user feedback, it relies on a complete 

schedule of user activities. The Autominder System [5] 

developed by Pollack et al. provides adaptive personalized 

reminders of activities of daily living using a dynamic 

Bayesian network as an underlying domain model to 

coordinate preplanned events. Boger et al. [6] designed a 

Markov decision process (MDP) based planning system to 

determine when and how to provide prompts to dementia 
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patients for guidance through the activity of hand washing. 

A supervised learning approach can help in fully 

automating the determination of a prompt situation using a 

set of features that would be characteristic of “prompt” or 

“no-prompt” situations. However, very limited work has 

been in this area. 

SYSTEM ARCHITECTURE 

PUCK is not just a single device but a framework that helps 
in providing smart interventions to inhabitants of a smart 
home environment. The system architecture of PUCK in 
Figure 1 can be broadly divided into four major modules: 

 Smart Environment: This is the smart home 

infrastructure that acts as a testbed where experiments 

are performed. It has a sensor network that keeps track 

of the activities performed and stores the data in a SQL 

database in real time.  

 Data Preparation: Raw sensor data is collected from 

the database, manually annotated and features, that 

would be helpful in differentiating a “Prompt” step 

from a “No-Prompt” step, are generated. Because there 

are very few training examples that have “Prompt” 

steps, we use a sub-module, namely Sampling, to 

generate new and unique “Prompt” examples (more 

discussion later).  

 Machine Learning Model: Once the data is prepared 

by the Data Preparation Module, we employ machine 

learning strategies to identify whether a prompt should 

be issued. This module is the “brain” of the entire 

system where the decision making process takes place. 

 Prompting Device: This device acts as a bridge 

between the user or inhabitant and the digital world of 

sensor network, data and learning models. Prompting 

devices can range from simple speakers to basic 

computers, PDAs, or even smart phones (a project that 

we are planning to pursue in the near future). 

 

Figure 1. System Architecture of the PUCK. 

In our current work we have been able to reach the phase 

where the system is able to predict a relative time in the 

activity when a prompt is required, after learning 

intensively from training data collected over a period of 

time. In the past we have deployed rule based and context 

aware prompts at the homes of two participant older adults. 

In these deployments we used touch screen monitors with 

embedded speakers to deliver the prompts. The prompts 

included audio cues along with images that are relevant to 

the activity for which the prompt is being given. We are in 

the process of using this same interface for the automated 

prompting system. The following sections give a better 

understanding of the PUCK emphasizing more on the 

process model and thus implicitly covering the detailed 

description of the modules. 

EXPERIMENTAL SETUP 

Smart Home Testbed 

The data collection is done in collaboration with the 

Department of Psychology at Washington State University. 

The smart home testbed is a 2 story apartment located on the 

WSU campus. It contains a living room, dining area and 

kitchen on the first floor and three bedrooms and bathroom 

on the second. All of these rooms are equipped with a grid 

of motion sensors on the ceiling, door sensors on the 

apartment entries and on cabinets, the refrigerator and the 

microwave oven, temperature sensors in each room, a power 

meter, and analog sensors for burner and water usage.  

 

Figure 2. Three-bedroom smart apartment used for data 

collection (Sensors: motion (M), temperature (T), water (W), 

burner (B), telephone (P) and item (I)). 

Figure 1 depicts the structural and sensor layout of the 

apartment. Data was collected while volunteer older adult 

participants performed activities in the smart apartment. One 

of the bedrooms on the second floor is used as a control 

room where the experimenters monitor the activities 

performed by the participants (via web cameras) and deliver 

pre-defined prompts through an audio delivery system 

whenever necessary.   The goal of PUCK is to learn from 

this collected data how to time the delivery of prompts and 

ultimately to automate the role of the experimenter in this 

setting. The following activities are used in our experiments: 

Sweep, Refill Medication, Birthday Card, Watch DVD, 

Water Plants, Make Phone Call, Cook and Select Outfit. 

These activities are subdivided into relevant steps by the 
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psychologists in order to track their proper completion. Here 

is an example of the Cooking task. 

Cooking 

1. Participant retrieves materials from cupboard. 

2. Participant fills measuring cup with water. 

3. Participant boils water in microwave. 

4. Participant pours water into cup of noodles. 

5. Participant retrieves pitcher of water from refrigerator. 

6. Participant pours glass of water. 

7. Participant returns pitcher of water. 

8. Participant waits for water to simmer in cup of water. 

9. Participant brings all items to dining rooms table. 

Participants are asked to perform these specific activities in 
the smart apartment.  While going through the steps of an 
activity, a prompt is given if he/she performs steps for other 
activities rather than the current one, if a step is skipped, if 
extra/erroneous steps are performed, or if too much time 
has elapsed since the beginning of the activity. Note that 
there is no ideal order of steps by which the activity can be 
completed. Therefore, a prompt is given only when one of 
the conditions mentioned above occurs. Moreover, the goal 
is to deliver as few prompts as possible. The experimenters 
keep track of all the errors done by the participants and the 
steps at which a prompt was delivered, which are later 
extracted and used to train PUCK. 

Data Preparation 
Annotation 

An in-house sensor network captures all sensor events and 

stores them in a SQL database in real time. The sensor data 

gathered for our SQL database is expressed by several 

features, summarized in Table 1. These four fields (Date, 

Time, Sensor, ID and Message) are generated by the data 

collection system. 

Table 1. Sample of sensor events used for our study 

Date Time Sensor ID Message 

2009-02-06 17:17:36 M45 ON 

2009-02-06 17:17:40 M45 OFF 

2009-02-06 11:13:26 T004 21.5 

2009-02-05 11:18:37 P001 747W 

2009-02-09 21:15:28 P001 1.929kWh 

 

2009-05-11 14:59:54.934979 D010 CLOSE 7.3   

2009-05-11 14:59:55.213769 M017 ON 7.4 

2009-05-11 15:00:02.062455 M017 OFF     

2009-05-11 15:00:17.348279 M017 ON 7.8 

2009-05-11 15:00:34.006763 M018 ON 7.8 

2009-05-11 15:00:35.487639 M051 ON 7.8 

2009-05-11 15:00:43.028589 M016 ON 7.8 

2009-05-11 15:00:43.091891 M015 ON 7.9 

2009-05-11 15:00:45.008148 M014 ON 7.9 

Figure 3. Annotation with Steps 

After collecting data, sensor events are labeled with the 

specific activity and step within the activity, 

{activity#.step#}, that was being performed while the 

sensor events were generated, as shown in Figure 3. 

Feature Generation 

From the annotated data we generate relevant features that 

would be helpful in predicting whether a step is a “Prompt” 

step or a “No Prompt” step. After the features are 

generated, the modified form of the data set contains steps 

performed by participants as instances. This data set is then 

re-annotated for the prompt steps. Table 2 provides a 

summary of all generated features. 

TABLE 2. List of Features and Description 

Feature # Feature Name Description 

1 stepLength Length of the step in time (seconds) 

2 numSensors Number of unique sensors involved with the step 

3 numEvents Number of sensor events associated with the step 

4 prevStep Previous step 

5 nextStep Next step 

6 timeActBegin Time (seconds) since beginning of the activity 

7 timePrevStep Time (seconds) between the end of the previous 

step and the beginning of the current step 

8 stepsActBegin Number of steps since beginning of the activity 

9 activityID Activity ID 

10 stepID Step ID 

11 M01 … M51 Frequency of firing each sensor during the step  

12 Class Binary Class. 1=”Prompt”, 0=”No Prompt” 

DATASET AND PERFORMANCE METRIC 

We use data collected from 128 older adult participants, 

with different levels of mild cognitive impairment (MCI), 

to train the learning models. Thus the errors committed by 

the participants are real and not simulated. There are 53 

steps in total for all the activities, out of which 38 are 

recognizable by the annotators. The participants were 

delivered prompts in 149 cases which involved any of the 

38 recognizable steps. Therefore, approximately 3.74% of 

the total instances are positive (“Prompt” steps) and the rest 

are negative (“No-Prompt” steps). Essentially, this means 

that, predicting all the instances as negative, would give 

more than 96% accuracy even though all the predictions for 

positive instances were incorrect.  

The conventional performance measures (accuracy and 
error rate) consider different classification errors as equally 
important. However, this assumption is not realistic in the 
automated prompting domain where false positives are 
more acceptable than false negatives. Therefore, we 
consider performance metrics that measure the 
classification performance on positive and negative classes 
independently. True Positive (TP) Rate: represents the 
percentage of activity steps that are correctly classified as 
requiring a prompt; True Negative (TN) Rate: represents 
the percentage of correct steps that are accurately labeled as 
not requiring a prompt; Area Under ROC Curve (AUC): 
evaluate overall classifier performance without taking into 
account class distribution or error cost; Geometric mean of 

TP Rate and TN Rate (Gacc): given by TPRate Rate ; 



 

 

reflects the overall effects of classification on the data; and 
Accuracy (Acc): conventional accuracy of classifiers. 

EXPERIMENTAL EVALUATIONS 

We conduct experiments to evaluate the machine learning 
approaches that we used in PUCK: decision tree (J48), 
support vector machines (SMO) and boosting (LogitBoost). 
All of the experiments are evaluated with 10 fold cross 
validation. Table 3 summarizes the overall performance.  

Table 3. Performance of Classifiers on Original Dataset 

 TP Rate TN Rate AUC Gacc Accuracy 

J48 0.141 0.994 0.615 0.3744 96.21 

SMO 0.013 0.999 0.506 0.1140 96.23 

LB 0.040 0.999 0.865 0.1999 96.36 

As mentioned before, classical machine learning 
approaches are not capable of handling this degree of skew. 
The inductive bias of a decision tree prefers shorter 
hypothesis trees over longer ones and thus compromises the 
unique properties of the instances that might lie with an 
attribute that has not been considered. In case of SMO, with 
61 attributes in our case, it constructs a set of hyperplanes 
for classification. Usually a good separation is achieved by 
a hyperplane that achieves the largest distance to the nearest 
training data points of any class (the functional margin). 
However, due to the lesser number of positive class 
instances in our case the functional margin is quite small 
causing a lower TP rate. In our Boosting technique, a 
learning algorithm is run several times, each time with a 
different subset of training examples. Dietterich 
demonstrated [7] that this technique works well for 
algorithms whose output classifier undergoes major 
changes in response to small changes in the training data, 
also known as unstable learning algorithms. As a decision 
tree is an unstable algorithm, we use Decision Stump, a 
decision tree with the root node immediately connected to 
the terminal nodes, as the base learner. 

Sampling 

Sampling is a technique of rebalancing the dataset 
synthetically. However, under-sampling can throw away 
potentially useful data, oversampling can overfit the 
classifier if it is done by data replication [8]. As a solution 
SMOTE [2] uses a combination of both under and over 
sampling, but without data replication. Over-sampling is 
performed by taking each minority class sample and 
synthesizing a new sample by randomly choosing any or all 
(depending upon the desired size of the class) of its k 
minority class nearest neighbors. Generation of the 
synthetic sample is accomplished by first computing the 
difference between the feature vector (sample) under 
consideration and its nearest neighbor.  Next, this difference 
is multiplied by a random number between 0 and 1. Finally, 
the product is added to the feature vector under 
consideration. 

In our dataset the minority class instances are not only 
small in terms of percentage of the entire dataset, but also in 
absolute number. Therefore, if the nearest neighbors are 
conventionally calculated (as in original SMOTE) and the 

value of k is small, we would have null neighbors. Due to 
these limitations we make variations that would suit our 
domain. Unlike SMOTE, we do not find the k nearest 
neighbors for all instances in the minority class. An 
instance is randomly picked from the minority class. All 
minority class instances that have the same activityID and 
stepID are considered as its nearest neighbor of the chosen 
instance. One of these neighbors is randomly chosen and 
the new instance is synthesized as done in SMOTE. Under-
sampling is done by randomly choosing a sample of size k 
(as per the desired size of the majority class) from the entire 
population without repetition. Here is the pseudo code for 
our approach: 

Algorithm: SMOTE-Variant (T, N, M) 

Input: All the instances of minority class stored in list T, Number of 

minority class samples N, Desired number of minority class samples M                 
Output: M minority class samples stored in list S 

if (M > N) 

    then S = T //S stores all the instances in T 
    for i ← 1 to M – N  

        t = randomize(T) //Randomly chosen instance from T  

        neighbor[] = null //List storing all the nearest  neighbors of instance t  
        for j ← 1 to length(T) 

            if (t.activityID==T[j].activityID) AND (t.stepID==T[j].stepID) 

                neighbor[].append(T[j]) // Appending the list with the neighbor 

        endfor 

            s = randomize(neighbor) //Randomly choosing an instance from list 

neighbor 
            diff = t – s //Both t and s are vectors, so this is a vector subtraction 

            rand = random number between 0 and 1 

            newInstance = t  + diff  *  rand 
            S.append(newInstance) 

    endfor 

endif  

 

The purpose of sampling is to rebalance a dataset by 
increasing the number of minority class instances, enabling 
the classifiers to learn more relevant rules on positive 
instances. However, there is no ideal class distribution. A 
study done by Weiss et al [9] shows that, given plenty of 
data when only n instances are considered, the optimal 
distribution generally contains 50% to 90% of the minority 
class instances. Therefore, in order to empirically determine 
the class distribution we consider J48 as the baseline 
classifier and repeat the experiments, varying percentages 
of minority class instances from 5% up to 95%, by 
increments of 5%. A sample size of 50% of the instance 
space is chosen.  

 

Figure 4: TP Rate, TN Rate and AUC for different class 

distributions 
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While, any lower size will cause loss of potential 
information; any higher size will make the sample 
susceptible to overfitting.  From Figure 4 we see that the TP 
rate increases while the TN rate decreases as the percentage 
of the minority class is increased. These two points intersect 
each other at some point that corresponds to somewhere 
between 50-55% of minority class. Also, AUC is between 
0.923 and 0.934 near this point. Therefore, we decide to 
choose 55% of minority class to be the appropriate sample 
distribution for further experimentation. 

Cost Sensitive Learning 

The goal of most of the classical machine learning 
techniques is to achieve high classification accuracy; in 
other words, minimize the error rate. In order to accomplish 
this, the difference between different misclassification 
errors is ignored, assuming that the costs of all 
misclassification errors are equal. This assumption 
dramatically fails in our system where the cost of not 
issuing a prompt when it is critically required is far greater 
than the cost of issuing a prompt when it is not required. 

In this paper, we take only misclassification costs into 
consideration. Note that the costs considered in these 
discussions are not necessarily monetary. It can be wastage 
of time, severity of illness, etc. In generic terms, “any 
undesired outcome” can be considered a “cost”.  

Table 4. Confusion Matrix 

  Actual 

  Negative Positive 

P
re

d
ic

te
d

 Negative True Negative 

(TN)/C00 or CTN 

False Negative 

(FN)/C01 or CFN 

Positive False Positive 

(FP)/C10 or CFP 

True Positive 

(TP)/C11 or CTP 

We consider a confusion matrix [10][11] shown in Table 4 
which also represents a cost matrix for different categories 
of classified instances denoted by C with the classification 
category in subscript. These misclassifications costs can be 
assigned from the domain expert knowledge or can be 
learned via different techniques. 

Mathematically, let (i,j) in Cij be the cost of predicting class 

i when the actual class is j. When i = j, the prediction is 

correct and incorrect otherwise. Given the cost matrix, an 

example is classified as class i with the minimum expected 

cost by using the Bayes risk criterion: 

{0,1}

( ) arg min ( | ) ( , )
i

j

L x P j x C i j



 
 
 


 

where L(x) is a sum over the alternative possibilities for the 

true class of x and P(j|x) is the posterior probability of 

classifying an example x as class j.  

We use a meta-learning based cost sensitive learner 
CostSensitiveClassifier, proposed by Witten and Frank 
[12], which predicts the class with the smallest expected 
misclassification cost. As mentioned earlier, the cost matrix 
can be hard coded by the domain expert or it can be 
learned. In this paper, we take an empirical approach to 
determine the cost matrix. The following points should be 

noted about the cost matrix: 
a. For correct predictions there are no costs, i.e. C00/CTN 

and C11/CTP are 0.  
b. As the number of false positives (FP) is low, we work 

with the default misclassification cost of 1, i.e. CFP=1.  
c. As false negatives (FN) are critically important in our 

domain, we repeat the experiments with different 
values of CFN to determine a near ideal cost matrix. 

We repeat the experiments using a J48 decision tree as the 

baseline classifier and varied the value of CFN from 2 to 100 

to determine the cost matrix that works best for our dataset.  

 

 

Figure 5: TP Rate, TN Rate and AUC for different CFN 

In Figure 5, we see that as CFN is increased the TN rate 

decrease, but not drastically. On the other hand, TP rate 

takes a steep increase until CFN = 70 when it becomes fairly 

constant. At CFN = 90 it takes a bit rise and stays constant 

henceforth. Therefore, at CFN = 70, when TP rate is 0.705, 

TN rate 0.899 and a fairly good AUC of 0.817, the cost 

matrix is: 

              

0 70

1 0

 
 
   

We consider this cost matrix for further experimentation on 

rest of the algorithms.  

COMPARATIVE ANALYSIS AND DISCUSSION 

Figures 6 (a) and (b) compare TP Rates and AUC (two 
metrics that are of highest interest) for the alternative 
approaches. The remainder of the metrics, TN Rate, Gacc 
and Accuracy, are summarized in Table 5.  

 

From Figures 6(a) and (b), it can be said that both 
techniques of handling class imbalance help in achieving 
better performance than using the classical machine 
learning methods directly. But our proposed technique 
SMOTE-Variant performs better than cost sensitive  

  

Figure 6: Comparison of (a) TP Rates (b) AUC 



 

 

 

learning (CSL). One possible reason could be that, with an 
overwhelming increase in minority class instances helps the 
classifiers learn most of the rules for classification. On the 
other hand, in order to achieve this level of performance 
with CSL we need to compromise with accuracy 
performance on negative class which is not advisable. 

The TN rates have dropped by a fair amount in CSL (Table 
5) which has caused a drastic decrease in accuracy. 
Decreases in accuracy by 5-6% in the original dataset are 
acceptable, as in case of sampling. However, in CSL the 
accuracy decreases more than 26% for LogitBoost. This 
decrease in accuracy in CSL, caused by a major decrease in 
the TN Rate, essentially means that PUCK will deliver 
prompts even when they is not required. Determination of a 
threshold of tolerance for unnecessary prompts is a matter 
that needs to be considered further in the context of user 
tolerance and human factors. 

An interesting thing to note is that the TN Rate of J48 in 
CSL is comparable to the TN Rate for sampling. This might 
imply that, even though empirically determining a cost 
matrix is a good idea to get the near best performance, the 
cost matrix cannot be generically used for all algorithms. 
Every algorithm has its own way of handling the hypothesis 
and building the objective function. Therefore, it would be 
a good idea to empirically determine the cost matrix 
individually for all the algorithms. We tried to find a better 
cost matrix for SMO and LogitBoost and found that, on the 
basic cost matrix used in our experiments decreasing CFN 
achieves better performance. For SMO and LogitBoost, a 
cost value for CFN which is close to 30 can achieve a 
greater than 0.8 TN Rate. 

CONCLUSION 

In this paper we compared the performances of SMOTE-

Variant with Cost Sensitive Learning to handle class 

imbalance to improve performance of machine learning 

techniques in an automated prompting system. We found 

that our approach of sampling performed better than CSL. 

But CSL can perform better than shown in this study, if a 

cost matrix is empirically determined separately for each 

algorithm. 
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