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Abstract.  Smart homes offer a potential benefit for individuals who want to lead 
independent lives at home and for loved ones who want to be assured of their 
safety.  We have designed algorithms to detect anomalies and predict events based 
on sensor data collected in a smart environment.  In this paper we explain how 
representing and reasoning about temporal relations improves the performance of 
these algorithms and thus enhances the ability of smart homes to monitor the well 
being of their residents. 
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Introduction 

Temporal rule mining and pattern discovery applied to time series data has attracted 
considerable interest over the last few years. In this paper we consider the problem of 
learning temporal relations between time intervals in smart home data, which includes 
physical activities (such as taking pills while at home) and instrumental activities (such 
as turning on lamps and electronic devices).  Our long-term goal is to keep individuals 
functioning independently at home longer using smart home technologies.  The 
objective of this work is to enhance smart home anomaly detection and prediction 
algorithms using temporal relations extracted from raw sensor data in a smart home 
environment.  

We propose one such framework to derive temporal rules from a time series 
representation of observed inhabitant activities in a smart home, and validate the 
algorithm using both synthetic datasets and real data collected from the MavHome 
smart environment. This framework is based on Allen’s temporal logic [1]. Allen 
suggested that it is more common to describe scenarios by time intervals rather than by 
time points, and listed thirteen relations formulating a temporal logic (before, after, 
meets, meet-by, overlaps, overlapped-by, starts, started-by, finishes, finished-by, 
during, contains, and equals). These temporal relations play a major role in identifying 
temporal activities which occur in a smart home. Consider, as an example, a case where 
an elderly person takes pills after eating food. We notice that these two activities, 
taking pills and eating, share the temporal relation “after” between them. When this 
relationship is violated, the relationship type is updated to “meets” and an anomaly in 
activity is noted. The objective of this research is to identify temporal relations among 
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daily activities in a smart home and to enhance prediction and decision making with 
these discovered relations.  

Temporal interval discovery based on Allen’s interval relations has several 
disadvantages when used for knowledge discovery and pattern recognition. One of the 
major disadvantages is its ambiguous nature. As seen in Figure 1, by applying the 
notion of temporal relations we can identify these relations as A (turn on range top) 
“before” B (turn on oven) and B “before” C (turn on toaster). Finding the best 
representation for the identified temporal interval is a current challenge. We can see 
that A “before” B “before” C is a possible relationship label. However, an alternative 
representation consistent with the events is A “before” B; B “finishes-by” C. The 
second interpretation actually changes our perspective of the scenario. In this case 
when we use the relation B “before” C we know that the event B just occurs before C. 
In contrast, when we interpret the relationship as B finished-by C, an anomaly can be 
flagged in cases where B and C do not finish at the same time.  If we were to use the 
earlier relation of B “before” C, such anomalies would not be captured.  Thus the 
relation of B “finished-by” C is a better fit for the relationship illustrated in Figure 1 
between events A, B, and C. 

Morchen argued that Allen’s temporal patterns are not robust and small differences 
in boundaries lead to different patterns for similar situations [2].  As a possible solution, 
Morchen presented a Time Series Knowledge Representation, which expresses the 
temporal concepts of coincidence and partial order. Although this method appears 
feasible, it does not suit our smart home application due to the granularity of the time 
intervals in smart homes datasets. His approach does handle noise elimination, which is 
a problem with the large datasets generated by smart home sensors.  Björn, et al. [3] 
also reason that space and time play essential roles in everyday lives. They offer 
qualitative approaches for spatiotemporal reasoning in smart homes which are not yet 
presented in an implementation. 

1. Data Collection 

We treat a smart environment as an intelligent agent [4], which perceives the state of 
the residents and their physical surroundings using sensors and acts upon the 
environment using device controllers.  This approach is implemented in our MavHome 
smart home project.  We have collected two months of data on volunteer resident 

 

 
Figure 1. Temporal intervals are labeled as A “before” B “before” C or A “before” B “finishes-by” C. 



activities in the MavLab (shown in Figure 2), resulting 4000 sensed events and 
representing one of the first projects to offer long-term inhabitant and modeling 
algorithms.  The MavHome data collection system consists of an array of motion 
sensors which collect information using X10 devices and our in-house sensor network. 
The lab consists of a presentation area, kitchen, student desks, and a faculty room. 
There are over 100 sensors deployed in the MavLab that include light, temperature, 
humidity, and reed switches. In addition, we created a simulator which generates event 
data corresponding to an activity pattern spanning several rooms and interacting with 
eight devices. 

2. Experimental Evaluation 

Modeling temporal events in smart homes is an important problem and has great 
advantage to people with disabilities and the elderly. We see that temporal constraints 
can model normal activities; if a temporal constraint is not satisfied then a potential 
"abnormal" or "critical" situation may occur. The goal of this experiment is to identify 
temporal relations in smart home datasets and later use them for prediction. There are 
two major problems associated with using Allen’s temporal relations. The first problem 
is the failure of Allen’s approach to identify a single most descriptive relation between 
a pair of events.  The second challenge is how to process event relationships in smart 

 

 
Figure 2.  MavHome environment sensor layout. 



home data, which by its nature has a minute time granularity. In our implementation we 
try to resolve these problems and provide an alternate solution as how the temporal 
relations can be identified and associated on smart home datasets. 

The best way to eliminate ambiguity in identifying the temporal relations is to 
identify and define the boundary conditions for the thirteen defined intervals before we 
use it in our algorithm. We illustrate these boundary conditions in Figure 3, using 

Temporal Relations Pictorial Representation Interval Constraints 

X Before Y 

 

Start(X)<Start(Y); 
End(X)<Start(Y) 

X After Y 
 

Start(X)>Start(Y); 
End(Y)<Start(X) 

X During Y 
 

Start(X)>Start(Y); 
End(X)<End(Y) 

X Contains Y 
 

Start(X)<Start(Y); 
End(X)>End(Y) 

X Overlaps Y 

 

Start(X)<Start(Y); 
Start(Y)<End(X); 
End(X)<End(Y) 

X Overlapped-By Y 

 

Start(Y)<Start(X);     
Start(X)<End(Y); 
End(Y)<End(X) 

X  Meets Y  Start(Y) = End(X) 

X Met-by Y  Start(X)= End (Y) 

X Starts Y 
 

Start(X)=Start(Y); 
End(X)≠End(Y) 

X started-by Y 
 

Start(Y)=Start(X);        
End(X)≠End(Y) 

X Finishes Y 
 

Start(X)≠start(Y); 
End(X) = End (Y) 

X Finished-by Y 
 

Start(X)≠Start(Y); 
End(X)=End(Y) 

X Equals Y 

 

Start(X)=Start(Y); 
End(X)=End(Y) 

Figure 3.  Boundary conditions for Allen’s temporal intervals. 



events X and Y as example events. These conditions are used in our algorithm for 
identifying temporal intervals. The first step of the algorithm applies the Apriori 
algorithm [5] as shown in the pseudo code below to identify the most frequent event 
pairs whose relationships fit one of the thirteen categories. This step addresses the 
puzzle of handling minute time granularity. 

 
Apriori Algorithm Pseudo-code: 
 

2.1. Ck: Candidate itemset of size k 
2.2. Lk : frequent itemset of size k 
2.3. L1 = {frequent items}; 
2.4. for (k = 1; Lk !=∅; k++) do begin  
2.5.      Ck+1 = candidates generated from Lk; 
2.6.     for each day t in datasets do 
2.7.        increment the count of all candidates in Ck+1  that are contained in t  
2.8.     Lk+1  = candidates in Ck+1 with min_support 
2.9. return ∪k Lk; 

 
The next step of the algorithm applies a weighting to the mined temporally-related 

pairs.  This weighting helps us handle ambiguous situations where a temporal relation 
can be labeled as two or more types.  To resolve the issue, we select the temporal label 
that occurs the most often in the observed data between the targeted pair of events. 

 
 Weight =  No of Occurrence of specific Relation      (1)                                                      

                         Total Identified Relations 

 
When validating the algorithm, we apply it to real and synthetic data, whose 

features are specified in Table 1.  Note that the algorithm is constrained in this case to 
only identify event pairs that co-occur in the same day. Table 2 describes the results of 
varying the minimum support to find the frequent temporal relations for the real and 
synthetic datasets.  

Table 1. Parameter settings for experimentation. 

Parameter Setting 

Datasets #Days #Events #Intervals Database size 

Synthetic 60 8 1729 106KB 

Real 60 17 1623 104KB 

 
Table 2.  Minimum support vs. Number of frequent temporal relations identified. 

No of Frequent Itemsets 

Minimum Support Real Dataset Synthetic Dataset 

8 3 2 

4 5 3 

2 10 4 



We then further analyzed the frequent itemsets identified with minimum support of 
value 2 to identify key temporal relations by using the weight based temporal analyzer 
algorithm Figure 4 illustrates the identified temporal relations in these datasets. Table 3 
displays samples of identified frequent relation pairs. 

3. Enhancements to Anomaly Detection and Prediction Algorithms 

Not only does temporal relationship discovery provide insights on patterns of resident 
behavior, but it is also beneficial for constructing other smart homes algorithms such as 
those for anomaly detection and event prediction.  The ability to detect anomalies in a 
smart home is critical for ensuring the well-being of the home’s residents.  Consider 
our scenario in which a son remotely monitors his father’s health with smart home 
assistance.  A few weeks later the son may notice in a report that there his father has an 
anomalous lack of movements around certain parts of the house.  The smart home can 
alert the son and the physician when such an anomaly is detected.  The caregiver will 
then investigate, finding that in fact the father has not been feeling well the last few 
days and has been mostly staying in the bedroom or bathroom. 

Our approach to anomaly detection makes use of the discovered temporal 
relationship information.  From the frequency of the nine relationship events which 
affect anomaly detection (before, contains, overlaps, meets, starts, started-by, finishes, 
finished-by, and equals), we calculate the probability that an event X will or will not 
occur given the observed occurrence of other events that are temporally related to event 
X.  Given the distribution of probabilities over the set of possible events, we calculate 
the outlier threshold as the mean probability +/- 3 standard deviations.  If the event has 
a high probability of occurring given the observed occurrence of other events, yet does 
not occur, an anomaly is reported.  A similar approach can be taken for detecting the 
absence of an event as an anomaly.  We applied this approach to detecting anomalies in 
the real and synthetic datasets.  The anomaly values, defined as the inverse of the 
corresponding event probabilities, are shown for these datasets in Figure 5.  Our 
algorithm did not detect any anomalies in the real data.  This is not surprising, given 
that the resident was a healthy adult and did not report any unusual activities during 

 

Real data: 
Lamp J16 BEFORE Radio  J11 
Lamp I14 AFTER Lamp C9 
Lamp I4 EQUALS Lamp I4 

 
Synthetic data: 

Cooker BEFORE Oven 
Fan AFTER Cooker 
Lamp BEFORE Cooker 

 
Figure 4.  Types of identified temporal relations (left) and samples of identified frequent relations (right). 



that time.  In the synthetic dataset we embedded three anomalous events in order to 
validate our algorithm.  Our algorithm caught all three anomalies, which in a health 
care situation would be reported to the caregiver. 

In a similar fashion, we can use temporal relationship information to predict the 
occurrence of events in a smart home.  This is useful as a basis for automating 
interactions with the home that may be difficult for individuals with physical 
limitations.  In addition, predicting commonly-occurring events forms the basis of 
providing reminders to individuals who need the cues to complete key Activities of 
Daily Living. 

To predict events, we compute the probability of an event X based on observed 
occurrences of other events which typically precede or co-occur with X.  As a result, 
we are interested in the frequencies of the nine temporal relationships:  after, during, 
overlapped-by, met-by, starts, started-by, finishes, finished-by, and equals.  The 
combination of frequencies of these relationships forms the basis of calculating the 
probability for upcoming events.  As events are observed, the likelihood of future 
events is constantly updated.  When the probability of a predicted event exceeds a 
calculated threshold, the event can be “primed” by the smart home by preparing to 
automate the event or reminding the resident to perform the event for himself. 

4. Conclusions 

Temporal analysis in smart homes would be a boon for elderly residents, as this would 
enable them to lead a more independent life. The discovery of temporal patterns would 
help them associate their daily activity and if a violation is found, such as, forgetting to 
take pills, a quick reminder can be sent and also would help them identify the next set 
of activities which might occur when we have a prediction component added to this 
temporal analyzer. We are continuing to evaluate the performance of our anomaly 
detection and event prediction algorithms on real data collected in smart living and 
smart workplace environments, and will in the future consider other supporting 
algorithms that can be enhanced through the addition of temporal reasoning. 
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Figure 5.  Anomaly values for events in the real and synthetic datasets. 
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