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ABSTRACT 
This paper introduces RAS, a cyber-physical system that supports individuals with memory limitations to 
perform daily activities in their own homes. RAS represents a partnership between a smart home, a robot, 
and software agents. When smart home residents perform activities, RAS senses their movement in the space 
and identifies the current activity. RAS tracks activity steps to detect omission errors. When an error is 
detected, the RAS robot finds and approaches the human with an offer of assistance. Assistance consists of 
playing a video recording of the entire activity, showing the omitted activity step, or guiding the resident to 
the object that is required for the current step. We evaluated RAS performance for 54 participants performing 
three scripted activities in a smart home testbed and for 2 participants using the system over multiple days in 
their own homes. In the testbed experiment, activity errors were detected with a sensitivity of 0.955 and 
specificity of 0.992. RAS assistance was performed successfully with a rate of 0.600. In the in-home 
experiments, activity errors were detected with a combined sensitivity of 0.905 and a combined specificity 
of specificity of 0.988. RAS assistance was performed successfully for the in-home experiments with a rate 
of 0.830.  

CCS CONCEPTS 
• Human-centered computing → Ubiquitous and mobile computing • Computing methodologies → 
Machine learning  • Computer systems organization → Embedded and cyber-physical systems → Robotics 
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1 Introduction 
Advances in cyber-physical systems have made machines in our world more responsive, adaptive, precise, 
and efficient. The impact of these transformed systems has propelled dramatic increases in both CPS research 
and commercialization [1], [2]. Because of the aging of the population, a high-priority need for cyber-
physical support is assisting older adults with daily activities. Health care advances have increased life 
expectancy, with a result that older people are projected to outnumber children for the first time in U.S. 
history [3]. The ratio of working-age adults to older adults will fall to just 2.5 by 2060, thus global aging will 
result in health care needs that cannot be met by family, friends, and care providers. Some of the needs 
introduced by this age tsunami can be met by technology [4] through automation of health assessment and 
provision of assistance to both extend functional independence and attenuate the impact of cognitive decline. 

Machine learning-driven smart homes deliver valuable health monitoring and assessment technologies. By 
collecting and analyzing sensor data from wearables, ambient sensors, and cameras, the technologies can 
monitor activity level, gait, sleep patterns, computer usage, social interactions, and daily behavior patterns 
[5]–[14]. This information has been employed in turn to assess depression and loneliness [15]–[17], 
rehabilitation [18], [19], schizophrenia and other targeted health conditions [20], [21], fall risk [22]–[24], and 
cognitive performance [25]–[28]. However, these monitoring technologies need to collaborate with other 
systems that can provide physical interaction with older adults as well as physical assistance when needed. 

 

Figure 1: RAS system overview. Sense: sensors in the smart home collect data while the resident performs daily 
tasks. Identify: activity recognition identifies activities as they occur. Assess: RAS detects missing steps in the 
performed activity. Act: the RAS robot approaches the resident to offer help with the activity. 

Our goal is to partner smart home-based sensing technologies with machine learning-based reasoning and 
robotic assistance to provide a full activity support cycle of sensing, identifying, assessing, and acting to 
support a person’s daily routine. In support of this goal we introduce RAS, a Robotic Activity Support cyber-
physical system. As Figure 1 illustrates, the RAS smart home component uses embedded sensors to monitor 
individuals as they perform their daily routines. RAS analyzes collected sensor data to identify activities as 
they occur. Comparing the activity sequence with typical occurrences of the activity, the system determines 
if an activity step is missing or performed out of order. If such an activity error is detected, the RAS robot 
agent acts by approaching the smart home resident and offering support. The RAS robot acts like a butler, 
offering to play a video of the missing step, play a video of the entire activity, or lead the individual to where 
the object is located that they need for the activity step. 
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While RAS does not currently play all of the roles associated with a robot butler, it does play an important 
role for individuals experiencing memory impairment. Memory impacts the ability for individuals to function 
safely and independently, particularly as cognition-affecting diseases progress. In such situations, RAS acts 
as a cognitive prosthesis. By catching errors in daily activities, reminding individuals how to perform those 
activities, and providing a physical interactive presence, the system can offer activity support that assists 
individuals in independently performing basic and instrumental activities of daily living (ADLs). 

In this paper, we introduce the RAS cyber-physical system and its technical elements. We also investigate 
three issues related to the usability of such a system for real-world activity support. First, we want to 
determine whether the proposed cyber-physical infrastructure can support robust activity recognition and 
tracking with a diversity of sensors and smart home residents. We will assess this by recognizing and tracking 
a set of activities performed by participants in smart home settings, first with item sensors and then with 
motion and door sensors. Second, we want to assess how usable a robotic activity support CPS would be for 
our target population, older adults with cognitive impairment. We will assess this issue by gathering and 
comparing feedback from both younger and older adults who use RAS to monitor and correct activities. 
Third, we want to determine whether a complex cyber physical system such as RAS can be used in natural, 
everyday settings. To assess this issue, we collect feedback from two sets of participants: one set performed 
scripted activities in a testbed environment and a second set performed daily activities in their own homes.  

2 Related Work 
RAS marks a next step in the development of medical cyber-physical systems. As recent surveys describe, 
healthcare cyber-physical systems represent a critical integration of medical devices [29], [30]. Medical CPS 
devices include hardware such as ambient and wearable sensors, data components such as cloud-based 
storage/processing and integrated electronic health records, and interface components to support remote 
caregiver communication. Related research has largely focused on integration challenges including 
component inter-operability, security/privacy, and quality of service. Some previous work, however, has 
introduced cyber-physical systems that integrate both sensing and robot assistance. Specifically, Do et al. 
[31] design a robot-integrated smart home, RiSH, to detect and respond to human falls. While residents wear 
sensing devices to monitoring potential falls, fall detection is further enhanced by fusing wearable 
accelerometer data with microphone sensors located on the robot. RiSH was able to distinguish human 
activity sounds (e.g., eating, drinking, brushing teeth, running water, snoring, talking) from falling sounds 
for scripted tasks performed by 12 subjects. As their experiments demonstrated, the ability to detect falls 
improved when both audio and wearable data were utilized. Fall detection reached 80% for the testbed 
experiments. 

While researchers foresee a need for robotic activity assistance in daily environments, many wonder whether 
older adults and individuals with health needs would be accepting of such assistance, particularly from an 
automated robot. Perhaps surprisingly, several recent studies indicate that these individuals are interested in 
the benefits these systems can provide [32]. In a study led by Begum et al. utilizing robots to assist subjects 
with hand washing and making tea [33], older adults shared that they do want the help that can be provided 
through robotic assistance, yet they do not want a robot in their home. In this study, experimenters monitored 
subjects as they perform two scripted activities, wash hands and make tea. A tele-operated robot assisted 
subjects through navigational guidance and conversational interactions. The robot led subjects to the kitchen 
when it was time to make tea, answered task-specific questions, and led subjects back to their caregiver when 
the task was complete. In contrast with the older adults subjects, caregivers more uniformly expressed a 
desire to install robots in the homes of loved ones to provide assistance with these tasks. 

As Mitzner et al. point out [34], robots will be more widely accepted if they are more carefully designed to 
meet the needs of older adults. Because robots are becoming more reliable, researchers have had opportunity 
to obtain feedback on actual human-robot interactions with this target group and have provided guidance on 
impactful design. For example, Hoffman et al. [35] caution that robot movements and gestures are socially 
expressive, thus these movements affect the level and type of engagement humans will have with them. 
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Destephe et al. [36] as well as Bisio et al. [37] note that humans better understand robot intent if the robot 
moves and gestures in ways that actually mimic biological movement patterns. As a specific example, 
Kupferberg et al. [38] found that robot movement velocity should be similar to that of nearby humans, 
because these similar speeds facilitate perception of a humanoid robot as a true interactive collaborator in 
their daily needs. Some efforts have focused specifically on being sensitive to a human’s interactions needs. 
For example, the robot Pepper [39] perceives its owner’s emotions and adapts its behavior accordingly. As 
Pepper looks at the human, waves its hand, or shakes hands with a human, its own head angle, speed of 
movement, and reaction to human gestures is guided by reinforcement learning to be pleasing to the humans 
around it. 

Another decision that affects CPS design is how much assistance to provide to individuals with health needs. 
Honda [40] has designed their humanoid robots to provide high levels of assistance automation, including 
fetching food and controlling household devices. Mataric et al. [41], however, realize that in many cases 
robots should be designed to help people be independent and thus assist them only when needed, not replacing 
the capabilities of humans to perform tasks when they are able. 

The type of activity assistance that robot cyber-physical systems provide to individuals spans a broad range. 
In some approaches, robots play a passive role, monitoring individuals as they go about their daily routines. 
The robot designed by Goher et al. [42] monitors activities to provide medicine reminders and update 
caregivers of related anomalies. 

In other work, robot systems provide more physical, hands-on assistance to individuals with physical 
limitations. Liao et al. [43] created a robot that provides physical support for upper-arm motions that are 
required in daily tasks, helping those with upper-arm weakness to complete such tasks independently. The 
robot from Riken [44] also provides physical support by transferring individuals between their bed and 
wheelchair when the task cannot be accomplished on their own. Fasola and Mataric [45] designed a robot 
that acts as an exercise coach, providing physical assistance as well as feedback to individuals needing 
physical therapy. When assistance requires more social engagement than physical support, robots from Pu et 
al. [46] and from Wada et al. [47] can be employed. These robots elicit feelings of joy and relaxation from 
their owners, helping in critical moments when individuals are lonely or agitated. 

The work we introduce in the RAS system builds on elements of these previous projects. RAS does utilize 
sensing, activity monitoring, and robot-human interaction to aid individuals in performing daily activities. 
The greatest similarity is with some recent efforts that utilize robot cyber-physical systems for activity 
guidance in fairly constrained settings. As an example, Bovbel and Nijat [48] designed a robot cyber-physical 
system that aided individuals with cooking tasks in home settings. When activated, the robot finds the 
resident, leads them to the kitchen, then points to items stored in pre-programmed locations that they will 
need in order to complete a selected recipe. Hidden Markov models capture past human movement patterns, 
thus reducing the effort needed for the robot to locate and approach the resident. The number of rooms that 
were searched was smaller on average than using random search. 

RAS represents a cyber-physical system that integrates many components. Some of the components, such as 
activity identification and error detection, represent novel enhancements to the field. The robot hardware is 
commercially available and software for object detection and robot localization were based on research from 
other groups that we enhanced to improve performance for our tasks. The main contribution of this work, 
however, is the melding of these individual technologies to create a fully-automated smart home/robot 
activity assistant. By automating activity recognition and tracking, robot navigation, object detection, and 
human-robot interface, we demonstrate that RAS is able to provide support in actual homes with residents 
performing activities that occur in their normal daily routines. Because RAS is fully implemented and tested 
in home settings for routine activities, we also obtain feedback on the usability of the cyber-physical system 
that can inform future research and commercial efforts. 
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3 Methods 
To provide assistance with everyday activities, RAS needs to sense and identify activities as well as detect 
and respond to activity errors. Here we discuss each of the component in turn. These include the smart home 
which provides sensing capability, activity recognition which identifies the activities in real time, and 
software that detects activity errors. We then describe the capabilities of the RAS robot which offers activity 
assistance in the form of prompting, video reminders, and object retrieval. 

3.1 Sense: CASAS smart home 
In our activity support system, the first cyber-physical element is a smart home. In our CASAS smart home, 
ambient sensors are embedded into an existing residence. Data are collected continuously from the sensors 
while residents go about their normal routines. As shown in Figure 2, sensors include passive infrared (PIR) 
motion sensors (coupled with ambient light sensors), magnetic door sensors (coupled with ambient 
temperature sensors), accelerometer-based Estimote item sensors, and pressure-based items sensors. All 
sensors send readings via Zigbee when there is a change in state (i.e., when there is new movement or 
movement has stopped, when a door opens or closes, when an item is accessed, or when the light or 
temperature levels change more than a threshold value). Door sensors are placed on regularly-used external 
doors and cabinets holding key items such as medicine dispensers. Downward-facing motion sensors are 
placed in functional spots of the house with a one-meter field of view, and other motion sensors are angled 
to monitor an entire room or large area. 

  

Figure 2: Sensor layout in CASAS smart home testbed. 

 

Ambient sensors placed in a smart home are discrete event sensors. As such, they do not provide readings at 
constant sample rates but instead send readings with the sensed state changes. For example, a motion sensor 
sends an “ON” message when it senses new motion in its field of view and sends an “OFF” message when 
motion has ceased. The number of readings therefore increases when the activity level rises and decreases 
when less activity occurs (e.g., when the residents are sleeping). Messages sent from ambient sensors are sent 
to a Raspberry Pi, which attaches time stamps and sensor identifiers to each message before storing it in a 
secure SQL database. While amount of collected data varies depending on the number or installed sensors 
and amount of activity that occurs in the home, an average of approximately 3,000 sensor events are collected 
per day in the homes. Although additional sensor sources can be integrated into the system such as wearable 
and video data, currently RAS utilizes ambient sensors for its primary data source. 
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3.2 Identify: Activity recognition 
The second element of the RAS system is real-time recognition of activities from ambient sensor data. This 
element distinguishes this work from earlier research on assisting individuals with targeted activities in 
scripted settings such as hand washing, cooking, and making tea [49]–[51]. In our work, RAS recognizes the 
activity that an individual performs in real time as it is performed. Based on the detected activity, RAS 
retrieves the corresponding information about how the activity is performed, tracks activity steps, and calls 
the robot to action if an omitted step is detected. In this way, assistance can be provided for any recognizable 
activity in a person’s home environment. 

Activity recognition can be characterized as a supervised machine learning problem. Here, a machine 
learning algorithm is given a set of (x,y) pairs where x represents a data point and y represents a corresponding 
class label. In the case of activity recognition, data is collected in the form of a series of n sensor events (or 
sensor readings) s = {e1 e2 .. en} from which descriptive features x=f(s) are extracted. The machine learning 
algorithm maps x onto a value from a set of A possible activity labels, y∈<a1,..,aA>. Activity recognition has 
been widely researched for multiple sources of data including ambient sensors [52], wearable sensors [53], 
and other information sources such as video [54]. If data is pre-segmented into non-overlapping activities, 
each segment can be mapped onto an activity label. Because the smart home data is not pre-segmented and 
we need to recognize activities in real time, we instead map a sequence containing the most recent sensor 
events onto an activity label. For our experiments, the length of each sequence is 30 sensor events. The output 
activity label can be interpreted as the activity that is performed at the end of the fixed-length sequence. This 
way, activity labels are generated that indicate the most recent activity being performed. Figure 3 provides a 
sample of collected data and Table 1 summarizes features that are extracted from these sensor event 
sequences. 

19:20:48.98 LoungeChair On 19:21:09.72 Bedroom On 19:21:22.86 Entry On 
19:20:50.99 LoungeChair Off 19:21:14.44 Bedroom Off 19:21:24.28 OutsideDoor Open 
19:21:01.11 Bedroom On 19:21:15.55 LoungeChair On 19:21:25.69 Entry Off 
19:21:02.98 Bedroom Off 19:21:17.62 LoungeChair Off 19:21:28.14  Entry On 
19:21:03.55 Bedroom On 19:21:18.18 Entry On 19:21:33.12 OutsideDoor Close 
19:21:04.71 Bedroom Off 19:21:21.93 Entry Off 19:21:34.32 Entry Off 
Figure 3: Sample of data sequence containing 18 events. Each event is described by the time of day, the sensor 
identifier, and the sensor message. Dates have been removed here to preserve anonymity. AR labeled this sequence 
as “Enter home”. 

To train the learning algorithm, ground truth activity labels must be provided for some of the data. External 
annotators provide this information based on a floor plan, sensor layout description, input from the residents 
on when and where they typically perform activities, and the raw sensor data. Inter-annotator agreement (a 
measure of labeling consistency) is κ=0.80 for the twelve activities that we model: bathe, bed-toilet transition, 
cook, eat, enter home, leave home, personal hygiene, relax, sleep, take medicine, wash dishes, and work. One 
challenge that has been issued for health CPS is to perform activity recognition with minimal training for 
each new home and person [55]. Toward this goal, we convert each unique sensor identifier to a functional 
area description (see Figure 3) and learn a single population-generalizable model based on one month of 
annotated sensor data from each home. For the experiments in this paper the model is based on data collected 
from 55 single-resident smart homes. This dataset contains a total of 19,347,964 sensor readings. Recognition 
of the twelve activities for this data is 98% across all of the collected data using three-fold cross validation. 
While the experiments are based on single-resident settings, the approach can also be used for activity 
recognition in multiple-resident settings. In these settings, sensor events are still labeled with corresponding 
activity categories, although currently the technology does not track the identity of the residents that are 
performing activities. 

 

 



 7 

Table 1: Features extracted from ambient sensor data for activity recognition. 

Raw Data Type Description 
MA1..MAa; M1..Mb Passive infrared motion sensors (broad area 

or focused region) 
D1..Dc Magnetic door sensors 
LS1..LSd Ambient light sensors 
T1..Te Ambient temperature sensors 
Item1..Itemf Accelerometer-based item sensors 
Date month, day, year 
Time hour:minute:second.ms 

Features Time of the most recent sensor event Hours past midnight; seconds past 
midnight; day of week 

Sequence size Duration in seconds 
Elapsed time since most recent sensor event Seconds 
Dominant sensor Sensor identifier for current and previous 

sequences 
Identifier for most recent event Integer 
Location for most recent event Integer 
Location for most recent motion sensor 
event 

Integer 

Sequence complexity Entropy based on sensor counts 
Change in activity level between first half 
and second half of sequence 

Continuous 

Transitions between locations within 
sequence 

Integer 

Number of distinct sensors in sequence Integer 
Event counts for each sequence (a+b+c+d+e+f) integers 
Elapsed time since last event for each sensor (a+b+c+d+e+f) seconds 

 

3.3 Assess: Activity error detection 
While activity recognition is becoming an established field, less attention has been devoted to tracking 
activity steps to detect errors during the performance of an activity. In earlier work, we explored detecting 
errors as deviations from the normal strategy for an activity [56]. Previous literature characterizes activity 
errors that are frequently committed by individuals with cognitive impairment. An omission error occurs 
when a step necessary for accurate task completion is not performed [57]. A substitution error occurs when 
an abnormal object or location is used for the activity and thus disrupts activity completion, as might occur 
when coffee grains are mistakenly used to make tea [58]. An irrelevant action is one that is performed during 
an activity but is unrelated and unnecessary for the activity, while an inefficient action is one that slows down 
or compromises the efficiency of activity completion. Additional activity difficulties include perseveration, 
in which an individual engages in an activity even after it is completed such as adding extra unneeded 
ingredients while cooking and searching, in which an individual wanders the home or repeatedly opens and 
shuts cabinet doors in search of an activity-related item. 

A novel contribution of this work is automated detection of these types of errors that have previously required 
experimenter monitoring. In the current RAS system, only omission error detection is implemented. Previous 
research found that omission errors uniquely predict a person’s ability to be functionally independent despite 
cognitive and memory limitations  [57]. In this previous study, examples of omission errors included failure 
to retrieve a broom for a sweeping and dusting task (a critical omission) or failure to turn off the television 
at the end of watching a DVD (a non-critical omission). Additionally, RAS currently assumes that activities 
are not interrupted – one activity is performed to completion before another starts. In RAS, a directed acyclic 
graph (DAG) is constructed for each activity, indicating the order in which activity steps should be performed 
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based on observation of normal behavior. During activity monitoring, RAS identifies the current activity then 
traverses the corresponding DAG as the activity steps are tracked. The activity can be identified as described 
in the previous section even when the first step is skipped, which is interpreted as an indication that individual 
wants to engage in that specific activity. When steps are detected in a non-DAG-supported order, RAS signals 
that an activity error has occurred. This signal may be used to initiate an appropriate intervention. 

3.4 Act: Robot intervention 
In the RAS system, a robot intervenes by approaching a smart home resident when an activity error is 
detected, offering to help the resident by showing a video of the entire activity, of the missing activity step, 
or leading the resident to an object that is needed for the step. Performing these tasks requires that the robot 
be mobile, be able to navigate about the space, detect and store locations of human residents and key activity-
related objects, and have an interface that is easy for individuals with memory impairment to use. 

RAS contains many hardware, communication, and software components that must work together as a whole. 
These components and their connections are highlighted in Figure 4. RAS tasks are divided among the 
CASAS smart home (sensors and servers), the on-board robot computer, the Nvidia computer, the tablet app, 
and the robot hardware. Communication between these components is driven by either the RabbitMQ 
message-broker software (if communicating with CASAS) or ROS (if communicating internally within robot 
software elements). While the RAS software configuration shown in Figure 4 is unique to this project, many 
of the components are commercially available, such as the robot hardware platform, RabbitMQ, ROS, object 
detection software, and SLAM software.  

Figure 4: RAS software, hardware, and communication components. Components are located within a CASAS 
smart home, a CASAS server, the RAS on-board computer (Joule or Jetson), robot hardware, or an Android 
tablet interface. Components communicate using RabbitMQ or ROS. 

 

Robot task management is specified by two task state machines, corresponding to the tasks “go to person” 
and “go to object”. These two state machines are designed specifically for RAS but are implemented using 
the existing ROS State Machine infrastructure, or SMACH. Within each SMACH, a node represents a single 
function and transitions are made based on the outcome of the function. Figure 5 shows the two SMACH 
state machines we constructed for RAS. When the “go to person” SMACH is initiated, RAS starts in the 
“FindPerson” execution state. Within this state, RAS queries the database for time and location where the 
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human resident was last located. If the timestamp is at least 10 seconds old, RAS scans the space for the robot 
by rotating the camera. Once the person is located, the corresponding location is updated in the database and 
the SMACH transitions to “GotoLoc” which brings up RAS’s navigation component. If the human is not 
located after scanning the entire space, the RAS robot moves to a new position and repeats the search. RAS 
employs a similar SMACH to find and navigate to desired objects. The current RAS implementation pre-
specifies the objects to detect and store in a location database; future expansion of the research may 
automatically detect important objects based on past execution of the activity and thus more greatly adapt to 
each person’s method of performing daily activities. 

 

 
Figure 5: RAS SMACH state machines for the two robot tasks: Go to Person (left) and Go to Object (right). 

 

Figure 6: The RAS robot. 
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3.4.1 Robot hardware 
The RAS robot (see Figure 6) is built on a TurtleBot 3 base which includes 360o LiDAR for simultaneous 
localization and mapping (SLAM) as well as navigation, an on-board Intel Joule computer, wireless 
communication, and the open-source control module (OpenCR) for the robot operating system (ROS) to 
process sensor data and control the wheels. We made a number of unique modifications to the base robot for 
RAS operation. To improve mobility, stability, and payload we 3D printed “omni wheels” for the back of the 
robot.  These wheels allow the robot to move in all directions. Human and object detection is performed by 
an Orbbec Astra RGBD camera heightened by a 4 ft mast of lightweight aluminum while two servos atop 
the mast facilitate pan-tilt control. Captured video is processed by an Nvidia Jetson computer which also 
maintains a central map of the smart home as well as the locations of objects and humans within the space. 
To provide an interface for smart home residents, we attached an Android tablet with our RAS-interaction 
app to the mast.  

 

Figure 7: Actual layout for bottom floor of smart home with added furniture from Figure 2 (left) and RAS-learned 
map of navigable smart home regions (right). In the robot map, green dots highlight the current LiDAR scan and 
the dark green rectangle represents the robot’s bounding box. 

3.4.2 Robot navigation 
The two SMACH state machines contain execution states that require navigation of the mobile robot to a 
specified location in the smart home. As mentioned earlier, the RAS system needs to operate in any smart 
home environment. This means that RAS must map the space as well as localize the robot and chart 
navigation paths. Cartographer [59] generates a sensor-based map of the smart home layout (see Figure 7) 
and continuously updates the robot’s position on the charted map. One setup step is required: a human 
operator initially drives the robot around the space to ensure that the map includes all navigable smart home 
regions.  

As Figure 7 illustrates, large pieces of furniture are mapped by Cartographer. During navigation, the robot’s 
LiDAR sends additional information about obstacles. These two sources of information are combined into a 
cost map indicating locations that will likely cause robot collisions. A “safe zone” buffer is built around each 
detected obstacle and is avoided during navigation, creating paths that achieve maximum clearance on all 
sides of the robot. 
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3.4.3 Human / object detection 
There are two situations in which RAS performs object detection. First, when an activity error is detected, 
the robot needs to find, approach, and face the human (human detection). Second, if a person forgets where 
an object is located that is needed for an activity  (e.g., a medicine dispenser), RAS leads the person to the 
object. This feat requires object detection as well as the ability to store object locations in the map and 
navigate to the intended location. Video data for object detection is collected with an RGBD camera that is 
poised at the top of the robot’s mast (see Figure 6). The RGB channels obtain color distributions and the D 
channel collects depth, or distance to the nearest object from each pixel in the image. In addition to assisting 
with better visual coverage of the space, the Arduino-controlled mount reports current pan-tilt angles to RAS. 
These servo angles facilitate calculation of the location where the camera is pointing relative to the robot. By 
varying the mount angles, RAS can scan the entire space. Using a coordinate transformation, RAS can 
express the object’s location in terms of map coordinates to store for later use. 

The goal of object detection is to generate a bounding box around each object of a given class (e.g., each 
medicine container) within a captured image. As illustrated in Figure 8, once the bounding box is created, 
3D positions of each bounding box are calculated based on the calibrated depth channel. Next, the 3D position 
relative to the camera is converted into a position relative to the navigation module’s map. This conversion 
is performed by applying a coordinate transform to the original 3D location. Finally, we update the last-seen 
location of the object and save it to a database that RAS can later query when the object is needed. 

Figure 8: RAS human / object detection. Images that may contain objects of interest (e.g., flower pot, medicine 
dispenser, glass, dog) are collected from robot camera images or publicly-available image repositories (upper left). 
These training images are manually preprocessed to label objects and indicate the corresponding object bounding 
boxes (upper right). Once labeled, the training images are fed to a convolutional neural network (lower left). The 
trained CNN is stored in RAS to use for real-time object detection based on video collected from the RGB camera 
(lower right). 
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Figure 9: The tablet shows a passive avatar expression when RAS is in monitor mode (top). In assistant mode, the 
tablet shows an inquisitive expression while asking the resident if they want help with the activity (bottom). 

We employ a convolutional neural network (CNN), which has demonstrated success for general object 
detection [60]. Here, training points are fed to the network consisting of bounding box-constrained regions 
of a specific image, where different bounding box specifications define different data points. The network 
predicts a class (object label) for each box as well as an amount and direction to shift the box. During training, 
we use an objective function that balances minimizing error for incorrect class labels and minimizing error 
for incorrect bounding box positions [61]. Utilizing a complex, multi-objective function introduces numerous 
hyperparameters that need to be selected to define the network structure, number of bounding boxes, and 
bounding box constraints for size and position. 

We train a specific type of CNN, a region-based fully convolutional network (R-FCN), using a combination 
of images of RAS-selected objects collected from the smart home and additional images from online 
databases. The R-FCN separates object detection into two steps. In the first step, a portion of a feature 
extractor network proposes boxes based on the input image that may contain the objects. After cropping the 
image to contain only the boxes, the rest of the network processes the updated features in the second step to 
classify the objects. Each image is preprocessed by manually drawing a bounding box around the object of 
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interest and assigning a class label. Once trained, RAS can perform object detection in real time using video 
from the robot camera. RAS processes approximately 10 frames per second using this approach, which 
supports looking for objects of interest at the normal speed of the robot. The camera’s depth sensor generates 
a point cloud that indicates the 3D position of a detected object relative to the camera. After transforming the 
relative position to an object location position, the object’s location is updated in RAS’s object location 
database. The same process is applied to maintain most-recent locations for smart home residents as well. 

 

Figure 10: The tablet interface offers four responses: “Show video full” (of the entire activity), “Show video step” 
(of the current activity step), “Take me to the object”, and “I did it!” (top). If an activity video is requested then 
it is played on the tablet interface (bottom). 

 

3.4.4 Robot-human interface 
The RAS robot-human interface was created with guidance from an open discussion with the design team 
and a group of twenty-five potential participants. Interactions are facilitated by an Android app which 
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maintains three expressive modes. The first mode, monitor mode, is adopted when RAS is passively tracking 
activities within the house (Figure 9 top). If the smart home detects an activity error then RAS transitions to 
assistant mode (Figure 9 bottom). In assistant mode, RAS initiates the Go to Person SMACH and approaches 
the smart home resident with an offer of help. If RAS’s offer of help is accepted, the tablet then offers four 
options (Figure 10): show a video of the entire activity on the tablet, show a video of the current (missing) 
activity step, lead the resident to the object that is needed for the activity step (the name of the object is 
completed by the interface), or confirm that the step has been completed. Once the error is corrected, RAS 
transitions to success mode, offering a pleased expression to the user (Figure 6). 

All of the activity videos are prerecorded and segmented, ideally showing the resident performing the activity 
in their own home. Videos are stored on the CASAS server and played through a web server interface when 
needed. If the resident requests that the robot lead the way to an object needed for the activity, then the tablet 
plays a “Follow me” audio clip and RAS initiates the Go to Object SMACH. Once the object is in visual 
range and physical reach, the robot stops and the interface plays a “Here you go” audio clip. 

4 Experimental Protocols and Results 
We evaluate the RAS cyber physical system to assess our three goals: ability to track activities across 
different homes, different residents, and even different types of sensors; usability of the system by these 
different individuals; and capability of performing in natural home situations. To this end, we evaluate RAS 
in two types of settings. First, we conducted a controlled experiment in a single smart home with younger 
adult and older adult participants and item sensors. Second, we deploy RAS for multi-day use in two smart 
homes to support routine activities. 

4.1 Testbed experiment 
Our first experiment setting occurred in an on-campus smart apartment. We used the first floor of the smart 
home with the sensor layout that is shown in Figure 2. The furniture layout and corresponding RAS 
navigational map is shown in Figure 7. We recruited n=54 participants (27 younger adults and 27 older adults) 
to visit the smart apartment, one at a time, and perform a set of scripted activities. Each activity was reflective 
of normal routine behavior: prepare to take the dog for a walk, take medicine with food, fill the watering can 
with water and water plants in two locations around the home. Additionally, these activities represent 
instrumental activities of daily living (IADLs) that are commonly assessed by IADL questionnaires as well 
as by performance-based measures of everyday competency [62]. Successful completion of IADLs requires 
intact cognitive abilities such as memory and executive functions [63]. Therefore, these activities are likely 
candidates for needing assistance in home settings. 

For each activity, subjects performed the activity four times, once without errors and three additional times 
with missing activity steps. In the case of walking the dog, possible errors were failing to retrieve an umbrella, 
failing to grab house keys, and not bringing the dog leash. In the case of taking medicine, errors include 
forgetting to take food with the medicine, not retrieving the medicine, and not taking the medicine. For the 
water plants activity, errors included not filling the water can and forgetting to water some of the plants. 
Steps were chosen for omission based on a corresponding interaction with an object. This is a feature that 
distinguishes instrumental activities of daily living from basic activities of daily living. Researchers have 
shown that declining ability to perform IADLs is related to early symptoms decline in cognitive abilities [64] 
so we want to focus on this distinction for the RAS use cases. Some participants were unable to complete all 
activity tasks in the available time and others performed activities multiple times. Data were collected for a 
total of 683 activity occurrences. 

In this experiment, we use Estimotes [65] to collect activity data. Estimotes are stickers with embedded 
accelerometers and temperature sensors (see Figure 11). We attached them to objects throughout the smart 
apartment. Because the sensors provide raw acceleration data, we determined that an object was being moved 
or manipulated when the acceleration values exceed a specified threshold. This information is sent to the 
CASAS which time-stamps the object usage information and stores it in the CASAS database. 
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Table 2: Malfunction rates, categorized by type of malfunction. 

Error type Total 
FP 0.008 
FN 0.005 
Object detection 0.000 
Human detection 0.088 
Navigation 0.054 
Interface 0.021 
System 0.029 
Experimenter intervention required 0.455 

 

Table 2 summarizes the performance of RAS for this experiment. For each entry in the table, malfunction 
rate is computed as the ratio of activity occurrences that include the particular type of malfunction to the total 
number of activity occurrences. As Figure 4 shows, there are many components that need to operate smoothly 
for RAS to function. As a result, we summarize system error rate based on the corresponding categories of 
errors that may occur, as follows. 

• False positive activity error detection (FP). These are errors that were detected by RAS but did not 
actually occur. 

• False negative activity error detection (FN). These are errors that were committed by subjects but 
were not detected by RAS. 

• Object detection malfunction. If a smart home resident requests that RAS lead the way to an 
important object for an activity, RAS initiates the Go to Object SMACH. The robot navigates to the 
stored object location if one is available, then scans the space for the object using object detection.  

• Human detection malfunction. Once an activity error is detected, RAS signals the robot to approach 
the smart home resident via to the Go to Person SMACH. A malfunction is reported when the robot 
does not move within an acceptable (2 foot) range or does not turn to directly face the human.  

• Navigation malfunction. The Go to Person and Go to Object SMACHs rely on the navigation module 
to successfully steer the robot to the desired location without incident. However, navigation 
malfunctions did occasionally occur. These included the robot getting stuck on an object or halting 
movement prior to reaching the intended location. 

• Interface malfunction. App interface malfunctions were noted on a few occasions by the 
experimenters. These include the tablet not registering the user response or not providing a verbal 
prompt to follow the robot.  

• System malfunction. These malfunctions reflect broken communication between the CASAS server 
and RAS manager or between the RAS manager and the robot. 

 

Activity errors were detected in this experiment with a sensitivity of 0.955 and a specificity of 0.992. 
However, other types of RAS assistance problems did occur. While the malfunction rate for any given 
category of system issue was low as shown in Table 2, there were still situations that required experimenter 
intervention. In some cases, intervention was required when a RAS component malfunctioned. In other cases, 
intervention was required because a subject went off script with their routine and introduced anomalies that 
were not handled by RAS. The independent-success rate for RAS was 0.600. This number indicates that even 
though individual RAS components may be fairly robust, the overall system requires additional refinement 
to be sensitive to the dynamic nature of human activities in their own home environments. In this scripted 
experiment, the smart home resident would independently complete activities with a success rate of 0.250. 
With RAS intervention, the expected success rate improves to 0.700. 
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Table 3: PSSUQ mean and standard deviation results, by group and overall. 

Questionnaire Younger adults  (n=27) Older adults (n=17)  
PSSUQ   

Overall 4.55 (1.95) 4.38 (1.92) 
System usefulness 4.37 (1.89) 4.22 (2.07) 
Interface quality 4.83 (1.94) 5.06 (1.70) 
Information quality 4.66 (2.23) 5.50 (1.72) 

 

To further assess the usability of RAS, we asked the younger adult and older adult participants to provide 
feedback on the system usability and usefulness after finishing the scripted activities. Specifically, they 
completed a Post-Study System Usability Questionnaire (PSSUQ). PSSUQ uses Likert ratings, where 1 = 
strongly agree and 7 = strongly disagree (lower numbers are more favorable). Table 3 summarizes the results 
from the two groups of participants.  

4.2 In-home experiment 
We next evaluate the ability of RAS to operate for multiple days, without experimenter intervention, in a 
smart home assisting a resident with daily activities. This experiment differed from the previous one in 
several ways. First, RAS now operated autonomously with no experimenter assistance. Second, subjects 
selected activities for assistance that were part of their normal daily routine and were performed in their 
routine manner. Third, activities were recognized and tracked using ambient sensors (passive infrared and 
door) instead of Estimote item sensors (the two types of sensors are illustrated in Figure 11). 

After receiving feedback for the testbed experiment, we modified RAS to reduce communication delays with 
the CASAS server. Additionally, we modified robot navigation to keep the robot farther away from detected 
objects, reducing the likelihood of collision with furniture. Finally, we performed activity tracking on the 
CASAS server rather than on the local robot computer, further reducing network traffic. This modified 
version of the robot was employed for the in-home study. 

 

Figure 11: Estimote sensors attached to house keys and a flower pot (left). Passive infrared motion sensors installed 
on the ceiling of a smart home (right). 
 

We performed this experiment in two different smart homes. Home 1 housed a younger adult female resident 
and Home 2 housed an older adult couple (only one resident interacted with the robot and provided feedback). 
In each home, we installed ambient sensors and collected data for one week to train activity recognition 
models. During this initial visit, experimenters met with residents to select three activities they performed 
multiple times each day for which RAS could provide support. Experimenters explained to residents the 
purpose of RAS and its goal to assist with basic and instrumental ADLs. The resident then suggested activities 
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they performed routinely that fit in these categories. Experimenters recorded video of the resident performing 
each activity to later use for prompting videos and the RAS robot learned a map of the space. 

 

Table 4: Activities selected for RAS support in two smart homes. Steps that are 
omitted during activity error are highlighted in green italic font. 

Home 1 Home 2 
Activity: Eat Activity: Take medicine 

 Bring food and dishes to dining room  Retrieve pill crushing tools, crush medicine 
 Eat meal  Fetch applesauce from refrigerator, mix with pills 
 Return items to kitchen and wash dishes  Take medicine 
   Wash tools in kitchen sink 
   Return tools 
   Put remaining applesauce in refrigerator 

Activity:  Take medicine Activity: Make coffee 
 Retrieve medicine  Retrieve coffee maker 
 Fill glass with water  Pour water info coffee maker 
 Take medicine with water  Retrieve coffee grounds, scoop into coffee maker 
 Return medicine  Put coffee grounds back 
 Return glass  Put coffee maker back 

Activity: Work Activity: Eat 
 Retrieve computer  Retrieve dishes 
 Sit on couch to work on computer  Assemble food 

   Take items to dining room table and eat 
   Wash dishes in sink 

 
After activity models were learned, the RAS robot was installed in the smart home to provide activity support 
for 3-4 days. During this time, participants performed the selected activities at least twice each day while 
RAS monitored activity performance. Participants were instructed to inject one activity omission error for 
each activity one time each day, allowing RAS to aid them in finishing the incomplete activity. In each case, 
the participant chose the step to omit. To motivate their decision they considered a type of omission they 
would be like to commit and want assistance to complete. Rather than skip different steps during different 
performance of the activity, the same step was skipped each time. The activities were not scripted and no 
experimenter was present to guide the resident. As a result, the activities naturally varied from one day to the 
next.  RAS performance was averaged over these multiple variations of the same activity and same error to 
assess the generalized performance of the system. The selected activities with corresponding steps and errors 
are summarized for each home in Table 4. Participants were given log books to record notes about 
interactions with RAS. After the multi-day RAS support, participants completed system satisfaction 
questionnaires similar to those completed in the testbed experiment. 

For these in-home tests, participants maintained a log book of their RAS interactions. In addition to providing 
notes on the daily activities and RAS support, participants provided quantitative feedback after each activity, 
rating the RAS interaction. Once the study was completed, participants answered an additional set of survey 
questions indicating their overall rating of the system. A summary of participant responses is provided in 
Table 5. As the results indicate, RAS was able to guide residents through activities when errors were detected. 
However, participant notes indicate that the current system is inflexible and needs to handle a greater variety 
of activity contexts to be broadly useful. 
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Table 5: Survey responses for in-home study. Feedback uses scale                                         
1 (extremely dissatisfied) – 7 (extremely satisfied). 

Question / Scale Home 1 Home 2 
Ease of completing activity (daily, averaged) 6.83 4.38 
Mistake caught in time to fix (daily, averaged) 4.00 6.00 
Robot offers enough support for day-to-day activities (daily, averaged) 6.13 4.67 
Satisfied with robot and its help (daily, averaged) 5.58 3.50 
I was able to complete the activities using RAS (overall) 6 6 
I felt comfortable using this system (overall) 6 7 

 

5 Discussion 
Evaluation of RAS in a testbed apartment as well as two homes with participant residents reveal both 
successes and challenges of deploying a robot/smart home activity support system. Because the RAS system 
has many components, there are many sources of possible error. For the testbed experiment, the false positive 
and false negative activity error detection malfunction rates indicate that in 9 of the 683 activity occurrences, 
activity errors were incorrectly detected. Experimenters noted that these false positives and false negatives 
were attributed to the Estimotes. The Estimote sensors were attached to items throughout the apartment. If 
an item was moved, the Estimote software sent a “Move” message that was collected by RAS. Because the 
amount of movement needed to exceed a specified threshold, in some cases the sensors were too sensitive 
and in other cases they were not sensitive enough. 
 
A second source of error is object or human detection. In a separate study we evaluated our software for its 
ability to detect the specific objects used in the study as well as to detect humans under a variety of lighting 
conditions. The evaluation indicated a macro-average object detection precision of 0.99, which is consisted 
with the error rates we observed in the testbed experiment. However, human detection errors were more 
common because of the much greater variation in human images. Training the detector with a much greater 
number of human faces, varied lighting conditions, and different background settings may improve the 
results. 
 
During the testbed experiments, RAS did experience 37 navigation errors. In 10 of these cases, the robot got 
stuck on an object. Typically this occurred at the corner of the object and could be addressed by adjusting the 
SLAM software to keep the robot farther away from all objects in the space. Because the goal was to move 
robots to a distance that is considered commonly accept for one-on-one interactions, any situation in which 
the robot halted greater than two feet away from the human was considered an error. In the future, we may 
modify this measurement to allow the participant to indicate when the interaction distance is comfortable. 
 
The remaining malfunctions were highly varied. In some cases, participants did not push a correct button on 
the interface, did not push hard enough, or accidentally reset the app, causing an interface malfunction. In 
other cases, the tremendous amount of wireless traffic near the testbed site caused message interference. The 
smart home testbed is part of a large apartment building with numerous wireless networks. The amount of 
traffic surrounding the apartment, as well as within the smart home, caused some network packets to be 
dropped. Future versions of the RAS system will need to be made more robust to handle these situations 
more gracefully. Because the popularity of smart homes is growing, robust communication will become 
increasingly important to ensure reliability of all related services. 
 
For the in-home study, RAS committed one false positive error detection (Work) and one false negative error 
detection (Eat) in Home 1. These errors were likely due to the coarse-granularity detection of resident 
movement and activity in the confined space were all of the activities were performed. Home 2 presented a 
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greater activity tracking challenge because multiple residents live in the home. While activity recognition 
still labels each sensor event with a corresponding activity label regardless of the resident that performs the 
activity, more movement throughout the house increases the complexity of the recognition task. As a result, 
RAS committed three false positive error detections, all for the Eat activity. 
 
Interestingly, RAS also correctly detected an error in each house that was not part of the scripted tasks or 
preplanned errors. In Home 1, RAS twice reminded the resident to clean up after a meal when the resident 
was slow to do this. In Home 2, RAS prompted the resident to return medicine tools and coffee to their 
storage locations throughout the day when the resident did not do these steps. Combined across the in-home 
experiments, activity errors were detected with a sensitivity of 0905 and a specificity of 0.988. RAS activity 
assistance success (defined as the ratio of activity occurrences with successful error detection, intervention, 
and navigation to the total number of activity occurrences) was 0.84 in Home 1 and 0.83 in Home 2. In these 
homes, given the human-only success rate of 0.500, RAS assistance would improve successful activity 
completion to an expected rate of 0.915. 
 
For both the testbed experiment and the in-home experiments, participants found interacting with the robot 
generally enjoyable and the interface easy to understand. However, participants frequently felt that the robot 
moved too slow. On the other hand, participants occasionally would move out of the path of the robot if the 
robot approached them too quickly. In these situations they participants viewed the move as too aggressive 
and were not certain of the robot’s intensions. These observations indicate that additional research is needed 
to ensure that all of the robot movements are natural, non-threatening, yet efficient. These interactions will 
become more complex as the number of people in the home increases and when the residents entertain visitors 
who are unfamiliar with the robot movements and interactions. 

6 Conclusions 
In this paper we introduce RAS, a cyber-physical approach to offering activity support for individuals with 
health limitations. By partnering the physical capabilities of smart home sensors and robot movements with 
the computational elements needed to track activities and detect objects, RAS aims to provide complete 
activity support. We validated in the paper that the system can sense human behavior, identify current 
activities, assess whether an activity error has occurred, and intervene by playing a video of the activity or 
leading the resident to a needed item. Through a testbed and two in-home experiments we demonstrated that 
the numerous sensing, computing, and actuating components can work together to provide activity support 
that was accepted by younger and older participants. 

Future work on this cyber-physical system will focus on improving communication robustness and increasing 
the diversity of activities to support. RAS can also mature by handling interwoven activities and additional 
types of activity errors. Additionally, we would like to enhance the system to include automated video 
recording of activities as well as segmentation into task steps. We anticipate that the RAS robot can 
automatically capture video of the resident performing activities to use as future intervention cues. By 
incorporating change point detection techniques, video and smart home data can be partitioned into individual 
activity steps for monitoring and prompting. This will reduce the manual overhead of using the system and 
allow the technology to be used in a greater variety of naturalistic settings for individuals who need activity 
support to remain functionally independent. 
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