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HydraGAN: A Cooperative Agent Model for Multi-Objective
Data Generation
CHANCE DESMET and DIANE J COOK,Washington State University, USA

Generative adversarial networks have become a de facto approach to generate synthetic data points that
resemble their real counterparts. We tackle the situation where the realism of individual samples is not the sole
criterion for synthetic data generation. Additional constraints such as privacy preservation, distribution realism,
and diversity promotion may also be essential to optimize. To address this challenge, we introduce HydraGAN,
a multi-agent network that performs multi-objective synthetic data generation. We theoretically verify that
training the HydraGAN system, containing a single generator and an arbitrary number of discriminators, leads
to a Nash equilibrium. Experimental results for six datasets indicate that HydraGAN consistently outperforms
prior methods in maximizing the Area under the Radar Curve (AuRC), balancing a combination of cooperative
or competitive data generation goals.

CCS Concepts: • Computing methodologies → Multi-agent systems; Cooperation and coordination;
Modeling methodologies; • Security and privacy→ Data anonymization and sanitization.

Additional Key Words and Phrases: synthetic data generation, multi-agent GAN, contrasting objectives, PPDM
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1 INTRODUCTION
Machine learning models require a sufficient amount and diversity of training data to maximize
robustness and minimize bias. A dearth of data can negatively impact predictive performance.
Recognizing the surrogate role offered by synthetic data generators, researchers have created
methods to generate increasingly realistic data proxies.

In some cases, emulating all characteristics of real data is not the sole, or even desired, criterion
for data generators. For example, when the data contain sensitive attributes, there may exist dual
(and dueling) goals of maintaining the data’s predictive power while preventing re-identification
of sensitive information from the synthetic proxies. Balancing these conflicting desires may be
characterized by a privacy-utility curve [26, 35, 45, 51], demonstrating that gains in realism are
frequently accompanied by corresponding decreases in data privacy. Data scientists typically
identify a point on the curve representing an acceptable trade-off between these two forces and
conjure application-specific means to minimize the ratio of utility loss to privacy gain [7, 27, 39, 42,
54, 58].
While privacy and realism are known to be contrasting goals, the relationships between other

data constraints may be less obvious. A method is needed to generate data that optimizes multiple,
possibly opposing, goals. In response to this need, we propose an algorithm that balances multiple
data generation criteria. This algorithm is “multi-headed,” meaning it can optimize a combination of
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2 DeSmet, Cook

goals even when the relationship between them is not known a priori. Our algorithm, HydraGAN, is
a multi-headed (multi-agent) generative adversarial network that assigns a “head” (discriminator) to
each data generation goal. HydraGAN’s generator is trained to create synthetic data that minimizes
the aggregated loss across all discriminators in the system.

To validate HydraGAN, we compare the algorithm’s performance to baseline methods on several
datasets from the domains of healthcare, finance, power distribution, and botany. Here, we focus
on the following performance criteria: maximize realism for each individual synthetic data point,
maximize distribution realism for a batch of synthetic data, meet externally-imposed diversity
constraints, minimize re-identification of sensitive features, and maximize the predictive accuracy
of a model that is trained on real data. This work offers the following contributions:

(1) We introduce a novel multi-agent generative adversarial network (GAN) architecture.
(2) We define new discriminator agents and loss functions to optimize a set of synthetic data generation

goals.
(3) We verify HydraGAN’s ability to achieve a Nash equilibrium.
(4) We introduce novel methods and metrics to evaluate multi-criteria GANs.
(5) We evaluate the multi-agent GAN on real and synthetic datasets, demonstrating the superior ability

of HydraGAN to optimize a combination of data generation goals.

The structure of this paper is organized as follows. Section 2 provides a review of recent break-
throughs in synthetic data generation and multi-agent GANs, highlighting the unique aspects
of our proposed algorithm. Section 3 delves into the intricacies of the HydraGAN framework,
detailing its multiple discriminators and their coordinated interaction with a single generator.
HydraGAN utilizes a multi-agent design, enabling both cooperative and competitive dynamics
among its components. In Section 4, we present a formal verification demonstrating that HydraGAN
consistently achieves equilibrium, an essential characteristic for multi-agent GAN systems. Section
5 is devoted to assessing the efficacy of HydraGAN across various optimization metrics, employing
six datasets for a comparative analysis against four established baseline methods. Finally, Section 6
offers insights derived from our findings and proposes potential avenues for future research in this
field.

2 RELATEDWORK
2.1 Synthetic data generation
The popularity of synthetic data creation algorithms is evidenced by the diversity of their uses,
including antenna and building design, gait analysis, and mediation of machine learning challenges
such as class imbalance [5, 10, 17, 22, 24, 36, 43, 47, 50, 57, 59]. GANs are not only the method of
choice but are being refined to produce increasingly more realistic data. One example, the Stacked
MultiChannel Auto-encoder, combines synthetic and real data into multiple channels to better
inform encoder training, improving data quality [61]. Similarly, SenseGen combines LSTM layers
from the generator and the discriminator, allowing both networks to ’remember’ the trajectory of
real and candidate samples to boost outcomes [2]. HydraGAN complements these prior works by
integrating diverse goals for the synthetic data.

2.2 Multi-agent GANs
While GANs are traditionally designed as two-agent systems [8, 13, 19, 21, 25], recent work has
expanded this idea to include multiple generator or discriminator networks. As an example, Cy-
cleGAN’s two discriminators and two generators aid in mapping images between domains. The
first generator creates images for one domain, the second targets a new domain, and each is paired
with a corresponding discriminator [63]. Similarly in the image domain, Hardy et al. introduced
MD-GAN [28], which employs multiple discriminators within a federated learning environment. In
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HydraGAN: A Cooperative Agent Model for Multi-Objective Data Generation 3

MD-GAN, a single generator learns from distributed systems, each analyzing a subset of the data.
Intrator et al. [32] introduced yet another multi-discriminator GAN, called MDGAN, that combines
efforts from two discriminators to boost the realism of generated samples.

While these ideas enhance the ability of GANs to generate realistic data, little effort has focused
on generating data with competing objectives. This gap is filled by HydraGAN, which trains a
generator to accommodate a mix of objectives. Unlike MDGAN which freezes discriminators while
training others, the HydraGAN generator does not adjust its weights until it has accumulated the
total loss from all discriminators, converging to an equilibrium between all of the discriminators’
objectives.

2.3 Addressing GAN vulnerabilities
With the proliferation of synthetic data generation techniques, the benefits of synthetic data
have been accompanied by unforeseen challenges. In particular, researchers found that real data
used to create synthetic proxies may be vulnerable to subsequent exploitation from adversarial
actors [9, 52]. In particular, models trained on synthetic data may be vulnerable to membership
inference attacks. In this scenario, an adversary infers which real data were used to train the model
and thereby extracts sensitive, private information from included and excluded real data [30]. In
response, privacy-preserving data mining (PPDM) strategies ensure that the use of synthetic data
does not cause intended or unintended harm [1, 18]. These strategies range from adding noise
[12, 15, 31, 33, 38] to suppressing data within sensitive records [55].

HydraGAN addresses issues of data privacy through the inclusion of a re-identification discrimi-
nator that attempts to identify sensitive information from the generated sample. As a result, the
generator will produce synthetic data that are less easily identifiable by this discriminator, reducing
the ability of a malicious entity to collect information on vulnerable data samples.
Additionally, GANs traditionally suffer from not representing the entire distribution of real

data [3]. Such mode collapse typically results from the network generating repetitive samples that
represent only a subset of the real data instead of retaining the characteristics of the entire real
dataset.

HydraGAN moves away from these previous approaches. Because HydraGAN generates a batch
of samples at a time, the algorithm can evaluate entire batches for objectives that include distribution
realism and diversity. The distribution realism helps HydraGAN avoid mode collapse, while the
diversity discriminator allows HydraGAN to be resilient in the presence of an input dataset that
undersamples population subsets. The further inclusion of a privacy discriminator supports privacy
preservation from synthetic data. Uniquely, the combination of these multiple discriminator agents
ensures that each of these goals influences the type of data generated by the system.

3 HydraGAN DESIGN
HydraGAN is designed as a multi-agent GAN, consisting of one generator and an arbitrary number
of discriminators. The discriminator structures are designed to either process one generated sample
at a time or an entire batch of generated data. HydraGAN’s architecture is illustrated in Figure 1. As
shown in the figure, each of HydraGAN’s discriminators separately critique a batch of generated
samples, providing feedback based on their separate objectives. The two alternative discriminator
final layers allow the network to output one value per generated sample or one value for an entire
data batch, to accommodate the needs of the discriminator objective and loss function.1 Here, we
describe the structure and function of HydraGAN’s generator and the set of discriminators that are
included and evaluated in the current HydraGAN design.

1HydraGAN code and datasets are available at https://github.com/Chance-DeSmet/HydraGAN.
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4 DeSmet, Cook

Fig. 1. The HydraGAN model architecture. HydraGAN offers two discriminator structures. One network
structure supports discriminators that output a single value for the entire generated batch (e.g., theDistribution
Realism and Diversity discriminators). The second structure supports discriminators that output a value
for each generated sample within the batch (e.g., the Point Realism, Privacy, and Maintained Accuracy
discriminators).

3.1 HydraGAN generator
HydraGAN’s generator creates data that balance the multiple objectives represented by the indi-
vidual discriminators. Shown in Figure 2, the generator structure contains three fully-connected
layers with two activation functions. HydraGAN’s generator differs from that found in other GANs.
HydraGAN generates a batch of data at a time (see Figure 2). HydraGAN’s multi-sample output
allows the discriminators to assess the batch data distribution as well as individual data samples.
This allows HydraGAN to fulfill objectives such as data diversity and emulation of the original
data distribution, sidestepping the trap of mode collapse.
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HydraGAN: A Cooperative Agent Model for Multi-Objective Data Generation 5

Fig. 2. HydraGAN networks: (left) batch and sample discriminator structures, (right) generator structure.

Algorithm 1 provides a summary of HydraGAN’s training process. To aid in the discussion,
Table 1 summarizes notations used throughout this and the following sections.

3.2 HydraGAN discriminators
HydraGAN’s single generator is pitted adversarially against any number of discriminators. Because
HydraGAN’s objectives apply to either individual points or a collection (batch) of points, the
discriminators employ two alternative structures. In some cases, discriminators examine an entire
batch of data and output a value that reflects the quality of that batch. In other cases, discriminators
output a separate value for each sample within the data batch.

The two discriminator structures are shown in Figure 2. Input to both types of discriminators is
identical and passes through two parallel series of convolutions. The first of these convolutions
analyzes intra-batch characteristics by moving a convolutional window across each of the samples.
The second sorts the data values for each feature and passes the sorted vector through a series
of convolutional windows to extract a single value for each feature. This sorting step allows the
network to focus on a specific range and distribution of values across each of the features. The
result ensures that the distribution characteristics of the real data may be retained.
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6 DeSmet, Cook

Algorithm 1 The training cycle of HydraGAN. Each discriminator is trained individually, while
the generator is trained on the aggregation of the discriminators.
𝐺 : Generator
𝐷 : Set of discriminators
𝐿 : MSE loss function
𝐿𝑑 : Discriminator loss variable
𝐿𝑔 : Generator loss variable
𝑂𝑃𝑇 : Stochastic gradient descent optimizer
𝑌𝑑 : Discriminator output
𝑌𝑔 : Generator output
𝑂 : Optimal generator behavior
𝑧 : Noise
𝑋 : Real data
while training do
𝐿𝑔 = 0
for 𝑑 ∈ 𝐷 do
𝑌𝑔 = 𝐺 (𝑧) # generate synthetic data
𝑌𝑑 = 𝑑 (𝑌𝑔) # evaluate synthetic data
𝐿𝑑 = 𝐿(𝑑 (𝑋 ), 𝑌𝑑 ) # calculate discriminator loss
𝐿𝑔 = 𝐿𝑔 + 𝐿(𝑌𝑑 ,𝑂) # calculate generator loss
𝑂𝑃𝑇 (𝐿𝑑 ) # update individual discriminator

end for
𝑂𝑃𝑇 (𝐿𝑔) # update generator

end while

Once both sample and feature statistics are extracted, the two types of discriminators further
vary in structure and function. Batch discriminators learn over an aggregate of samples, distilling
the analysis to a single value. This uniquely allows discriminators to evaluate a collection of samples
to measure aggregate realism or the diversity of the generated dataset. In contrast, sample-type
discriminators generate a score for each data point within the batch. This strategy is employed by the
traditional discriminator that determines the realism of a sample. It is also used by discriminators
that grade each sample for its re-identifiability and target predictability. HydraGAN therefore
produces a batch of samples that can then be examined for individual quality or for how they
appear as a group.
HydraGAN currently generates data under the guidance of five discriminators. Some discrim-

inators are selected to emulate properties found in other GANs. We then add discriminators to
exhibit characteristics that are unique to this work. First, each data point must be indistinguishable
from a real data point (point discriminator). Second, the distribution characteristics of an entire
batch must emulate the real data distribution (distribution discriminator). We additionally include
privacy preservation (privacy discriminator), target class predictability (accuracy discriminator),
and data diversity (diversity discriminator) constraints. However, the number of discriminators
that can be fused in HydraGAN is arbitrary and may be modified to meet the needs of each data
generation task.

3.2.1 Point discriminator. The goal of a traditional GAN is to generate data points that individ-
ually cannot be discriminated from real data points. In keeping with this goal, HydraGAN uses
a point discriminator to ensure that each sample within a generated batch is realistic. The point
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Table 1. Notations used throughout this manuscript, with associated definitions and section where they are
introduced.

Component Description First Appearance

𝐺 Generator 3.1
𝑥𝑟 Batch of real data 3.2.1
𝑥𝑔 Batch of generated synthetic data 3.2.1
𝐷𝜌 Point discriminator 3.2.1
𝐷𝜏 Distribution discriminator 3.2.2
𝑧 Random Noise 3.2.2
𝐷𝜓 Diversity discriminator 3.2.2
𝐷𝜔 Privacy discriminator 3.2.4
𝐷𝛾 Accuracy discriminator 3.2.5
𝑓 Feature of real data 3.2.3
𝛼 Feature value proportions within real data 3.2.3
𝛽 Desired feature value proportions 3.2.3
𝑠 Sensitive feature 3.2.4
𝑐 Target feature for supervised learner 3.2.5
𝜃 Generator network weights 4
𝑦 Optimization objective 4
𝑄 Optimization function 4

𝐹 (𝑋, 𝜃 ) Generator output based on weights 𝜃 and input 𝑋 4
▽ Gradient derived from loss function 4
𝜙 Loss function 4
𝑦 Mean of all objectives 4
𝑦𝑖 Residual of objective 𝑦𝑖 from mean of objectives 4
𝜖 Small positive weight update 4

𝐿𝑑𝑎𝑡𝑎 Total number of samples in a training dataset 2

discriminator instantiates the sample network structure to perform binary classification, labeling
each sample as real or synthetic.

The point discriminator,𝐷𝜌 , optimizes the function shown in Equation 1. Here,𝑥𝑟 and𝑥𝑔 represent
batches of real and corresponding synthetic data points.2

minimize
𝑥𝑟 ,𝑥𝑔

∑︁
𝑖∈𝑥𝑟 ,𝑥𝑔

𝐷𝜌 (𝑥𝑔𝑖 ) + (1 − 𝐷𝜌 (𝑥𝑟𝑖 )) (1)

As Equation 1 indicates, the discriminator learns to categorize data points as ‘real’ or ‘synthetic.’
Optimal performance is reached when every point is correctly labeled.

3.2.2 Distribution discriminator. The distribution discriminator, 𝐷𝜏 , examines a batch of data to
determine whether the set is real or synthetic based on the data distribution characteristics. The
point discriminator may be effective at generating individual realistic data points. However, if
realism is only optimized for one sample at a time, the GAN may fall prey to mode collapse and
not emulate the distribution of points found in the real data. The function approximated by this
discriminator is defined in Equation 2.
2A list of notations used throughout the paper, with definitions, is found in Table 1.
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minimize
𝑥𝑟 ,𝑥𝑔∈𝑋

𝐷𝜏 (𝑥𝑔) + (1 − 𝐷𝜏 (𝑥𝑟 )) (2)

When training this discriminator, noise 𝑧 is added to the generated and real data before they
are passed to the network. This noise is uniformly sampled from [−0.0125, 0.0125]. Adding noise
supports network convergence once the generated data fall within the noise margin of the real
data.

3.2.3 Diversity discriminator. Bias and fairness are recognized as significant problems in machine
learning [44, 60]. Because representation bias may occur when training data lack diversity [40],
researchers generate synthetic data to improve and control the data characteristics, ensuring that
they are representative of the population they intend to mimic [11]. This capability is supported in
HydraGAN by the diversity discriminator, 𝐷𝜓 . This discriminator ensures that output from the
generator meets externally-imposed constraints on the distribution of a selected feature. Constraints
may be designed to ensure equal representation among all the target class values or more greatly
emphasize value ranges for a specific feature, providing the ability to achieve the data distribution
needed for a given task. As an example, if 90% of a physical data collection represents one value for
a sensitive feature (e.g., Race) and 10% represents another, the diversity discriminator may be used
to achieve a more uniform distribution. In this example, the diversity discriminator minimizes the
difference between the original entropy (in this case, 0.47) and the specified desired entropy (e.g., a
uniform distribution with an entropy of 1.00).
Tailoring a set of features to exhibit needed characteristics is accomplished by training the

diversity discriminator to emulate a specified information content, measured by the entropy of
a given feature. The discriminator’s deviation from this goal is computed as the absolute value
of the difference between the observed and desired entropy. HydraGAN’s current diversity goal
is to output uniform sampling of the features; thus, the discriminator approximates the function
shown in Equation 3. In this equation, 𝛼 represents the proportion for each value of feature 𝑓 in
the original (real) dataset and 𝛽 represents the desired proportion.

minimize( |
∑︁
𝑖∈𝛼𝑓

|𝛼 𝑓𝑖 |log2 ( |𝛼 𝑓𝑖 |) −
∑︁
𝑖∈𝛽𝑓

|𝛽𝑓𝑖 |log2 ( |𝛽𝑓𝑖 |) |) (3)

3.2.4 Privacy discriminator. To promote the privacy preservation of synthetic data, the privacy
discriminator assesses its ability to re-identify sensitive attributes from the generated data. The
discriminator simulates an attack on the data from an external entity wishing to identify a sensitive
attribute from the generated data. The discriminator’s goal is to make attribute re-identification as
difficult as possible. To accomplish this goal, the privacy discriminator trains a model to re-identify
sensitive attributes in the data given values of the other features.
The privacy discriminator optimizes a function mapping the non-sensitive features of a data

sample to the sensitive value contained in that sample. Because the discriminator predicts these
values for a set of generated data, it uses the batch discriminator design shown in Figure 2. While
examining each data point to infer the sensitive value, the discriminator observes all other non-
sensitive attributes in the generated batch. As a result, the discriminator can access distribution
information, such as the relative frequency of sensitive values, when generating a prediction.
Equation 4 formalizes the discriminator’s objective, where 𝐷𝜔 represents the privacy discriminator,
𝑥𝑟 represents a data sample drawn from the real data, and 𝑠 represents the sensitive feature of
sample 𝑥𝑟 .

minimize
𝑠∉𝑥𝑟

|𝐷𝜔 (𝑘) − 𝑠 | (4)

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article . Publication date: February 2023.



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441
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To optimize the function in Equation 4, the privacy discriminator must perfectly re-identify
the sensitive attribute value for each generated data point. The adversarial relationship between
discriminators and generator thus forces the generator to create data that makes re-identification
difficult for the discriminator, improving privacy preservation through the synthetic data generation.

3.2.5 Accuracy discriminator. HydraGAN’s discriminators guide data generation to achieve their
own (greedy) goals, which may, in turn, jeopardize the predictive accuracy of a model that is
trained on real data. The accuracy discriminator, therefore, ensures that the predictability of a
target feature is maintained. In this respect, the accuracy discriminator plays a similar role to the
privacy discriminator by attempting to predict the value of a specific feature. The impact of this
discriminator on HydraGAN’s generator is to learn the relationship between features that influence
predictive accuracy and ensure that those characteristics are preserved. These relationships are
maintained as the generator learns to minimize the discriminator’s loss. This optimization goal
is formalized in Equation 5. Here, 𝐷𝛾 represents the accuracy discriminator, 𝑥𝑟 represents a data
sample drawn from the real data, and 𝑐 represents the target feature in 𝑥𝑟 that is being predicted.

minimize
𝑐∉𝑘

|𝐷𝛾 (𝑘) − 𝑐 | (5)

While HydraGAN currently contains five discriminators, more can be added as additional
generation goals are introduced.

4 SYSTEM CONVERGENCE
HydraGAN optimizes multiple objectives using a set of distinct discriminators. This organization
sets up a cooperative/competitive relationship between the system components. An ideal multi-
agent system will converge at an equilibrium. This can be tricky, as the interplay between multiple
agents is a known confounding factor [6]. In fact, the complexity of calculating an equilibrium
between multiple agents has been shown to increase exponentially with the number of agents [48].
Here, we examine whether HydraGAN reaches a system equilibrium. We hypothesize that by

summing the multiple component gradients, the system will reach an equilibrium that balances
the multiple objectives. Our proof builds on the convergence argument of Kuan and Hornik for
multiple objective functions [37].

Consider a set of training samples and corresponding objectives, (𝑥,𝑦1, 𝑦2, ..., 𝑦𝑘 ), each of which
individually converges when training a network with weights, 𝜃 . Convergence is achieved when
the generated output approaches the target value, as expressed in Equation 6.

∃𝑋, 𝑦1, 𝑦2, ..., 𝑦𝑘 |∀𝑖𝑄 (𝑋, 𝑦𝑖 , 𝜃 ) → 0 (6)

The collection of optimization functions,𝑄 , corresponds to input samples𝑋 and a set of associated
objectives 𝑦𝑖:𝑘 , as described in the literature [37]:

𝑄 (𝑋,𝑦1, 𝜃 ), 𝑄 (𝑋,𝑦2, 𝜃 ), ..., 𝑄 (𝑋,𝑦𝑘 , 𝜃 ) (7)
As training proceeds, the trajectory of each 𝑄 (𝑦𝑖 ) is defined by the corresponding gradient

updates, calculated through the respective loss functions, 𝜙 . In HydraGAN, the gradients of each
training sequence are summed before a step is taken, yielding a total update to 𝜃 of

− ▽ 𝜙1 (𝜃 ) − ▽𝜙2 (𝜃 ) − ... − ▽𝜙𝑘 (𝜃 ) (8)
Rewriting and replacing the losses from Equation 8 with mean squared error (MSE), and repre-

senting the generator’s output as 𝐹 when given input 𝑋 with weights 𝜃 yields:

− ▽ ( 1
2
∗ |𝑦1 − 𝐹 (𝑋, 𝜃 ) |2 + 1

2
∗ |𝑦2 − 𝐹 (𝑋, 𝜃 ) |2 + ... + 1

2
∗ |𝑦𝑘 − 𝐹 (𝑋, 𝜃 ) |2) (9)
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Equation 9 is equivalently expressed as:

−▽
2
Σ𝑖=1:𝑘 (𝑦𝑖 − 𝐹 (𝑋, 𝜃 ))2 (10)

Next, we introduce the mean and residual of all 𝑦 values as 𝑦 and 𝑦𝑖 = 𝑦𝑖 − 𝑦, respectively. Based
on these terms, Equation 10 is re-expressed as:

−▽
2
Σ𝑖=1:𝑘 (𝑦 − 𝑦𝑖 − 𝐹 (𝑋, 𝜃 ))2 (11)

Expanding and rearranging the terms in Equation 11 results in:

−▽
2
Σ𝑖=1:𝑘 (𝑦𝑖2 − 2𝑦𝑖𝑦 + 2𝑦𝑖𝐹 (𝑋, 𝜃 )) + 𝑘 (𝑦2 + 𝐹 (𝑋, 𝜃 )2 − 2𝑦𝐹 (𝑋, 𝜃 )) (12)

We separate the summed and non-summed terms, yielding:

−▽
2
(2𝐹 (𝑋, 𝜃 ) − 2𝑦)Σ𝑖=0:𝑘 (𝑦𝑖 ) + Σ𝑖=0:𝑘 (𝑦𝑖2) + 𝑘 (𝑦 − 𝐹 (𝑋, 𝜃 ))2 (13)

As the sum of all residuals in a set (in this case, the 𝑦𝑖 terms) is equal to 0, these are removed:

−▽
2
Σ𝑖=0:𝑘 (𝑦𝑖2) + 𝑘 (𝑦 − 𝐹 (𝑋, 𝜃 ))2 (14)

Equation 14 is now composed of two terms, the sum of the squared residuals and the loss of 𝜃
as a function of the squared error between its output and 𝑦. As network training proceeds, the
weights of 𝜃 will approach the mean of all of the objectives 𝑦, balancing the set of objectives.

We hypothesize that when the system converges, a Nash equilibrium is formed between the
discriminator goals. This hypothesis may be proven by contradiction. Assume that the weights
in 𝜃 may move some arbitrary positive distance 𝜖 from an equilibrium state without negatively
impacting the loss function. Thus, the inclusion of 𝜖 cannot result in a higher model loss, and the
unmodified loss (LHS) is at least equal to the value from the modified loss function (RHS), as seen
in Equation 15.

Σ𝑖=0:𝑘 (𝑦𝑖2) + 𝑘 (𝑦 − 𝐹 (𝑋𝑛, 𝜃 ))2 ≥ Σ𝑖=0:𝑘 ((𝑦𝑖 − (𝑦 + 𝜖)2) + 𝑘 ((𝑦 − 𝐹 (𝑋𝑛, 𝜃 )) + 𝜖)2 (15)
The inequality in Equation 15 characterizes the assumption that there is a move the network

can make away from the equilibrium point that will yield a lower overall loss. Let 𝑠 = Σ𝑖=0:𝑘 (𝑦𝑖2) −
Σ𝑖=0:𝑘 (𝑦𝑖 − (𝑦 + 𝜖)2). Here, 𝑠 is strictly negative because the sum of squared deviations is minimized
at 𝑦. Substituting this term yields:

𝑠 + (𝑦 − 𝐹 (𝑋𝑛, 𝜃 ))2 ≥ ((𝑦 − (𝐹 (𝑋𝑛, 𝜃 )) + 𝜖)2 (16)

We then substitute 𝑑 = 𝑦 − 𝐹 (𝑋𝑛, 𝜃 ) and expand the RHS into the equation:

𝑠 + 𝑑2 ≥ ((𝑦 − 𝐹 (𝑋𝑛, 𝜃 )) + 𝜖)2 (17)

We then substitute 𝑑 again and factor, resulting in:

𝑠 + 𝑑2 ≥ (𝑑 + 𝜖)2 (18)

The inequality in Equation 18 cannot be met because 𝑠 , the difference between the sum of squared
residuals, is negative while 𝜖 , the positive movement away from the equilibrium point between
discriminators, is positive. The supposition that an improvement exists for the converged value that
will result in a lower overall loss is, therefore, false. The loss of the generator’s weights, represented
by 𝜃 , is thus in a Nash equilibrium with respect to the multiple discriminator inputs 𝑦𝑖 , as a change
to one or more weights will move the system away from its optimal state. This conclusion supports
HydraGAN’s design to balance a competing set of objectives, because the system will be able to
reach a stable point in the loss landscape that balances all the objectives.
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Table 2. Training hyperparameters used in the experiments 𝐿𝐷𝑎𝑡𝑎 refers to the total number of samples in
the training data.

Algorithm Learning Rate Number of Batches Batch Size Epochs
HydraGAN 0.00005 4 50 30,000
PPGAN 0.0002 64 1 30,000

PATE-GAN 0.0001 64 1 30,000
CTGAN 0.0002 500 1 300∗𝐿𝑑𝑎𝑡𝑎

500
CTAB-GAN+ 0.0002 500 1 150∗𝐿𝑑𝑎𝑡𝑎

500

5 EXPERIMENTAL VALIDATION
We validate HydraGAN’s ability to optimize a combination of data generation goals. Traditional
evaluation approaches alone are not sufficient here, because they often rely on customized heuristics
or human inspection of generated samples [53]. For HydraGAN, evaluation is further complicated
by the need to achieve multiple objectives represented by the multiple discriminators. In our
evaluation, we employ some traditional metrics. Additionally, we introduce novel metrics to
evaluate each objective. These metrics assess optimization criteria that are not commonly found in
GANs and reflect use cases for such a multi-agent approach. To provide baselines for comparison
with HydraGAN, we select four multi-agent GAN algorithms: PPGAN, PATE-GAN, CTGAN, and
CTAB-GAN+ [34, 41, 56, 62].
The training parameters used in these experiments are summarized in Table 2. For these ex-

periments, the target diversity distribution for the sensitive parameter is a uniform distribution.
In the case of the baseline methods, the hyperparameters are those suggested by the authors.
The hyperparameters of batch number, batch size, and number of epochs were the same during
training and testing. The learning rate parameters were decreased from 0.00010 to 0.00005 to
promote consistent training, improving the convergence of HydraGAN. A low learning rate was
selected to accommodate the large number of networks. Note that the discrepancy between the
comparatively low number of batches for HydraGAN versus the other methods is due to the unique
way HydraGAN processes data. Because some of HydraGAN’s discriminators evaluate an entire
batch of data, HydraGAN did not process a single batch of 64 samples (with 64 corresponding
loss calculations and updates per iteration), but rather processed 4 batches of 50 samples (with 4
corresponding loss calculations and 1 update per iteration). All experiments were run on 10 CPU
cores of Nvidia Tesla K80s, each with 256 GB of memory.

5.1 Baseline methods
HydraGAN is evaluated in comparison with four recent approaches to multi-objective synthetic
data generation. The first baseline, PPGAN [41], offers privacy guarantees by injecting noise into
the discriminator’s loss gradients as it learns to differentiate between real and synthetic data. This
training strategy introduces uncertainty within the discriminator’s ability to learn a specific sample
in the real data. This uncertainty is calculated as a differential privacy bound, pushing PPGAN to
preserve privacy while generating realistic synthetic data [41].

The second baseline, PATE-GAN, also employs differential privacy guarantees for the generated
synthetic data [34]. Unlike PPGAN, PATE-GAN extends the federated learning model from work
such as MD-GAN [28], where discriminators train on disjoint portions of the real data. This method
additionally extends the discriminators to act as differentially private student-teacher ensembles,
adding privacy guarantees to the generated data.
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Table 3. Datasets used for HydraGAN evaluation.

Name Features/
Samples

Sensitive
Feature

Accuracy-Preserving
(Target) Feature

Diversity
Feature

UCI Heart 14/
304 Age Sex Heart

Diagnosis
CASAS

SmartHome
58/
547 Age Race Testing

Group
Power
Grid

11/
999

Power
Used

User
Reaction

Power
Stability

Cervical
Cancer

34/
669 Age Number of

Children
Cancer
Status

Health
Insurance

40/
1042 Age Income Billed

Amount

Iris 5/
151

Petal
Length

Petal
Width Species

The third baseline is CTGAN [56], an algorithm that adopts a multi-agent approach to gener-
ating mixed-type, tabular data. CTGAN samples each data column separately to handle a mix of
continuous and discrete variables then integrates a conditional generator to learn the real data
conditional distribution.

The fourth baseline is CTAB-GAN+ [62]. CTAB-GAN+ shares privacy-preservation and mixed-
type goals with the other baselines. CTAB-GAN+ adds downstream losses and a Wasserstein loss
to improve training convergence and data realism while maintaining data privacy.

5.2 Datasets
HydraGAN and the baseline methods are evaluated on six datasets. Dataset size and dimensionality
are summarized in Table 3 together with the features that are examined for enhancement of privacy
preservation, predictive accuracy, and sample diversity. The heart [23], cervical cancer [34], and
iris [20] datasets were included because of their prior use in privacy-preservation evaluation [18].
Additionally, we include power consumption [4], health insurance [29], and smart home behavior-
based health assessment [14] datasets. These datasets vary in their application domain, but each
contains a sensitive feature which, if divulged, will lead to person or household re-identification.
For example, age is selected as a sensitive attribute for the health datasets because of its known
vulnerability to a re-identification attack [46].

5.3 Metrics
The quality of generated data is evaluated using five metrics. Each metric relates to one of Hy-
draGAN’s objectives as described in Section 3.2.1. To measure the realism of each data point
(corresponding to the point discriminator), we employ the retained accuracy metric introduced by
Jordan et al. [34]. This is accomplished through the creation of an ensemble of machine learning
models that will train on the generated synthetic data and then be evaluated for their performance
on the real data. To perform this task, an ensemble of diverse classification models (e.g., random
forest, support vector regression, and K-nearest regression) is trained to predict the value of each
data feature (other than features reserved for privacy preservation, target accuracy, and diversity)
given the other features of a sample. The ensemble is trained on synthetic data and tested on real
data. Accuracy is reported as the average over the set of features and classifiers.
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To evaluate the quality of the synthetic data distribution, we calculate the Earth Mover’s (EM)
distance between real data and synthetic data. The EM distance has been used in prior work to
quantify the similarity between domains based on their representative data [16], as shown in
Equation 19).

1
|𝑋 |

|𝑋 |∑︁
𝑖=0

∫ inf

− inf
|𝑋𝑖 − 𝑌𝑖 | (19)

Next, the diversity of a specified feature is calculated using Shannon’s entropy, as shown in
Equation 20 and applied to the selected feature. This metric follows approaches reported by Qian
et al. [49]. ∑︁

𝑥∈𝑋

|𝑥 |
|𝑋 | ∗ log2 (

|𝑥 |
|𝑋 | ) (20)

To evaluate the privacy preservation of the synthetic data, we utilize classification error, where
the target attribute is the sensitive attribute. Once again, an ensemble of classification methods
is employed for this task, composed of the same model architectures used in calculating retained
accuracy. Re-identification error is reported as the inverse of the classification error for the sensitive
attribute. Finally, this same ensemble predicts the value of a specified target attribute, and we report
the predictive performance as target accuracy.

5.4 Performance visualization
In addition to summarizing the quantitative results of HydraGAN and baseline methods, we provide
a performance visualization. For this, we introduce a radar chart to evaluate the set of metrics. Each
spoke of the radar chart represents one of the performance metrics, and the goal of HydraGAN is to
maximize the combined value along the spokes, thus maximizing the Area under the Radar Curve
(or AuRC). Corresponding to the metrics we defined, in this paper the radar chart spokes represent
retained accuracy (RA), Earth Mover’s distance (EM), diversity (DI), re-identification error (RE),
and target accuracy (TA). Each metric is normalized to the range [0...1]. Table 4 also includes the
mean distance and the mean squared error.

We postulate that this method of visualization presents a novel, approachable way of evaluating
multi-objective synthetic data. The use of a radar chart, quantified with a unifying metric of AuRC,
allows the multiple data characteristics to be quantified alongside a summary that provides an
at-a-glance encapsulation of all targeted metrics.

5.5 Results
In these experiments, our objective is to evaluate HydraGAN’s capability in achieving a variety of
specific data generation objectives. We anticipate that several of the assessed methodologies will
demonstrate proficiency in one or more of the target metrics that represent these different goals.
Although we anticipate that HydraGAN will exhibit robust performance for each of the metrics,
our overarching hypothesis is it will outperform all baseline methods in optimizing a collective set
of criteria, as evidenced by its superior performance for the Area under the Radar Curve (AuRC)
metric.

Figure 3 plots the performance of the data generated by the three tested models on the six datasets,
and Table 4 summarizes numeric results for the specific and combined performance metrics. As the
table and figure show, HydraGAN consistently outperforms the baseline methods at optimizing
a combination of objectives. This is indicated by yielding higher AuRC values than all baseline
data generation methods for all 6 datasets. Similarly, HydraGAN yields the best MD for all datasets
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Table 4. Comparative performance of the generative models using the metrics of retained accuracy (RA),
Earth Mover’s distance (EM), diversity (DI), target accuracy (TA), re-identification error (RE), mean distance
(MD), and mean squared error (MSE). The best-performing method is indicated by bold font for each case.

Dataset Method EM RA RE TA DI MD MSE AuRC

UCI Original 1.00 0.96 0.03 0.97 0.71 0.26 0.20 0.31
Heart PPGAN 0.75 0.67 0.16 0.75 0.91 0.35 0.19 0.27

PATE-GAN 0.77 0.65 0.31 0.60 0.99 0.33 0.16 0.29
CTGAN 0.77 0.64 0.31 0.40 0.81 0.41 0.21 0.23
CTAB-GAN+ 0.78 0.63 0.38 0.47 0.96 0.36 0.17 0.27
HydraGAN 0.77 0.63 0.40 0.60 0.99 0.32 0.14 0.30

Smart Original 1.00 0.89 0.10 0.97 0.93 0.22 0.17 0.37
Home PPGAN 0.85 0.76 0.19 0.93 0.90 0.28 0.15 0.32

PATE-GAN 0.73 0.65 0.23 0.56 0.79 0.41 0.21 0.22
CTGAN 0.83 0.70 0.21 0.84 0.87 0.31 0.1 0.30
CTAB-GAN+ 0.88 0.68 0.27 0.91 0.94 0.27 0.13 0.34
HydraGAN 0.90 0.73 0.22 0.93 0.97 0.25 0.14 0.35

Electric Original 1.00 0.89 0.12 0.94 0.95 0.24 0.20 0.35
Grid PPGAN 0.80 0.65 0.46 0.48 0.99 0.32 0.17 0.30

PATE-GAN 0.77 0.53 0.72 0.48 1.00 0.30 0.16 0.30
CTGAN 0.76 0.62 0.60 0.43 1.00 0.32 0.17 0.30
CTAB-GAN+ 0.78 0.55 0.57 0.47 0.83 0.36 0.19 0.25
HydraGAN 0.75 0.69 1.00 0.51 0.98 0.21 0.09 0.38

Cervical Original 1.00 0.92 0.06 0.97 0.36 0.34 0.26 0.29
Cancer PPGAN 0.63 0.59 0.12 0.89 0.67 0.42 0.24 0.20

PATE-GAN 0.55 0.58 0.25 0.58 1.00 0.41 0.22 0.22
CTGAN 0.78 0.68 0.23 0.85 0.08 0.47 0.32 0.13
CTAB-GAN+ 0.85 0.78 0.19 0.68 0.44 0.41 0.23 0.21
HydraGAN 0.94 0.81 0.27 0.92 0.52 0.30 0.15 0.29

Health Original 1.00 0.89 0.10 0.98 0.85 0.24 0.17 0.35
Insurance PPGAN 0.73 0.67 0.14 0.86 0.98 0.34 0.19 0.29

PateGAN 0.70 0.67 0.20 0.72 0.93 0.36 0.18 0.26
CTGAN 0.89 0.72 0.17 0.90 0.89 0.29 0.16 0.32
CTAB-GAN+ 0.89 0.67 0.29 0.89 0.89 0.27 0.13 0.33
HydraGAN 0.91 0.71 0.25 0.91 0.89 0.27 0.13 0.34

Iris Original 1.00 0.97 0.02 0.97 1.00 0.21 0.19 0.38
PPGAN 0.83 0.94 0.08 0.90 0.67 0.32 0.20 0.26
PATE-GAN 0.92 0.79 0.24 0.65 0.97 0.29 0.15 0.33
CTGAN 0.88 0.71 0.27 0.74 0.94 0.29 0.14 0.32
CTAB-GAN+ 0.86 0.77 0.24 0.79 0.91 0.29 0.14 0.32
HydraGAN 0.92 0.67 0.32 0.77 1.00 0.26 0.12 0.35

and best MSE for five of the datsets. In the case of the smart home data, CTAB-GAN+ slightly
outperforms HydraGAN in terms of MSE.

Because of its unique design, HydraGAN adapts to a combination of data generation goals better
than the baseline methods. As a result, it does not rank as the top performer for some of the
individual objectives. In particular, PPGAN outperforms HydraGAN in terms of Retained Accuracy
for 3 of the 6 datasets. CTAB-GAN+ outperforms HydraGAN in terms of Re-Identification Error for
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Fig. 3. Radar chart plots of algorithm performance for the six datasets. The spokes of the chart are labeled
by the five performance objectives. The Area under the Radar Curve (AuRC) is provided in the legend to
summarize the combined performance for each method.

2 of the datasets, and PPGAN outperforms HydraGAN in terms of Target Accuracy for 2 of the
datasets. Additionally, CTAB-GAN+ and PPGAN outperform HydraGAN for 1 dataset each.
The re-identification scores of the six generated datasets illustrate the potential of multiple

GAN strategies for actively ensuring privacy during data generation. Interestingly, HydraGAN
outperforms PPGAN in terms of re-identification accuracy for all 6 datasets. The performance
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improvement is observed despite the fact that PPGAN is specifically designed as a method to offer
privacy guarantees. HydraGAN also outperforms PateGAN, another privacy-preserving method,
in terms of re-identification error for all datasets. CTAB-GAN+ focuses on data realism as well
as data privacy. In our experiments, CTAB-GAN+ is the best-performing algorithm for privacy
preservation of smart home and health insurance data, but does not perform as well as HydraGAN
for the other 4 datasets.

Fig. 4. Comparison of HydraGAN performance for the combination of all discriminators vs. leave-one-
discriminator-out. Experiments are repeated for all datasets.
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5.6 Ablation analysis
In the previous section, we observed that HydraGAN outperformed baseline methods when balanc-
ing five diverse data objectives. Here, we investigate the impact of removing individual discrimina-
tors on HydraGAN performance. We hypothesize that the removal of a single discriminator will
lessen HydraGAN’s performance on the corresponding objective. We analyze the impact of this
removal on the remaining objectives and AuRC performance.

The results of the ablation study are visualized in Figure 4. As expected, when a discriminator was
removed from the system, performance for the corresponding objective decreased. However, because
HydraGAN balances multiple objectives, performance for the remaining objectives correspondingly
increased. Consistently, HydraGAN with all discriminators achieves the highest AoRC value of all
variations.

These results support the hypothesis that HydraGAN can effectively combine input from all
agents to optimize diverse objectives. Additionally, the results indicate the desired relationship
between the discriminator goals and the measures that are used to assess performance for that
goal. The shape of the performance curve shifts with these changes in the discriminator space.
Removal of a discriminator forces a collapse in performance for the corresponding metric. However,
results from this analysis also highlight the cooperative and competitive discriminator “teams”.
Three cooperative discriminator groups emerged: those that emphasize data realism (i.e., point
and distribution realism, target accuracy), those that emphasize privacy preservation (i.e., privacy),
and those that optimize externally-imposed distribution constraints (i.e., diversity). Removing any
or all of the realism agents allows the privacy performance to improve as well as data diversity,
confirming the intuition that removing the need to generate realistic data makes it easier to obscure
sensitive attributes and achieve diversity goals.

6 DISCUSSION AND CONCLUSIONS
In this paper, we introduce HydraGAN, a multi-agent GAN architecture. For real and synthetic
datasets, we observe that HydraGAN successfully satisfies multiple objectives, outperforming
baseline methods. We note that while the objectives we currently define are valuable for synthetic
data, further analysis is needed to determine how well the multi-agent approach will handle
irreconcilable objectives. If a large number of similar discriminators are incorporated, the resulting
data may be skewed toward a vague general objective rather than an intersection of more specific
criteria.
A limitation of this work is the lack of in-depth analysis of the types of objectives that can be

introduced and their impact on each other. Interaction between multiple cooperative agents will
be different than that of competing agents, but neither may yield the best possible results. Future
work may consider methods of refining multiple objectives to yield the best overall performance.
An analysis of how overlap between objective functions affects training will also be valuable.

We note in the experimental results that HydraGAN outperforms other privacy-preserving
GANs. However, some of these prior methods offer differential privacy guarantees. Such guarantees
become complex when other objectives are introduced, this can be considered in extensions of
HydraGAN.

The current design of HydraGAN is complex due to the large number of discriminators. Future
work may include an examination of whether pretraining HydraGAN on more difficult objectives
could speed up the training process. Including new discriminators that overlap with existing
ones may unnecessarily slow down training. Future extensions may consider ways to refine and
streamline the combination of objectives.
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Additionally, future analyses may consider how the number of generator parameters affects the
quality of generated data. We note that the generator size impacts the type of data that is generated.
We currently do not include an analysis of this impact, but the results of such an analysis could
allow the generator structure to be fine-tuned for the number and type of discriminator objectives
that are considered.
The current HydraGAN design is also limited by considering all objectives as equals. A future

versionmay allow the designer to weight the objectives manually or refine the weights automatically
in consideration of possible overlap. While convergence may be reached through simultaneous
initialization and subsequent training of the discriminators, improved training may result from
allowing discriminators with more complex functions to influence the generator first. Similarly,
sequential objectives could be introduced in which some objectives must be met before others can
be fulfilled.
In future work, we will also investigate extending HydraGAN to incorporate conditional gen-

eration, allowing an additional input feature to tailor the generated data to meet more complex
conditions. While the current version of HydraGAN is limited by only generating i.i.d. data, we
will enhance HydraGAN to handle other data types, including multivariate time series data.
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