
From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:

Concepts and Design
Edition 5, © Addison-Wesley 2012

Slides for Chapter 10:
Peer-to-Peer Systems

Text extensions to slides © David E. Bakken, 2012-2020

Introduction [10.1]
• Motivational observations

• Lots of resources at the edge of the Internet
• If there is no central server no single point/entity for

•Copyright liability
•Cyber-attacking
•Getting overloaded

• Goal: design a system that is
• Fully decentralized
• Self-organizing
• Uses above observations

2© 2020 David E. Bakken

Introduction (cont.)
• Tipping Point: large enough % of always-on internet

• Late 1990s
• Characteristics of peer-to-peer (P2P) systems:

• Each user contributes resources to the system
• All nodes have the same functional capabilities and responsibilities

•“All the animals are equal, but some more equal than others.”
-- Animal Farm (paraphrase)

• Correct operation does not depend on the existence of centrally
administered systems

• Can be designed to offer some kind of anonymity to providers and
users of resources

3© 2020 David E. Bakken

Introduction (cont.)
• Key issue for each: placement of data so it

•Is spread across huge # hosts
•Can be efficiently accessed by users’ apps
•Balances workload
•Ensures availability, even in the face of (relatively) volatile resources

• Most effective when used to store very large collections of
immutable data

4© 2020 David E. Bakken

P2P system evolution
• Antecedents of P2P systems: DNS, USENET, research
systems (Xerox PARC multiple)

• Generations of P2P system+apps
1. Napster (2001): music exchange service
2. File sharing apps (Freenet, Gnutella, Kazaa, BitTorrent)
3. Middleware layer support (Pastry, Tapestry, CAN, Chord, …)

• 3G P2P middleware characteristics (offloading DADs)
• Place resources on widely-distributed set of computers
• Guarantees of request delivery in bounded # network hops
• Place based on volatility/availability, trustworthiness of node
• Resources identified w/GUIDs (usually secure hash: self-certifying)

•Client can know not tampered
•Q: how mutable/immutable can should/can the placed objects/files be?

5© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.1: Distinctions between IP and overlay routing for
peer-to-peer applications

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable nodes. The
IPv6 name space is much more generous
(2128), but addresses in both versions are
hierarchically structured a nd much of the space
is pre-allocated accordi ng to administrative
requirements.

Peer-to-peer systems can address more objects.
The GUID name space is very large and flat
(>2128), allowing it to be much more fully
occupied.

Load balancing Loads on routers are determin ed by network
topology and associated traffic patterns.

Object locations can be ra ndomized and hence
traffic patterns are divorced from the network
topology.

Network dynamics
(addition/deletion of
objects/nodes)

IP routing tables are updated asy nchronously on
a best-efforts basis with time constants on the
order of 1 hour.

Routing tables can be u pdated synchronously or
asynch ronously with fractions of a second
delays.

Fault tolerance Redundancy is designed into the IP network by
its managers, ensuring toleran ce of a single
router or network co nnectivity failure. n-fold
replication is costly.

Routes and object refer ences can be replicated
n-fold, ensuring toleran ce of n failures of nodes
or conn ections.

Target identification Each IP address maps to exactly one target
node.

Messages can be rout ed to the nearest replica of
a target object.

Security and anonymity Addressing is only secu re when all nodes are
trusted. Anonymity for the owners of addresses
is not achievable.

Security can be achiev ed even in environm ents
with limited trust. A limited degree of
anonymity can be provided.

Distributed computation
• Lots of spare computing power on end-user computers
• E.g., SETI@home

• HUGE amount of computations done
• Unusual: no communication/coord. Between computers while

processing the tasks (send to central server)
• Other successor projects: protein folding, large prime numbers, …

7© 2020 David E. Bakken

Napster and its legacy [10.2]
• Napster launched in 1999 … music files mainly
• Architecture (Fig 10.2)

• Centralized indexes
• User supplied files (stored on their PCs)

• Shut down by legal proceedings
• Centralized index servers deemed essential part of process

• Lessons learned
• Feasible to build huge P2P sys. w/ (almost all) resources @edges
• Network locality can be successfully exploited

• Limitations: replicated index not consistent. (Matters?)
• Application dependencies:

• Music files never updated
• No availability guarantees for a file (can download later) 8© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.2: Napster: peer-to-peer file sharing with a
centralized, replicated index

Napster server
Index1. File location

2. List of peers

request

of f ering the f ile

peers

3. File request

4. File deliv ered
5. Index update

Napster server
Index

P2P MW [10.3]
• Key problem: provide mechanism to enable clients to
access data resources fast & dependably from anywhere

• 1G Napster: index replicas had complete copies of available files
• 2G (Gnutella, freenet) partitioned & distributed indexes

• Functional requirements
• Goal: simplify construction of P2P services
• Enable clients to locate+get any individual resource
• Add & remove resources
• Add & remove participating hosts
• Simple API independent of resource/data types

10© 2020 David E. Bakken

P2P MW (cont.)
• Non-functional requirements

• Global scalability
• Load balancing
• Optimize for local interactions between neighboring peers
• Accommodation for highly dynamic host availability
• Security of data where (dynamic) trust varies widely
• Anonyminity, deniability, resistance to censorship

•“unsniffability”?

• Scalability must partition knowledge of location of objects
through network

• Must be replicated (up to 16 times)
• All above is a very active area of research!

11© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.3: Distribution of information in a routing overlay

Object:

Node:

D

CÕs routing knowledge

DÕs routing knowledgeAÕs routing knowledge

BÕs routing knowledge

C

A

B

Routing overlays [10.4]
• Routing overlay (RO): distributed algorithm that locates
nodes and objects

• May have been relocated, node down, …
• Any node can access any object by routing request through series

of nodes
• GUIDs are “pure names” (AKA opaque identifiers): random bit

patterns with no structure or location info
• Tasks for the RO (AKA distributed hash tables)

• Route requests to objects
• Inserting objects:

•Compute GUID (from part or all of state); Verify uniqueness by lookup
•Announce new object to RO

• Delete objects
• Node tracking: (rough) group membership on nodes

13© 2020 David E. Bakken

Routing overlays (cont.)
• DHT model: data item/object with GUID X stored at node

• Whose GUID is numerically closest to X, and
• R hosts whose GUIDs are next-closest numerically
• Observe: same address space for nodes and objects

• More flexible: Distributed object location and routing
(DOLR) model:

• Location for replicas decided outside the routing layer
• DORL layer notified of host addresses of each replica with
publish() operation

• Objects can have same GUID at different hosts; RO routes to a
nearby one

• Both DHT (Pastry) and DOLR (Tapestry) use prefix routing
• Uses part of GUID to find next node in path towards object

14© 2020 David E. Bakken

Routing overlays (cont.)
• Other routing schemes (all have distributed index schemes)

• Chord: distance between GUID of selected node and the dest.
• CAN: n-dimensional hypersace
• Kademlia: XOR of pair of GUIDs as distance metric
• BitTorrent: index  stub file with GUID, URL of tracker  file

15© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.4: Basic programming interface for distributed hash
table (DHT) as implemented by the PAST API over Pastry

put(GUID, data)
The data is stored in replicas at all nodes responsible for the
object identified by GUID.

remove(GUID)
Deletes all references to GUID and the associated data.

value = get(GUID)
The data associated with GUID is retrieved from one of the
nodes responsible it.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.5: Basic API for distributed object location and
routing (DOLR) as implemented by Tapestry

publish(GUID)
GUID can be computed from the object (or some part of it, e.g. its name).
This function makes the node performing a publish operation the host for
the object corresponding to GUID.

unpublish(GUID)
Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])
Following the object-oriented paradigm, an invocation message is sent to an
object in order to access it. This might be a request to open a TCP
connection for data transfer or to return a message containing all or part of
the object’s state. The final optional parameter [n], if present, requests the
delivery of the same message to n replicas of the object.

Overlay case studies: Pastry, Tapestry [10.5]
• 10.5: overlay case studies

• Pastry: straightforward and effective
• Tapestry: more complex, supporting wider range of locality

approaches
• 10.6: “Application” case studies: Squirrel, OceanStore, Ivy

• “Application”, some really higher-level middleware (a service)
• Squirrel/Pastry: web cache
• OceanStore/Tapestry: file storage
• Ivy/overlay: file storage

18© 2020 David E. Bakken

Pastry routing overlay [10.5.1]
• Main characteristics as per 10.4

• All nodes and objects assigned 128-bit GUID
•Nodes: secure hash over node’s public key (provided)
•Objects: secure hash or over name or part of data
•(Very unlikely) clashes in GUIDs detected and remediated

• Scalability: network with N nodes, pastry routes to GUID in O(log
n) steps

•Node inactive at last hop: finds nearest active one
•Active nodes route to numerical nearest neighbor
•Naively, “nearest” and O(log N) are in terms of logical overlay topology, not
network!

•But uses locality metric based on network distance
•Can scale to thousands of hosts
•New nodes can construct their routing table in O(log N) messages
•Same complexity for detecting and reconfiguring with failure

19© 2020 David E. Bakken

Pastry routing algorithm
• Buildup: describe simplified, inefficient form (Stage 1), then
full (Stage 2) with routing table

• Stage 1
• Leaf set (each active node): vector L (size 2l) with GUIDs & IP

addrs of numerically closest nodes (l above and l below)
• l is typically 8

• Failure recovery fast: leaf set reflects current (configuration) state
(up to some max rate of failures)

• GUID space circular: [0, 2128-1] with wraparound
• Routing is trivial

•Compare GUID of incoming message to node’s own
•Send to node in L closest to message’s GUID (likely ~l nodes closer)

• Inefficient: requires ~N/2l (logical) hops on average
20© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.6: Circular routing alone is correct but inefficient
Based on Rowstron and Druschel [2001]

The dots depict live nodes.
The space is considered as
circular: node 0 is adjacent
to node (2128-1). The
diagram illustrates the
routing of a message from
node 65A1FC to D46A1C
using leaf set information
alone, assuming leaf sets of
size 8 (l = 4). This is a
degenerate type of routing
that would scale very poorly;
it is not used in practice.

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D471F1

D467C4
D46A1C

Full Pastry routing algorithm (Stage 2)
• Each node maintains tree-structured routing table

• GUIDs and IP addrs spread throughout the 2128 GUID space
• Not uniformly spread: more dense closer to the node’s GUID

• Structure of routing table
• GUIDs viewed as hex values, classified by prefixes
• As many rows as hex digits in GUID, e.g., 128/4=32
• Each row contains 15 entries, one for each value of the digit except

for the one for the host node’s GUID
• Each table entry points to one of the multiple nodes whose GUIDs

have the relevant prefix (the one trying to forwards towards)
•Non-null: contains [GUID, IP addr] of a node with a longer prefix than node
•Null: no such node known: forward to any node in leaf set or routing table
with same prefix length but numerically closer

22© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.7: First four rows of a Pastry routing table

The routing table is located at a node whose GUID begins 65A1. Digits are in hex. The n’s represent
[GUID, IP address] pairs specifying the next hop to be taken by messages addressed to GUIDs that match
each given prefix. Grey- shaded entries indicate that the prefix matches the current GUID up to the given
value of p: the next row down or the leaf set should be examined to find a route.

(W)

(X)

(Y)

(Z)

E.g., from 65A1 to 6532 (W) or 6014 (X) or 65A3 (Y) or 82CB (Z)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.8: Pastry routing example
Based on Rowstron and Druschel [2001]

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D4213F

D462BA

D471F1

D467C4
D46A1C

Routing a message from node 65A1FC to D46A1C.
With the aid of a well-populated routing table the
message can be delivered in ~ log 16(N) hops.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.9: Pastry’s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,
row p of the routing table):

1. If (L-l < D < Ll) { // the destination is within the leaf set or is the current node.
2. Forward M to the element Li of the leaf set with GUID closest to D or the current

node A.
3. } else { // use the routing table to despatch M to a node with a closer GUID
4. find p, the length of the longest common prefix of D and A. and i, the (p+1)th

hexadecimal digit of D .
5. If (R[p,i] ° null) forward M to R[p,i] // route M to a node with a longer common

prefix.
6. else { // there is no entry in the routing table
7. Forward M to any node in L or R with a common prefix of length i, but a

GUID that is numerically closer.
}

}

Pastry host integration
• New nodes use joining protocol

• get R and L
• Lets other nodes know they must change cause they are joined
• Steps at node X

1. Compute suitable GUID for X
2. Make contact with (locally) nearby Pastry node (A), send a join request

to it
• Destination = X (!!!)

3. Pastry routes request to node with GUID numerically closest to X (Z)
• E.g., route is ABCDZ
• Along way, {A,B,C,D,Z} send relevant parts of their R and L to X

• Text has more details on the properties it provides (not covering but testable)
• E.g., A’s first row good candidate for first row of X
• E.g., Z is numerically closest to X, so its L is good candiate for X’s
• Initial entries updates as per discussion below on fault tolerance

26© 2020 David E. Bakken

Pastry host failure or departure
• Node X deemed failed when node N can’t contact X
• Must repair leaf sets (L) containing X

• N finds live node close to X, gets it leaf set L’
• L’ will partly overlap L, find one with appropriate value to replace X
• Other neighboring nodes informed, they do same

• Repairing routing tables on “when discovered basis”
• Routing still works if some nodes in table not live, try if fails

27© 2020 David E. Bakken

Pastry locality and fault tolerance
• Locality

• Routing structure highly redundant: many paths from X to Y
• Construction of R tries to use most “local” routes, ones closest to

actual network topology (more candidates than fit in R)
• Fault tolerance

• Assumed live until can’t contact
• Nodes send heartbeat messages to left neighbor in L

•That won’t spread to a lot of nodes very fast…
•Also does not hand malicious nodes trying to thwart correct routing

• Ergo, clients needing reliable delivery use at-least-once delivery
mechanism, repeating multiple times if no response

•Gives Pastry more time to fix L and R
• Other failures or malicious nodes: add tiny amount of randomness

to route selection (see text)
28© 2020 David E. Bakken

Pastry dependability
• MSPastry uses same routing algorithm, similar host mgt

• Adds dependability measures
• Adds performance optimizations for host management algorithms

• Dependability measures
• Use ACKS each hop in routing; timeout  find alt. route & suspect
• Heartbeat message timeout by detecting node (neighbor to right)

•Contact rest of nodes in L: node failure notify, ask for replacements
•Terminated even with multiple simultaneous failures

• Performance optimizations
• Run simple gossip protocol periodically (20 min) exchange info

•Repair failed entries
•Prevent slow deterioration of locality properties

29© 2020 David E. Bakken

Pastry evaluation
• Exhaustive (simulation) performance eval of MSPastry

• Looked at impact on performance and dependability:
•Join/leave rate
•Dependability mechanisms used

• Dependability results
• 0% IP message loss rate  failure to deliver 1.5/100K requests
• 5% IP message loss rate  failure to deliver 3.3/100K requests,

1.6/100K delivered to wrong node
•(Per-hop ACKS ensure eventually get there)

• Performance results (scale to thousands of nodes)
• Metric: stretch (relative delay penalty): ratio over direct UDP/IP 

~1.8 with 0% msg loss, ~2.2 with 5% network msg loss
• Overhead: control traffic less than 2 msgs/minute/node

30© 2020 David E. Bakken

Tapestry [10.5.2]
• Similar to Pastry: DHT, routes messages based on GUID
prefixes

• Different:
• DHT hidden behind API via a DOLR interface (like Fig 10.5)
• Register/announce at storing nodes: publish(GUID)

• Hiding DHT allows for more optimizations, including locality
• Place close (in network distance) to frequent users
• Possible with Pastry?

• 160-bit identifiers
• GUID: objects
• NodeID: computers performing routing operations, or hosting objs

31© 2020 David E. Bakken

Tapestry (cont.)
• Basic scheme for resource w/GUID G

• Unique root node NodeID (text typo: “GUID”) RG numerically
closest to G

• Hosts H with replica of G publishes periodically (for newly arrived
nodes)

•Message routed towards RG

•RG enters into routing table <G, IPH>: mapping between G and the given
node that sent publish (one of the replicas); AKA location mapping

•Each node along path also enters this
• Multiple <G, IPH> entries at a node: sort by network distance

(round-trip time)
• Lookup of object: route towards , first node with a location mapping

for G diverts it to IPH

32© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.10: Tapestry routing From [Zhao et al. 2004]

4228

4377

437A

4361

43FE

4664

4B4F

E791

4A6D

AA9357EC

4378
PhilÕs
Books

4378
PhilÕs
Books

(Root f or 4378)

publish path

Tapestry routings
f or 4377

Location mapping
f or 4378

Routes actually
taken by send(4378)

Replicas of the file PhilÕs Books (G=4378) are hosted at nodes 4228 and AA93. Node 4377 is the root node
for object 4378. The Tapestry routings shown are some of the entries in routing tables. The publish paths show
routes followed by the publish messages laying down cached location mappings for object 4378. The location
mappings are subsequently used to route messages sent to 4378.

From structured to unstructured P2P [10.5.3]
• So far considered structured P2P

• Overall global policy governing:
•Topology of network
•Placement of objects in network
•Routing or searching used to locate objects

• I.e.,
•A specific (distributed) data structure underpinning the overlay
•Set of algorithms operating over that structure

• Can be expensive maintaining the structs if highly dynamic

34© 2020 David E. Bakken

Unstructured P2P
• No overall control over topology or placement
• Overlay created in ad hoc manner with simple local rules

• Joining node contacts neighbors (connected to others…)
• Can have different rules along the way
• Very resistant to node failure: self-organizing

• Downsides
• No logarithmic (or any) guarantees on routing hops
• Risk of excessive message traffic to locate objects

• Big picture
• Unstructured P2P dominant in the Internet (Gnutella, FreeNet,

BitTorrent)
• 2008-9 study says 43%-70% of all Internet traffic P2P file sharing

35© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.11: Structured versus unstructured peer-to-peer
systems

Unstructured P2P (cont.)
• Recall P2P file sharing: all nodes offer to store files for
anyone

• Strategies for searching: initiating node can
• Naïve: flood neighbors (who flood neighbors…): Gnutella 0.4
• Expanded ring search: series of searches with increasing TTL

(observation: many requests met locally, esp with good replication)
• Random walks: set of a number of walkers randomly looking
• Gossiping: send to a given neighbor with certain probability

•Probability dynamiclly tuneable: base on (1) experience (2) current context
• Bottom line: helps significantly reduce overhead (and increase

scalability)
• Replication can greatly help (different for each strategy)

37© 2020 David E. Bakken

Gnutella case study
• No longer uses naïve flooding 
• Change #1: hybrid architecture

• Some nodes “more equal than others”: ultrapeers (like original
skype’s super nodes: heavily connected >= 32)

• Leaves connect with small # ultrapeers
• Change #2: query routing protocol (QRP) using QRT table

• Goal: reduce #queries from nodes
• Exchanges info a lot on file locations
• More clever on forwarding: only forward where think will find it (see

book)

38© 2020 David E. Bakken

39
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.12: Key elements in the Gnutella protocol

Application case studies: Squirrel, OceanStore, Ivy [10.6]
• Middleware/apps layered above the routing overlay layer
• Squirrel web caching: by Pastry chefs

• Idea: offload dedicated web caching servers/clusters

40© 2020 David E. Bakken

Web caching 101
• HTTP GET can come from browser cache, proxy web
cache, or origin (destination of GET)

• When receive GET command in proxy or browser:
possibilities cache miss, uncacheable, cache hit

• Objects stored with metadata: modification time & optional
TTL & optional eTag (hash from page contents)

• Cache checks TTL: if not fresh asks next level if valid
(conditional get cGET)

• If-Modified-Since: given last modification
• If-None-Match: given eTag

41© 2020 David E. Bakken

Squirrel basics
• Apply SHA-1 secure hash to URL of cashed objects: 120-
bit Pastry GUID

• Not used to validate, so no need to hash entire object/page
•End-to-end argument: can be compromised along the way so don’t bother in
the middle

• Simple (most effective) version: node with GUID
numerically closest becomes object’s home node

• Squirrel looks in cache, uses Get or cGet appropriately via Pastry
to home node

42© 2020 David E. Bakken

Squirrel evaluation
• Environment: simulation using very realistic active proxy
traces

• Reduction in total external bandwidth: local squirrel cashes
had ~same hit rate as centralized cache server (29%, 38%)

• Perceived latency: cache hits greatly reduce
• Load on client nodes (CPU, storage)

• Each node only served for other nodes 0.31/minute
• Bottom line: performance (for user at client) comparable to
centralized cache

43© 2020 David E. Bakken

OceanStore file store [10.6.2]
• Tapestry weavers wove OceansStore
• Goals:

• Very large scale and incrementally scalable
• Persistent storage for mutal data
• Require: long-term persistence and reliability
• Dynamic network and computer nodes

• Support for both mutable and immutable objects

44© 2020 David E. Bakken

OceanStore (cont.)
• Replica consistency mechanism: similar to Bayou
• Privacy and integrity: encrypting data, Byzantine agreement
for updates

• Trustworthiness of individual hosts not assumed
• Prototype called Pond built early 2000s

45© 2020 David E. Bakken

OceanStore storage organization
• Data objects are file-like, stored in blocks

• Keep ordered sequence of immutable versions ~forever
• Unix-like:

•Root block storing metadata
•Other indirection blocks (like Unix inodes) used if needed

• More indirection: associate persistently textual or other external
name with the sequence of versions

• GUID flavors
• AGUID: an object
• BGUID: for indirection blocks and data blocks
• VGUID: BGUID for root block for each version

46© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.14: Types of identifier used in OceanStore

Name Meaning Description

BGUID block GUID Secure hash of a data block

VGUID version GUID BGUID of the root block of a version

AGUID active GUID Uniquely identifies all the versions of an object

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.13: Storage organization of OceanStore objects

d1 d2 d3 d5d4

root block

version i indirection blocks

d2

version i+1

d1 d3

certificate VGUID of current

version

VGUID of
version i

AGUID

VGUID of version i-1

data blocks

BG
U

ID
 (c

op
y

on
 w

rit
e)

Version i+1 has been updated in blocks d1
d2 and d3. The certif icate and the root
blocks include some metadata not shown.
All unlabelled arrows are BGUIDs.

OceanStore storage organization (cont.)
• Association from AGUID to sequence of versions recorded
in a signed certificate

• Stored and replicated by primary copy scheme, AKA passive
replication (CptS 562..)

• Per trust model, construction of each new certificate agreed
on by small set of hosts, inner ring

• Not covering rest of storage organizaion for time
constraints … read for self later

49© 2020 David E. Bakken

OceanStore performance
• Prototype for proving feasibility, in Java, not production
• Several file benchmarks w/simple NSF client emulation

• WAN: Substantially exceeds NFS for reading
• WAN: within factor of 3 for NFS updates & directories
• LAN: much worse

• Conclusion
• May be effective over Internet on files that do not change much
• Using instead of NSF questionable even over a LAN
• But unfair comparison: using PKIs and trust management

50© 2020 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 10.15: Performance evaluation of the Pond
prototype emulating NFS

LAN WAN Predominant
operations in
benchmarkPhase Linux NFS Pond Linux NFS Pond

1 0.0 1.9 0.9 2.8 Read and write

2 0.3 11.0 9.4 16.8 Read and write

3 1.1 1.8 8.3 1.8 Read

4 0.5 1.5 6.9 1.5 Read

5 2.6 21.0 21.5 32.0 Read and write

Total 4.5 37.2 47.0 54.9

Ivy file system [10.6.3]
• Not covering in class
• Ivy testable for 564, read for exam

52© 2020 David E. Bakken

	Slides for Chapter 10: �Peer-to-Peer Systems
	Introduction [10.1]
	Introduction (cont.)
	Introduction (cont.)
	P2P system evolution
	Figure 10.1: Distinctions between IP and overlay routing for peer-to-peer applications
	Distributed computation
	Napster and its legacy [10.2]
	Figure 10.2: Napster: peer-to-peer file sharing with a centralized, replicated index
	P2P MW [10.3]
	P2P MW (cont.)
	Figure 10.3: Distribution of information in a routing overlay
	Routing overlays [10.4]
	Routing overlays (cont.)
	Routing overlays (cont.)
	Figure 10.4: Basic programming interface for distributed hash table (DHT) as implemented by the PAST API over Pastry
	Figure 10.5: Basic API for distributed object location and routing (DOLR) as implemented by Tapestry
	Overlay case studies: Pastry, Tapestry [10.5]
	Pastry routing overlay [10.5.1]
	Pastry routing algorithm
	Figure 10.6: Circular routing alone is correct but inefficient�Based on Rowstron and Druschel [2001]
	Full Pastry routing algorithm (Stage 2)
	Figure 10.7: First four rows of a Pastry routing table
	Figure 10.8: Pastry routing example �Based on Rowstron and Druschel [2001]
	Figure 10.9: Pastry’s routing algorithm
	Pastry host integration
	Pastry host failure or departure
	Pastry locality and fault tolerance
	Pastry dependability
	Pastry evaluation
	Tapestry [10.5.2]
	Tapestry (cont.)
	Figure 10.10: Tapestry routing	From [Zhao et al. 2004]
	From structured to unstructured P2P [10.5.3]
	Unstructured P2P
	Figure 10.11: Structured versus unstructured peer-to-peer systems
	Unstructured P2P (cont.)
	Gnutella case study
	Figure 10.12: Key elements in the Gnutella protocol
	Application case studies: Squirrel, OceanStore, Ivy [10.6]
	Web caching 101
	Squirrel basics
	Squirrel evaluation
	OceanStore file store [10.6.2]
	OceanStore (cont.)
	OceanStore storage organization
	Figure 10.14: Types of identifier used in OceanStore
	Figure 10.13: Storage organization of OceanStore objects
	OceanStore storage organization (cont.)
	OceanStore performance
	Figure 10.15: Performance evaluation of the Pond prototype emulating NFS
	Ivy file system [10.6.3]

