
From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:

Concepts and Design
Edition 5, © Addison-Wesley 2012

Slides for Chapter 14:
Time and Global States

Introduction [14.1]
• We need to reason about time of events
• No perfect global clock
• Lots of work on clock synchronization, we are skipping
(14.3)

2

Clocks, events, and process states [14.2]
• Refine the model in Chapter 2 proprocess interactions
• Consider DS a set P of N processes, pi for i=1, …, N
• Process pi has a state si that (usually) changes over time
• Process pi takes a series of actions, from 3 choices

• Message send
• Message receive
• Operation to transform its state

• Event≡occurrence of a single action that a process caries
out as it executes

• Totally ordered (locally) on a given host,
• History(pi) ≡ hi ≡<ei

0, ei
1 , ei

2 , …> #series of events
• Note: skipping rest of 14.2 … on clocks etc and also 14.3

3

Logical time and logical clocks [14.4]
• (Going to teach through the VR01 slide set for most of this,
then go through the examples here to reinforce)

• Also for vector clocks separate example slides

4

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.5
Events occurring at three processes

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.6
Lamport timestamps for the events shown in Figure 14.5

Vector clocks
• Limitation of Lamport clocks: if L(e) < L(e’) we can’t
conculde that ee’

• Solution: make the LC scalar a vector
• Vi[i]≡number of events that pi has timestamped
• Vi[j] (for i≠j) ≡ #events at pj that may have affected pi and
that pi knows about.

• (Now see slides from the Birman book)

7

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.7
Vector timestamps for the events shown in Figure 14.5

Global states [14.5]
• (See the VR01 slides for best intro to this)

9

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.9
Cuts

m1 m2

p1

p2
Physical

time

e1
0

Consistent cut
Inconsistent cut

e1
1 e1

2 e1
3

e2
0 e2

1 e2
2

• Cut of a system subset of its global history: union of
prefixes of process histories

• Frontier of cut: last event in each process’s prefix
• Cut C consistent if, for every event it contains, all events
that “happened before” that event are also contained

• i.e., for all events e in C, fe f is in C

Consistent cuts
• Recall system goes through S0S1S2 ..

• One different event at one process in SiSi+1

• Global state then union of process states after a cut
• Run: a total ordering of all events in a global history that’s
consistent with each local history’s ordering

• Not all runs pass through consistent global states
• Linearization (AKA consistent run): ordering of events in
global history consistent with happened-before relationship
on the history

• All linearizations pass only through consistent global states
• Reachability: state S’ is reachable from state S if there is
a linearization that passes through S and then S’.

11

Global state predicates, stability, safety, and liveness [14.5.2]
• Evaluate a global state predicate to detect deadlock, etc

• Function mapping from global states to {True, False}
• Stable property: once predicate true,stays true (opp.: transitory)

•I.e., true from all states reachable from the present state

• Safety property (e.g., α): nothing “bad” ever happens
• E.g., never have deadlock
• i.e., for all states reachable from initial state, α is False (never True)

• Liveness property (e.g., β): something good eventually happens
• E.g., distributed algorithm eventually terminates
• I.e., Liveness w.r.t. β: for any linearization L starting in state S0, β

evaluates to True for some state SL reachable from S0.

12

Snapshot algorithm
• By Chandy and Lamport [1985]: determine global states
• Goal: record a set of process AND channel states such that it is

consistent (not strongly consistent) for a set of processes pi (i=1, 2,
… N)

• Assumptions
• Neither channels nor processes fail
• Channels are uni-directional and FIFO ordered
• Graph of processes and channels strongly connected (path

between any 2 processes)
• Any process may initiate the snapshot at any time
• Processes don’t need to freeze/lock: continue normal operations

13

Snapshot algorithm (cont.)
• Main ideas

• Terms: incoming channels and outgoing channels for pi

• Each process records its state, and for each incoming channel, set
of messages sent to it

• For each channel, process records channel state: messages that
arrived after its last recorded state and before sender recorded
state

•I.e,. Record state at different times but account for messages transmitted but
not yet received (these are part of the channel state)

• Use distinguished marker messages
•Tell receiver to save state
•Way to determine which messages go in channel state
•To initiate the algorithm, process acts like it received a marker message

14

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.10
Chandy and Lamport’s ‘snapshot’ algorithm

Marker receiving rule for process pi
On pi’s receipt of a marker message over channel c:

if (pi has not yet recorded its state) it
records its process state now;
records the state of c as the empty set;
turns on recording of messages arriving over other incoming channels;
else
pi records the state of c as the set of messages it has received over c

since it saved its state.
end if

Marker sending rule for process pi
After pi has recorded its state, for each outgoing channel c:

pi sends one marker message over c
(before it sends any other message over c).

Example of snapshot algorithm
• Two processes, trade in widgets, over two unidirectional
channels

• Process p1 sends orders for widgets to p2 with its payment
($10/widget)

• Process p2 sends widget along other channel

16

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.11
Two processes and their initial states

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.12
The execution of the processes in Figure 14.11

Note: (1) S0 is when p1 sends marker (3) p1 had previously ordered five widgets; sent before
M received by p2 (5) After above, final recorded state includes five widgets in c1, yet system
did not go throough this state (6) Text explains how cut is consistent

Distributed debugging [14.6]
• Problem: recording system’s global state to make useful
statements about whether a transitory state occurred in an
actual execution

• Capture trace info and do post hoc analysis
• Chandy and Lamport’s [1985] snapshot algorithm earlier
used to collect states

• Send to monitor process (considered outside the system)
• Algorithm by Marzullo and Neiger [1991]

19

Distributed debugging (cont.)
• Goal: determine cases where global state predicate φ

• Was definitely True at some point in the execution
• Was possibly True at some point in the execution

• “Definitely” applies to actual execution, not run extrapolated
from it

• Basically, we want to know if a transitory state actually occurred
in an actual execution

•Why not worry if a stable state did?
• Can consider all linearizations H of the observed events
• Possibly φ : exists a consistent global state S through which a

linearization of H passes such that φ(S) is True
• Definitely φ: for all linearizations L of H, exists a consistent global

state S through which L passes such that φ(S) is True
20

Collecting the state [14.6.1]
• Procs pi send in initial state, then periodically later ones

• Does not interfere with execution, only delays a bit (!!)
• Only need to send updates when change in variable used in φ
• Monitor proc records state msgs from each pi in queue Qi

21

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.14 Vector timestamps and variable values for the
execution of Figure 14.9

m1 m2

p1

p2
Physical

time

Cut C 1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C 2

Example : safety property |xi-xj| ≤ δ for all i, j in [1,N]
E.g. δ = 50 & send only “large adjustments” next slides..
Inconsistent cut C1 show violation that never happened… but C2 did

Observing consistent global states [14.6.2]
• Recall a cut C consistent if, for every event it contains, all
events that “happened before” that event are also
contained

• i.e., ∀ events e ∈ C, fe implies that f ∈C
• Fig 14.14 & only send when adjustments “large enough”

• Upon receipt, process updates its value to that of sender
• To know of cut is consistent, processes also send vector
clocks with (changed) state

23

Observing consistent global states (cont.)
• Let

• S={s1, s2, … ,sN} be a global state at monitor, from the state msgs
• V(si) vector timestamp of state si received from process pi

• Then S is a consistent global state iff
V(si)[i] ≥ V(sj)[i] for i,j in [1,N]
• I.e., # of pi’s events known at pj when it sent sj is no more than then

number of events that had occurred at pi when it sent si.
• I.e., if one proc’s state depends on another (by happened-to), then

global state also encompasses state upon which it depends
• How to represent? Lattices (2 slides away)
• Condition depicted next…

24

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.14 REDUX Vector timestamps and variable values
for the execution of Figure 14.9

m1 m2

p1

p2
Physical

time

Cut C 1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100 x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C 2

• Consistent cut iff V(si)[i] ≥ V(sj)[i] for i,j in [1,N]
• I.e., # of pi’s events known at pj when it sent sj is no more than then

number of events that had occurred at pi when it sent si.
• I.e., if one proc’s state depends on another (by happened-to), then

global state also encompasses state upon which it depends

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.15
The lattice of global states for the execution of Figure 14.14

Sij = global state after i events at process 1
and j events at process 2

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7

•Lattice: a partially ordered set represented graphically (loose defn)
•Captures reachability between consistent global states
•A linearizations traverses from top to bottom, one level down only.
•Eg. Above is all consistent global states in the history

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.15 Redux
The lattice of global states for the execution of Figure 14.14

Sij = global state after i events at process 1
and j events at process 2

S00

S10

S20

S21S30

S31

S32

S22

S23

S33

S43

Level 0

1

2

3

4

5

6

7 m1 m2

p1

p2

Cut C1

(1,0) (2,0) (4,3)

(2,1) (2,2) (2,3)

(3,0)
x1= 1 x1= 100x1= 105

x2= 100 x2= 95 x2= 90

x1= 90

Cut C 2

Evaluating with the lattice
• Lattice shows us all linearizations corresponding to a
history

• Evaluating possibly φ
• Start at initial stage & step through all consistent states
• Evaluate φ at each stage, stop when it evaluates to True

• Evaluating definitely φ
• Try to find a set of states through which all linearizations must pass
• Then check if the set’s states all evaluate φ to True; done if find
• E.g., φ(S30) and φ(S21) both true, and one or other must be passed

through for all executions

28

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.16: Algorithms to eval. possibly φ and definitely φ
NOTE: infinite depth

S’ set where one event diff. from S
Reachable iff V(sj)[j] ≥ V(s’i)[j] for i≠j in [1,N]
Can find all states: traverse state queue messages Qi1

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 14.17
Evaluating definitely φ

Only traverse states eval F
E.g., Level 3 only one (bold lines)
E.g., Level 4 only one, right one not reachable from F
If φ(?) is True then definitely φ holds

	� Slides for Chapter 14: �Time and Global States
	Introduction [14.1]
	Clocks, events, and process states [14.2]
	Logical time and logical clocks [14.4]
	Figure 14.5�Events occurring at three processes
	Figure 14.6�Lamport timestamps for the events shown in Figure 14.5
	Vector clocks
	Figure 14.7�Vector timestamps for the events shown in Figure 14.5
	Global states [14.5]
	Figure 14.9�Cuts
	Consistent cuts
	Global state predicates, stability, safety, and liveness [14.5.2]
	Snapshot algorithm
	Snapshot algorithm (cont.)
	Figure 14.10�Chandy and Lamport’s ‘snapshot’ algorithm
	Example of snapshot algorithm
	Figure 14.11�Two processes and their initial states
	Figure 14.12�The execution of the processes in Figure 14.11
	Distributed debugging [14.6]
	Distributed debugging (cont.)
	Collecting the state [14.6.1]
	Figure 14.14 Vector timestamps and variable values for the execution of Figure 14.9
	Observing consistent global states [14.6.2]
	Observing consistent global states (cont.)
	Figure 14.14 REDUX Vector timestamps and variable values for the execution of Figure 14.9
	Figure 14.15�The lattice of global states for the execution of Figure 14.14
	Figure 14.15 Redux�The lattice of global states for the execution of Figure 14.14
	Evaluating with the lattice
	Figure 14.16: Algorithms to eval. possibly φ and definitely φ NOTE: infinite depth
	Figure 14.17�Evaluating definitely φ

