
From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:

Concepts and Design
Edition 5, © Addison-Wesley 2012

Slides for Chapter 15:
Coordination and Agreement

Text additions © 2014-2020 David E. Bakken 1

Introduction [15.1]
• Coordination and agreement are fundamental to FT and DS

• E.g., spaceship’s controllers all agree on changes in mode, etc
• Key issue: system synchronous or asynchronous
• Also key: how to handle failures

•“Coping with failures is a subtle business” … build up from non-FT ones

• Contents
• 15.2: Distributed mutual exclusion
• 15.3: Elections
• 15.4: Group communication (and coord./agreement with it)
• 15.5: Agreement, especially Byzantine agreement

2

Failure assumptions and failure detectors [15.1.1]
• Note: simplifying assumption in Chap15 is each pair of
processes connected by a reliable channel

• Can build in practice as a lower layer, retransmitting dropped or
corrupted messages

• A reliable channel eventually delivers message to receiver
(assume HW redundancy as needed)

• At any time, communication between some processes may
be timely but delayed for others

• Network partition, makes programming even harder
• Bottom line: not all live processes can communicate at the same

time (interval)
• Also assume by default processes fail only by crashing

• Can’t directly detect, must infer
3

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.1
A network partition

Crashed
router

4

Failure detectors
• Failure detector: a service that tracks process’ failures

• Usually a piece/object in each process: local failure detector
• Great seminal paper [Chandra and Toueg 1996]
• Not always accurate! [why?]

• Unreliable failure detector: may declare (hints)
Unsuspected or Suspected, based on evidence [what?] or
lack thereof

• Reliable failure detector: always accurate in detecting a
process’ failure: declares Unsuspected or Failed

• Failed: the process has crashed
• What might Unsuspected really mean?

5

Implementing failure detectors
• Simple scheme

• Each process sends heartbeat message every T seconds
• Transmission time assumed to be D seconds
• If local detector not heard from process p in T+D seconds,

Suspected
• How to set a good timeout values T, D? Static or Dynamic?
• Synchronous system can have reliable FD [why? how?]
• Are imperfect failure detectors of any use?

6

Distributed Mutual Exclusion [15.2]
• Distributed processes often need to coordinate!

• Shared purpose or goal or service (e.g., DCBlocks/GridBlox)
• Shared resources managed by servers (Chap 16)
• E.g., update on text files in NFS (stateless servers w/o locks)
• Even P2P apps/services with no dedicated servers (Chapter 10)

• DME mechanism used by many applications
• Distributed version of critical section (CS) prob., but with messages

7

15.2.1 Algorithms for DME
• System model (to start with)

• N processes pi: 1, 2, …, N not sharing variables
• Assume only one critical section (simplicity; w.l.o.g.)
• System asynchronous
• Processes do not fail
• Message delivery is reliable: any message sent eventually

delivered, intact, exactly once
• API

• enter() // enter critical section, blocking if necessary
• resourceAccesses() // access shared resources in CS
• exit() // leave critical section so others may enter

8

DME algorithms (cont.)
• Requirements for DME

• ME1 (safety): at most one process in CS at a time
• ME2 (liveness): requests to enter and exit CS eventually succeed

• ME2freedom from both deadlock and starvation [why?]
• Absence of starvation is a fairness issue

• Also order of entry to CS
• Happened-before can help here [how?]
• ME3 ( ordering): If one request to enter the CS happened-before

another, then entry to the CS is granted in that order
• How important is ME3, in theory and practice?

9

DME algorithms (cont.)
• Evaluation criteria:

• Bandwidth/messages
• Client delay (e.g. from enter() completing or in terms of one-way

message chain)
• Effect on system throughput

•Rate/speed of DME can influence
•One measure: synchronization delay between exit() and next enter()

10

Central server DME algorithm
• Server grants permission to enter CS

• enter() sends message to server and receives reply
• Server only sends permission when

•No process using CS
•Request queued and made it to the front

• Which properties does this provide:
• ME1 (safety)
• ME2 (liveness)
• ME3 ( ordering)

• Evaluation (see text for more): pretty good
• But central server can overload (no assumed failures for
now) why not replicate?

11

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.2: Server managing a mutual exclusion token for a
set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p 4

p
3p 2

p
1

12

Ring-based DME algorithm
• Organize processes in a logical ring
• Token passes around ring in fixed direction
• Possession of token gives permission for CS

• If not needed, immediately pass on to logical neighbor
• May put a time limit on how long can possess [why?]

• Which properties does this provide:
• ME1 (safety)
• ME2 (liveness)
• ME3 ( ordering)

• Evaluation: Bandwidth? Delay? Other?

13

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.3
A ring of processes transferring a mutual exclusion token

pn

p
2

p
3

p
4

Token

p
1

14

DME algorithm using multicast and logical clocks
• Ricart and Agrawala [1981]
• enter() multicasts request message to the group

• Only returns when reply from all processes
• Algorithm overview (details coming…)

• Request messages have <T, pi> in them (T is a Lamport Clock)
• Each process tracks its CS status:

•HELD: inside CS
•WANTED: waiting entry
•RELEASED: outside CS and not requesting it

15

Basic Idea
• If want into CS send multicast to group

• Can enter only when have N-1 replies
• Logic with <T, pi > ensures correctness & M1-M3

• Lowest <T, pi > wins ties
• Tracks own state: {WANTED, HELD, RELEASED}

16

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.5
Multicast synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

T=34

T=41

17

Initially
• P3 not interested
• P1, P2 request

simultaneously

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.4
Ricart and Agrawala’s algorithm (at process pj)

On initialization
state := RELEASED;

To enter the section
state := WANTED;
Multicast request to all processes; request processing deferred here
T := request’s timestamp;
Wait until (number of replies received = (N – 1));
state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
then

queue request from pi without replying;
else

reply immediately to pi;
end if

To exit the critical section
state := RELEASED;
reply to any queued requests;

18

DME algorithm using multicast and logical clocks (cont.)
• Which properties does this provide:

• ME1 (safety)
• ME2 (liveness)
• ME3 ( ordering)

• Evaluation (details in text…):
• Messages?
• Client delay?
• Synch delay?

19

Voting DME algorithm
• From Maekawa 1985
• Key observation: to grant access to CS, not needed to
receive OK from all processes

• A process asking for CS is a candidate
• Process sending permission is voting for it (sends 1 of its M votes)
• Only need a subset overlapping with all others’ subsets: voting set
• Each process has K votes and is in M voting sets
• Any two voting sets intersect

• Optimal solution only needs K ~ SQRT(N) and M=K
• Think of a matrix…

20

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.6
Maekawa’s algorithm

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi;
Wait until (number of replies received = K);
state := HELD;

On receipt of a request from pi at pj
if (state = HELD or voted = TRUE)
then

queue request from pi without replying;
else

send reply to pi;
voted := TRUE;

end if

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi;

On receipt of a release from pi at pj
if (queue of requests is non-empty)
then

remove head of queue – from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

21

Voting DME algorithm (cont.)
• Which properties does this provide:

• ME1 (safety)
• ME2 (liveness)
• ME3 ( ordering)

• Evaluation (details in text…):
• Messages?
• Client delay?
• Synch delay?
• Deadlock free?

22

Fault Tolerance and DME
• None of previous algorithms tolerate message loss or
process crashes! Consider for each…

• What can happen when messages lost?
• What can happen when processes crash?

• Condidier how to adapt these DME algortihsm to tolerate
abovfe.

• FT and coordination covered a lot more in 15.5 (consensus
and related problems)

23

Elections [15.3]
• Election: choosing a unique process to play a particular
role for a set of coordinating processes

• If fail or want to retire, another election held
• All processes must agree on the leader!

• Terminology and notation
• Calling an election: initiating a particular run of the election alg.

•One process never calls more than one at a time, but others can call too
•Election choice must be unique despite multiple concurrent elections

• Assume we choose the process with the largest ID (IP+port,
1/load, …)

• Participant: engaged in an election (else non-participant)
• Each pi stores electedi

•Will contain ID of elected process
•At first initialized to special value UNDEF 24

Elections (cont.)
• Requirements:

• E1 (safety): A participant process pi has electedi = UNDEF or
electedi = P, where P is chosen at the end of the run as the non-
crashed process with the largest identifier

• E2 (liveness): All processes pi participate and eventually either set
electedi ≠ UNDEF or crash

•Note: some processes may not yet be participating in a given election at a
given time; they still have electedi set to winner of last election

• Evaluating performance
• Bandwidth/messages
• Turnaround time (longest chain of message send times)

25

Ring-based election algorithm
• Chang and Roberts [1979]
• Assume no failures, but system is asynchronous
• Goal: choose a coordinator
• Initially all processes marked as non-participant
• To call election

• Mark self as participant
• Send election message with its ID to clockwise neighbor

26

Ring-based election algorithm (cont.)
• pj rec. election message from pi : compare ID with own

• Greater: forward on message to clockwise neighbor
• Smaller and pj not participant: pass on election message w/ own ID
• Smaller and pj participant: don’t forward message (pi wins)
• Equal: my ID is greatest, so I am coordinator

•Mark self as non-participant
•Send ELECTED message to clockwise neighbor

• Receiving an ELECTED message at pi with E-ID
• Mark self as non-participant
• Set electedi = E-ID
• Forward message on to clockwise neighbor

27

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.7
A ring-based election in progress

24

15

9

4

3

28

17

24

1

Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown in a darker colour

28

Ring-based election algorithm (cont.)
• Which requirements are met?

• E1 (safety): A participant process pi has electedi = UNDEF or
electedi = P, where P is chosen as the non-crashed process at the
end of the run with the largest identifier

• E2 (liveness): All processes pi participate and eventually either set
electedi ≠ UNDEF or crash

• Evaluation
• Worst case performance if only one election?

• Notes:
• Since does not tolerate failures not practical
• But with a failure detector could reconstitute ring (keep multiple

neighbors like Pastry and friends from Chap10 (Overlay Networks))

29

Bully algorithm for elections
• Garcia-Molina 1982
• Assume message delivery reliable
• Differences from ring election algorithm

• Synchronous system, so use timeouts to detect failures
• Ring alg. had minimal a priori knowledge of other processes

•Bully Alg assumes know all processes with higher IDs, can comm. w/all

• Kinds of messages
• ELECTION: call an election (sent when timeout on process)
• ANSWER: send response to ELECTION message
• COORDINATOR: announces identify C-ID of elected process

30

Bully algorithm (cont.)
• Starting an election if highest ID: can just send
COORDINATOR message (with its ID)

• Otherwise: send ELECTION msg to procs with higher IDs
• If get no replies by timeout, send COORDINATOR msg (w/ID) to

procs with lower ID
• Else wait timeout, if no COORDINATOR msg send ELECTION

• Receiving COORDINATOR message with C-ID:
•Set electedi = C-ID
•Treat C-ID as coordinator now

• Receiving ELECTION message:
•Send ANSWER message
•Call another election

31

Bully algorithm (cont.)
• Process created to replace crashed process begins
election

• If highest ID it becomes coordinator, even though current one
functioning

• What a bully!

32

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.8
The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C
coordinator

Stage 4

C

election

election
Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3 p

4

election

answer

The election of coordinator p2,
after the failure of p4 and then p3

33

Bully algorithm (cont.)
• Which requirements are met?

• E1 (safety): A participant process pi has electedi = UNDEF or
electedi = P, where P is chosen as the non-crashed process at the
end of the run with the largest identifier

• E2 (liveness): All processes pi participate and eventually either set
electedi ≠ UNDEF or crash

• Evaluation
• Worst case performance if only one election?

34

Coordination and Agreement in Group Communication [15.4]
• Group comm: get message to a group of processes

• Higher-level semantics than IP multicast (IPMC)
• Reliability properties: validity, integrity, agreement, and
ordering (FIFO, causal, total)

35

Coordination and agreement in group communication (cont.)
• System model

• Processes have 1:1 reliable channels
• Only crash failure
• Group comm via a multicast operation (again, >IPMC)
• A process can belong to multiple groups
• Some algs assume groups are closed: only members can send
• Processes don’t lie about origin or destination of messages
• Asynchronous system

• APIs
• Multicast (g, m): send message m to all members of group g
• Deliver(m): delivers a messsage sent to group (to queue or app)

• Messages contain ID of sender, group
36

Basic multicast [15.4.1]
• The basic building block for use in the other algorithms

• Correct process will eventually delivery message, if multicaster
does not crash

• Comparison to IPMC?
• Simple implementation

• B-multicast(g,m): for each process p in group, send (p,m)
• On receive(m) at p: B-deliver(m) at p

37

Reliable multicast [15.4.2]
• Builds on Ch6 defns for validity, integrity, and agreement
• Properties of R-multicast(g,m) and R-deliver(m)

• Integrity
•Correct process p delivers m at most once to application
•Delivered m was supplied to R-multicast by sender(m)

• Validity: if correct p multicasts m, then it will eventually deliver m
• (Delivery) Agreement: if correct p delivers m, then all other

correct processes in group(m) will eventually deliver m.
•AKA atomic delivery (but sometimes that includes total)

• What properties of these does B-multicast provide?
• Do these properties in any way provide liveness?

• Simple to implement R-multicast over B-multicast
• Process can belong to several closed groups

38

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.9
Reliable multicast algorithm

Note: if moved up R-deliver then not uniform agreement (defined soon…)
39

Reliable multicast over B-multicast (cont.)
• Which properties does this algorithm provide?

• Integrity
•Correct process p delivers m at most once
•Delivered m was supplied to R-multicast by sender(m)

• Validity: if correct p multicasts m, then it will eventually deliver m
• Agreement: if correct p delivers m, then all other correct

processes in group(m) will eventually deliver m.
• Other comments on algorithm?

40

Reliable multicast over IPMC
• Alternate impl.: use IPMC, piggybacked ACKS, and NACKS

• Observation: IPMC is efficient, and usually successful
• No separate ACKs, piggyback on messages multicasted to group
• Send a NACK only when detect missed a message
• Assume groups closed

• Basic idea
• p tracks seqns S[p,g] and last delivered R[q,g]
• R-multicast(g,m) piggybacks on IPMC msg S[p,g]++ and all R[q,g]
• R-deliver(m) delivers m w/seqn S from p when S=(R[p,g]++) +1

•Otherwise queues it in holding queue
•Learn about missing messages this way, can send NACK
•R-multicast(g,m) code must buffer m for some time at all processes

41

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.10
The hold-back queue for arriving multicast messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming
messages

When delivery
guarantees are
met

• Not strictly necessary
for reliability
property

• But simplifies
algorithm

• Also later helps
provide ordered
delivery

42

Reliable multicast over IPMC (cont.)
• Which properties does this algorithm provide?

• Integrity
•Correct process p delivers m at most once
•Delivered m was supplied to R-multicast by sender(m)

• Validity: if correct p multicasts m, then it will eventually deliver m
• Agreement: if correct p delivers m, then all other correct

processes in group(m) will eventually deliver m.
• Other comments on algorithm?

43

Uniformity
• Agreement so far only dealt w/ correct processes: never fail
• Uniform properties: hold whether or not processes are
correct or not

• Uniform agreement: if a process, whether correct or fails, delivers
message m, then all correct processes in group(m) will eventually
deliver m

• Does Fig 15.9 provide uniformity: if crash after R-deliver?
• Why care about dead processes’ behavior anyway?

44

Ordered multicast [15.4.3]
• B-multicast delivers a message to group members in an
arbitrary order

• Some apps need more than that
• FIFO ordering: if a correct process issues multicast(g,m) and then

multicast (g,m’), every correct process will deliver m before m’.
• Causal ordering: if multicast(g,m) multicast(g,m’), where  is

the happened-before relationship induced only by messages sent
between the members of g, then any correct process that delivers
m’ will deliver m before m’.

•Does Causal imply FIFO?
• Total ordering: if a correct process delivers message m before it

delivers m’, then any other correct process that delivers m’ will
deliver m before m’.

• Note: for now assume process only in one group … later extend
45

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.11
Total, FIFO and causal ordering of multicast messages

F3

F1

F2

T2
T1

P1 P2 P3

Time

C3

C1

C2

Notice the consistent ordering
of totally ordered messages T1
and T2,
the FIFO-related messages F1
and F2 and the causally related
messages C1 and C3
– and the otherwise arbitrary
delivery ordering of messages.

46

Ordered multicast (cont.)
• Ordering does not assume or imply reliability!

• Reliable (all-or-none) and total AKA “atomic broadcast” sometimes
•Called atomic+total often called ABCAST

• Also reliable versions of FIFO, causal, and some hybrid orderings
• Performance

• Very expensive and not largely scalable
• E.g., some have proposed application-specific message semantics

to define orderings [Cheriton and Skeen 1993, Pedone and
Schiper 1999]

•VERY interesting papers for student presentations in 562 (fault-tolerant
computing)

47

Example: bulliten board system
• App: users post messages
• Each user has a local process delivering to user
• Each topic has its own process group

• User posts: multicasts to others
• Receive message: deliver in “right” order

• What ordering (if any) is desirable here?

48

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.12
Display from bulletin board (AKA discussion forum) program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

• FIFO at least desireable
• Causal: needed so “Re:” comes after original (2327)
• Total: numbers consistent (and useable as message IDs)
• Note: USENET does not provide (full) causal or any total

49

Implementing FIFO ordering
• Use a per-sender sequence number
• As with R-multicast, S[p,g] and R[q,g] kept at p, for all q in g
• p calls FO-multicast(g,m):

• Piggyback S[p,g]++ onto m
• Call B-multicast(g,m)

• p receives m from q with sequence S
• R=R[q,g]++
• IF S= R+1: FO-deliver(m) to p
• ELSE if S>(R+1): put in holding queue until ready
• ELSE: discard // duplicate, S <= R

• Can use any implementation of B-multicast
• If use R-multicast, then have reliable FIFO
• Note: above only works if groups are non-overlapping 50

Implementing total ordering
• TO-multicast(g,m) and TO-deliver(m)

• Basic idea: assign TO-IDs for each multicast message
• Similar to FIFO, but track group-specific IDs, not process-specific
• Two main algorithms: sequencer proc. and distributed agreement

• TO sequencer process idea (Kaashok on Amoeba Dist OS)
• Main process that assigns the TO-ID(m)
• TO-multicast(g,m)

•attaches unique ID to m, id(m)
•B-multicast(g,m) and to sequencer(g)
•sequencer(g) assigns TO-ID(m)
•Sequencer does B-multicast to group to tell TO-ID(m)
•Group members now know when to deliver m (wait until at f+1 processes)

• Evaluation? Comments?
51

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.13
Total ordering using a sequencer

52

Total ordering via distributed agreement (ISIS)
• Basic Idea

1. Process p B-multicast message m to members (open or closed)
2. Receiving processes propose a sequence number

1. Tracks agreed A[q,g] and its proposed so far P[q,g]

3. Processes agree on TO-ID(m)
• Details

1. p calls B-multicast(m, id(m)), where id(m) globally unique
2. Each proc q replies to p w/ P[q,g] = MAX(A[q,g],P[q,g]) +1
3. p collects sequence numbers and chooses the largest one, a
4. p calls B-Multicast(g,id(m),a)
5. All processes now know a is TO-ID(m)

• Evaluation? Comments? (more details in text…)
53

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.14
The ISIS algorithm for total ordering

2

1

1

2

2

1 Message
P2

P3

P1

P4

3 Agreed Seq

3

3

Note: here P1 is
both sender(m) and
sequencer(g)

54

Implementing causal ordering (ISIS)
• Each process maintains its own vector time, V[q]

• Tracks the number of events it has seen from each process that
happened-before the message about to be multicasted

• CO-multicast(m,g) at p:
• V[p]++
• B-multicast(g,m, id(m), V)

• When pi B-delivers m from pj, puts in holdback queue
before can CO-deliver it

• Must ensure all happened-before messages have arrived
• pi waits until

•It has delivered any earlier message sent by pj

•It has delivered any message pj had delivered before it sent m

55

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.15
Causal ordering using vector timestamps

56

Discussion
• Many possible global orderings (see text): global FIFO,
global causal, parwise total, global total, overlapping
groups

• So far, did not give algorithm guaranteeing both reliable
and total ordered delivery! [Why?]

57

Consensus and related problems [15.5]
• Similar problems here: consensus, Byzantine generals,
interactive consistency … plus earlier DME, and total
ordering … all fundamentally agreement.

• Exploring 3 variations deeper
• Byzantine generals
• Interactive consistency
• Totally ordered multicast
• …. Plus
• Impossibility result [FLP85]
• Practical algorithms “circumventing” [FLP85]

58

System model and problem definitions [15.5.1]
• As before, collection of N processes (only message
passing)

• Consensus must be reached even with faults
• Communication channels reliable
• Processes may fail: crash, Byzantine (up to f of N)

• And if digitally sign or not (can’t successfully lie about what another
process told you); default is no

59

Definition of consensus problem
• Each proc pi (i=1,2,…N)

• Begins in undecided state
• Proposes value vi from set D
• Exchanges values with others
• Sets decision variable di, entering decided state can’t change

60

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.16
Consensus for three processes

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1:=proceed d2:=proceed

61

Requirements for consensus algorithm
• Every execution of it always provides:

• Termination: eventually each correct process sets its decision
variable

• Agreement: the decision value of all correct processes is the
same: if pi and pj are correct and have entered the decided state,
then di = dj for all i, j

• Integrity: If the correct processes all proposed the same value,
then any correct process in the decided state has chosen that
value

•AKA validity in the literature
•Weaker variation: decision value a value that some, not all, propose [use?]

• Simple without process failures … multicast , wait for all, all
choose majority(v1,v2, …, vN), UNDEF if no majority

• Could use minimum, maximum, … for some apps and data types
62

Requirements for Byzantine generals problem
• Three or more generals agree to attack or retreat, one
(distinguished process, the commander) issues orders, one
or more faulty

• Different from other flavors of consensus: distinguished process
proposes value (most others are peer-to-peer)

• Every execution of it always provides:
• Termination (same): eventually each correct process sets its

decision variable
• Agreement (same): the decision value of all correct processes is

the same: if pi and pj are correct and have entered the decided
state, then di = dj for all i, j

• Integrity: If the commander is correct, then all correct processes
decide on the value the commander proposed

•Note: commander need not be correct, no agreement then
63

Requirements for interactive consistency
• Every process proposes a value, agree on a vector of
values

• Every execution of it always provides:
• Termination (same): eventually each correct process sets its

decision variable
• Agreement: the decision value of all correct processes is the same
• Integrity: If pi the correct, all correct processes agree on vi as the

ith compnent of the vector

64

Equivalence of the fundamental problems
• Problems are equivalent: consensus(C), Byzantine
generals (BG), and interactive consistency (IC)

• See text for details: expressing one in terms of the other
• Also total order (TO), e.g. consensus on sequence# for a message

• For all, it is reasonable to consider them in terms of
• Failure model: arbitrary or crash of process
• Boundedness: synchronous or asynchronous DS

65

Consensus in a synchronous system [15.5.2]
• Algorithm by Dolev and Strong [1983]

• f+1 rounds of collecting info from each other via B-mulitcast
•In any round a process could crash sending to some but not all processes
•Fundamental limitation for consensus even with crash failures

• Modified Integrity property: if all processes (correct or not)
proposed the same value, then correct processes in decided state
choose it

•Because only assuming crash failures, any value sent is correct
•Allows use of the MINIMUM function to choose decision value

• values[r,i] holds set of proposed values known to pi at start of
round r

• Rounds limited by timeout

66

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.17
Consensus in a synchronous system (timeout not shown)

67

Byzantine generals problem in a synchronous system [15.5.3]
• System model

• Processes can fail arbitrarily
• Communication channels are pairwise and private

•I.e., a process can’t snoop and then determine another process is lying
•No process can inject a message into the channel

• Need ≥ 3f+1 processes to tolerate f failures with unsigned
messages

• Need ≥ f+1 rounds for both crash and arbitrary process
failure [why?]

• Scenario: commander sends order to lieutenants, who then
agree on what they were ordered to do

• Notation: x:y:z means px says py said value z.
68

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.18
Three Byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v

3:1:u

p1 (Commander)

p2 p3

1:x1:w

2:1:w

3:1:x

Faulty processes are shown coloured

p2 can’t tell who failed (whose value to ignore); could if messages signed

69

p2 votes on?
[v,u]

p2 votes on?
[x,w]

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.19
Four Byzantine generals

p1 (Commander)

p2 p3

1:v1:v

2:1:v
3:1:u

Faulty processes are shown coloured
p4

1:v

4:1:v
2:1:v 3:1:w

4:1:v

p1 (Commander)

p2 p3

1:w1:u

2:1:u
3:1:w

p4

1:v

4:1:v
2:1:u 3:1:w

4:1:v

• MAJORITY in correct processes chooses v (left) or UNDEF (right)
• Complexity: f+1 rounds O(Nf+1) messages, later O(N2) signed
• Implicit timeout (not shown) turns lack of vote into UNDEF
• Ergo simple majority fine

70

p4 votes on?
[v,w,v]

p4 votes on?
[v,w,u]

Impossibility in asynchronous systems
• Assumed so far: rounds of messages, can set a timeout
and assume failed

• In asynch. system, can’t be guaranteed to reach
consensus with even 1 process crash failure [FLP85]

• Can’t distinguish a crashed process from a slow one
 no solution to Byzantine generals, interactive consistency, totally

ordered multicast
• Workaround #1: Mask faults (see [2.4.2])

• Use persistent storage of state & process restart
• Takes longer but still works

71

Impossibility in asynchronous systems (cont.)
• Workaround #2: using “perfect by design” failure detectors

• Declare the unresponsive process to have failed
• Remove from the group
• Ignore any messages from it
• Analysis?

• Workaround #3: use eventually weak failure detectors
• [Chandra and Toueg 1996], with reliable coms and <half crashed
• Eventually weak complete: each faulty process is eventually

suspected permanently by some correct process
• Eventually weak accurate: after some point in time, at least one

correct process is never suspected by any correct process
• Adaptive timeout scheme (15.1) can come close to this

• W. #4: consensus w/randomization (confuse adversary)
72

	� Slides for Chapter 15: �Coordination and Agreement
	Introduction [15.1]
	Failure assumptions and failure detectors [15.1.1]
	Figure 15.1�A network partition
	Failure detectors
	Implementing failure detectors
	Distributed Mutual Exclusion [15.2]
	15.2.1 Algorithms for DME
	DME algorithms (cont.)
	DME algorithms (cont.)
	Central server DME algorithm
	Figure 15.2: Server managing a mutual exclusion token for a set of processes
	Ring-based DME algorithm
	Figure 15.3�A ring of processes transferring a mutual exclusion token
	DME algorithm using multicast and logical clocks
	Basic Idea
	Figure 15.5�Multicast synchronization
	Figure 15.4�Ricart and Agrawala’s algorithm (at process pj)
	DME algorithm using multicast and logical clocks (cont.)
	Voting DME algorithm
	Figure 15.6�Maekawa’s algorithm
	Voting DME algorithm (cont.)
	Fault Tolerance and DME
	Elections [15.3]
	Elections (cont.)
	Ring-based election algorithm
	Ring-based election algorithm (cont.)
	Figure 15.7�A ring-based election in progress
	Ring-based election algorithm (cont.)
	Bully algorithm for elections
	Bully algorithm (cont.)
	Bully algorithm (cont.)
	Figure 15.8�The bully algorithm
	Bully algorithm (cont.)
	Coordination and Agreement in Group Communication [15.4]
	Coordination and agreement in group communication (cont.)
	Basic multicast [15.4.1]
	Reliable multicast [15.4.2]
	Figure 15.9�Reliable multicast algorithm
	Reliable multicast over B-multicast (cont.)
	Reliable multicast over IPMC
	Figure 15.10�The hold-back queue for arriving multicast messages
	Reliable multicast over IPMC (cont.)
	Uniformity
	Ordered multicast [15.4.3]
	Figure 15.11�Total, FIFO and causal ordering of multicast messages
	Ordered multicast (cont.)
	Example: bulliten board system
	Figure 15.12�Display from bulletin board (AKA discussion forum) program
	Implementing FIFO ordering
	Implementing total ordering
	Figure 15.13�Total ordering using a sequencer
	Total ordering via distributed agreement (ISIS)
	Figure 15.14�The ISIS algorithm for total ordering
	Implementing causal ordering (ISIS)
	Figure 15.15�Causal ordering using vector timestamps
	Discussion
	Consensus and related problems [15.5]
	System model and problem definitions [15.5.1]
	Definition of consensus problem
	Figure 15.16�Consensus for three processes
	Requirements for consensus algorithm
	Requirements for Byzantine generals problem
	Requirements for interactive consistency
	Equivalence of the fundamental problems
	Consensus in a synchronous system [15.5.2]
	Figure 15.17�Consensus in a synchronous system (timeout not shown)
	Byzantine generals problem in a synchronous system [15.5.3]
	Figure 15.18�Three Byzantine generals
	Figure 15.19�Four Byzantine generals
	Impossibility in asynchronous systems
	Impossibility in asynchronous systems (cont.)

