Slides for Chapter 15:
Coordination and Agreement

From *Coulouris, Dollimore, Kindberg and Blair
Distributed Systems: Concepts and Design
Edition 5, © Addison-Wesley 2012
Introduction [15.1]

• Coordination and agreement are fundamental to FT and DS
 • E.g., spaceship’s controllers all agree on changes in mode, etc
 • Key issue: system synchronous or asynchronous
 • Also key: how to handle failures
 • “Coping with failures is a subtle business” … build up from non-FT ones

• Contents
 • 15.2: Distributed mutual exclusion
 • 15.3: Elections
 • 15.4: Group communication (and coord./agreement with it)
 • 15.5: Agreement, especially Byzantine agreement
Failure assumptions and failure detectors [15.1.1]

• Note: simplifying assumption in Chap15 is each pair of processes connected by a **reliable channel**
 • Can build in practice as a lower layer, retransmitting dropped or corrupted messages
 • A reliable channel *eventually* delivers message to receiver (assume HW redundancy as needed)

• At any time, communication between some processes may be timely but delayed for others
 • **Network partition**, makes programming even harder
 • Bottom line: not all live processes can communicate at the same time (interval)

• Also assume by default processes fail only by crashing
 • Can’t directly detect, must infer
Figure 15.1
A network partition
Failure detectors

- **Failure detector**: a service that tracks process’ failures
 - Usually a piece/object in each process: **local failure detector**
 - Great seminal paper [Chandra and Toueg 1996]
 - Not always accurate! [why?]

- **Unreliable failure detector**: may declare (hints) *Unsuspected* or *Suspected*, based on evidence [what?] or lack thereof

- **Reliable failure detector**: always accurate in detecting a process’ failure: declares *Unsuspected* or *Failed*
 - Failed: the process has crashed
 - What might *Unsuspected* mean?
Implementing failure detectors

• Simple scheme
 • Each process sends heartbeat message every T seconds
 • Transmission time assumed to be D seconds
 • If local detector not heard from process p in $T+D$ seconds, Suspected

• How to set a good timeout values T, D? Static or Dynamic?
• Synchronous system can have reliable FD [why? how?]
• Are imperfect failure detectors of any use?
Distributed Mutual Exclusion [15.2]

• Distributed processes often need to coordinate!
 • Shared purpose or goal or service (e.g., DCBlocks/GridBlox)
 • Shared resources managed by servers (Chap 16)
 • E.g., update on text files in NFS (stateless servers w/o locks)
 • Even P2P apps/services with no dedicated servers (Chapter 10)

• DME mechanism used by many applications
 • Distributed version of *critical section* (CS) prob., but with messages
15.2.1 Algorithms for DME

- **System model** (to start with)
 - N processes p_i: 1, 2, ..., N not sharing variables
 - Assume only one critical section (simplicity; w.l.o.g.)
 - System asynchronous
 - Processes do not fail
 - Message delivery is reliable: any message sent eventually delivered, intact, exactly once

- **API**
 - `enter()` // enter critical section, blocking if necessary
 - `resourceAccesses()` // access shared resources in CS
 - `exit()` // leave critical section so others may enter
DME algorithms (cont.)

• Requirements for DME
 • **ME1** (safety): at most one process in CS at a time
 • **ME2** (liveness): requests to enter and exit CS eventually succeed
• ME2 → freedom from both deadlock and starvation [why?]
• Absence of starvation is a *fairness* issue
 • Also order of entry to CS
 • Happened-before can help here [how?]
• **ME3** (→ ordering): If one request to enter the CS happened-before another, then entry to the CS is granted in that order
• How important is ME3, in theory and practice?
DME algorithms (cont.)

- Evaluation criteria:
 - *Bandwidth/messages*
 - *Client delay (e.g. from enter() completing or in terms of one-way message chain)*
 - Effect on *system throughput*
 - Rate/speed of DME can influence
 - One measure: *synchronization delay between exit() and next enter()*
Central server DME algorithm

• Server grants permission to enter CS
 • `enter()` sends message to server and receives reply
 • Server only sends permission when
 • No process using CS
 • Request queued and made it to the front

• Which properties does this provide:
 • **ME1** (safety)
 • **ME2** (liveness)
 • **ME3** (→ ordering)

• Evaluation (see text for more): pretty good

• But central server can overload (no assumed failures for now) **why not replicate?**
Figure 15.2: Server managing a mutual exclusion token for a set of processes

1. Request token
2. Release token
3. Grant token

Server

Queue of requests

p_1

p_2

p_3

p_4
Ring-based DME algorithm

• Organize processes in a logical ring
• Token passes around ring in fixed direction
• Possession of token gives permission for CS
 • If not needed, immediately pass on to logical neighbor
 • May put a time limit on how long can possess [why?]

• Which properties does this provide:
 • ME1 (safety)
 • ME2 (liveness)
 • ME3 (→ ordering)

• Evaluation: Bandwidth? Delay? Other?
Figure 15.3
A ring of processes transferring a mutual exclusion token
DME algorithm using multicast and logical clocks

• Ricart and Agrawala [1981]

• `enter()` multicasts request message to the group
 • Only returns when reply from all processes

• Algorithm overview (details coming…)
 • Request messages have \(<T, p_i> \) in them (\(T \) is a Lamport Clock)
 • Each process tracks its CS status:
 • HELD: inside CS
 • WANTED: waiting entry
 • RELEASED: outside CS and not requesting it
Basic Idea

• If want into CS send multicast to group
 • Can enter only when have N-1 replies
• Logic with $<T, p_i>$ ensures correctness & M1-M3
 • Lowest $<T, p_i>$ wins ties
• Tracks own state: {WANTED, HELD, RELEASED}
Initially
- P_3 not interested
- P_1, P_2 request simultaneously
Figure 15.4
Ricart and Agrawala’s algorithm (at process p_j)

On initialization

state := RELEASED;

To enter the section

state := WANTED;
Multicast request to all processes;
$T :=$ request’s timestamp;
Wait until (number of replies received $= (N - 1)$);
state := HELD;

On receipt of a request $<T_i, p_i>$ at p_j ($i \neq j$)
if (state = HELD or (state = WANTED and $(T, p_j) < (T_i, p_i)$))
then
queue request from p_i without replying;
else
reply immediately to p_i;
end if

To exit the critical section

state := RELEASED;
reply to any queued requests;
DME algorithm using multicast and logical clocks (cont.)

- Which properties does this provide:
 - ME1 (safety)
 - ME2 (liveness)
 - ME3 (ordering)

- Evaluation (details in text…):
 - Messages?
 - Client delay?
 - Synch delay?
Voting DME algorithm

- From Maekawa 1985
- Key observation: to grant access to CS, not needed to receive OK from all processes
 - A process asking for CS is a candidate
 - Process sending permission is voting for it (sends 1 of its M votes)
 - Only need a subset overlapping with all others’ subsets: voting set
 - Each process has K votes and is in M voting sets
 - Any two voting sets intersect
- Optimal solution only needs $K \sim \sqrt{N}$ and $M=K$
 - Think of a matrix…
Maekawa’s algorithm

On initialization

\[
\begin{align*}
\text{state} & := \text{RELEASED}; \\
\text{voted} & := \text{FALSE};
\end{align*}
\]

For \(p_i \) to enter the critical section

\[
\begin{align*}
\text{state} & := \text{WANTED}; \\
& \quad \text{Multicast request to all processes in } V_i; \\
& \quad \text{Wait until (number of replies received} = K); \\
\text{state} & := \text{HELD};
\end{align*}
\]

On receipt of a request from \(p_i \) at \(p_j \)

\[
\begin{align*}
\text{if} \ (\text{state} = \text{HELD} \text{ or voted} = \text{TRUE}) & \text{ then} \\
& \quad \text{queue request from } p_i \text{ without replying;} \\
\text{else} & \quad \text{send reply to } p_i; \\
& \quad \text{voted} := \text{TRUE}; \\
\text{end if}
\end{align*}
\]

For \(p_i \) to exit the critical section

\[
\begin{align*}
\text{state} & := \text{RELEASED}; \\
& \quad \text{Multicast release to all processes in } V_i; \\
\end{align*}
\]

On receipt of a release from \(p_i \) at \(p_j \)

\[
\begin{align*}
\text{if} \ (\text{queue of requests is non-empty}) & \text{ then} \\
& \quad \text{remove head of queue – from } p_k, \text{ say;} \\
& \quad \text{send reply to } p_k; \\
& \quad \text{voted} := \text{TRUE}; \\
\text{else} & \quad \text{voted} := \text{FALSE}; \\
\text{end if}
\end{align*}
\]
Voting DME algorithm (cont.)

- Which properties does this provide:
 - **ME1** (safety)
 - **ME2** (liveness)
 - **ME3** (ordering)

- Evaluation (details in text…):
 - Messages?
 - Client delay?
 - Synch delay?
 - Deadlock free?
Fault Tolerance and DME

• None of previous algorithms tolerate message loss or process crashes! Consider for each…
 • What can happen when messages lost?
 • What can happen when processes crash?
• Condidier how to adapt these DME algorithm to tolerate above.
• FT and coordination covered a lot more in 15.5 (consensus and related problems)
Elections [15.3]

- **Election**: choosing a unique process to play a particular role for a set of coordinating processes
 - If fail or want to retire, another election held
 - All processes must agree on the leader!

- Terminology and notation
 - **Calling an election**: initiating a particular run of the election alg.
 - One process never calls more than one at a time, but others can call too
 - Election choice must be unique despite multiple concurrent elections
 - Assume we choose the process with the largest ID (IP+port, 1/load, …)
 - **Participant**: engaged in an election (else non-participant)
 - Each p_i stores $elected_i$
 - Will contain ID of elected process
 - At first initialized to special value UNDEF
Elections (cont.)

• Requirements:
 • **E1** (safety): A participant process p_i has $elected_i = \text{UNDEF}$ or $elected_i = P$, where P is chosen at the end of the run as the non-crashed process with the largest identifier
 • **E2** (liveness): All processes p_i participate and eventually either set $elected_i \neq \text{UNDEF}$ or crash
 • Note: some processes may not yet be participating in a given election at a given time; they still have $elected_i$ set to winner of last election

• Evaluating performance
 • Bandwidth/messages
 • Turnaround time (longest chain of message send times)
Ring-based election algorithm

- Chang and Roberts [1979]
- Assume no failures, but system is asynchronous
- Goal: choose a *coordinator*
- Initially all processes marked as non-participant
- To call election
 - Mark self as participant
 - Send election message with its ID to clockwise neighbor
• p_j rec. election message from p_i: compare ID with own
 • Greater: forward on message to clockwise neighbor
 • Smaller and p_j not participant: pass on election message w/ own ID
 • Smaller and p_j participant: don’t forward message (p_i wins)
 • Equal: my ID is greatest, so I am coordinator
 • Mark self as non-participant
 • Send ELECTED message to clockwise neighbor

• Receiving an ELECTED message at p_i with E-ID
 • Mark self as non-participant
 • Set $elected_i = E$-ID
 • Forward message on to clockwise neighbor
Figure 15.7
A ring-based election in progress

Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown in a darker colour.
Ring-based election algorithm (cont.)

• Which requirements are met?

 • **E1** (safety): A participant process p_i has $elected_i = \text{UNDEF}$ or $elected_i = P$, where P is chosen as the non-crashed process at the end of the run with the largest identifier

 • **E2** (liveness): All processes p_i participate and eventually either set $elected_i \neq \text{UNDEF}$ or crash

• Evaluation

 • Worst case performance if only one election?

• Notes:

 • Since does not tolerate failures not practical

 • But with a failure detector could reconstitute ring (keep multiple neighbors like Pastry and friends from Chap10 (Overlay Networks))
Bully algorithm for elections

- Garcia-Molina 1982
- Assume message delivery reliable
- Differences from ring election algorithm
 - Synchronous system, so use timeouts to detect failures
 - Ring alg. had minimal *a priori* knowledge of other processes
 - Bully Alg assumes know all processes with higher IDs, can comm. w/all
- Kinds of messages
 - ELECTION: call an election (sent when timeout on process)
 - ANSWER: send response to ELECTION message
 - COORDINATOR: announces identify C-ID of elected process
Bully algorithm (cont.)

- Starting an election if highest ID: can just send COORDINATOR message (with its ID)
- Otherwise: send ELECTION msg to procs with higher IDs
 - If get no replies by timeout, send COORDINATOR msg (w/ID) to procs with lower ID
 - Else wait timeout, if no COORDINATOR msg send ELECTION
- Receiving COORDINATOR message with C-ID:
 - Set $elected_i = C$-ID
 - Treat C-ID as coordinator now
- Receiving ELECTION message:
 - Send ANSWER message
 - Call another election
Bully algorithm (cont.)

- Process created to replace crashed process begins election
 - If highest ID it becomes coordinator, even though current one functioning
 - What a bully!
The election of coordinator p_2, after the failure of p_4 and then p_3.
Bully algorithm (cont.)

• Which requirements are met?

 • **E1** (safety): A participant process p_i has $elected_i = \text{UNDEF}$ or $elected_i = \text{P}$, where P is chosen as the non-crashed process at the end of the run with the largest identifier.

 • **E2** (liveness): All processes p_i participate and eventually either set $elected_i \neq \text{UNDEF}$ or crash.

• Evaluation

 • Worst case performance if only one election?
Coordination and Agreement in Group Communication [15.4]

• Group comm: get message to a group of processes
 • Higher-level semantics than IP multicast (IPMC)
• Reliability properties: validity, integrity, agreement, and ordering (FIFO, causal, total)
Coordination and agreement in group communication (cont.)

- **System model**
 - Processes have 1:1 reliable channels
 - Only crash failure
 - Group comm via a multicast operation (again, >IPMC)
 - A process can belong to multiple groups
 - Some algos assume groups are closed: only members can send
 - Processes don’t lie about origin or destination of messages
 - Asynchronous system

- **APIs**
 - Multicast \((g, m)\): send message \(m\) to all members of group \(g\)
 - Deliver\((m)\): delivers a message sent to group (to queue or app)

- **Messages contain ID of sender, group**
Basic multicast [15.4.1]

- The basic building block for use in the other algorithms
 - Correct process will eventually delivery message, if multicaster does not crash
- Comparison to IPMC?
- Simple implementation
 - B-multicast(g,m): for each process p in group, send (p,m)
 - On receive(m) at p: B-deliver(m) at p
Reliable multicast [15.4.2]

- Builds on Ch6 defns for validity, integrity, and agreement

- Properties of R-multicast(g,m) and R-deliver(m)
 - **Integrity**
 - Correct process p delivers m at most once to application
 - Delivered m was supplied to R-multicast by sender(m)
 - **Validity**: if correct p multicasts m, then it will eventually deliver m
 - **(Delivery) Agreement**: if correct p delivers m, then all other correct processes in $group(m)$ will eventually deliver m.
 - AKA atomic delivery (but sometimes that includes total)
 - What properties of these does B-multicast provide?
 - Do these properties in any way provide liveness?

- Simple to implement R-multicast over B-multicast
 - Process can belong to several closed groups
Figure 15.9
Reliable multicast algorithm

On initialization

Received := \{\};

For process p to R-multicast message m to group g

B-multicast(g, m); // p ∈ g is included as a destination

On B-deliver(m) at process q with g = group(m)
if (m ∉ Received)
then

Received := Received ∪ \{m\};
if (q ≠ p) then B-multicast(g, m); end if
R-deliver m;

end if

Note: if moved up R-deliver then not uniform agreement (defined soon…)
Reliable multicast over B-multicast (cont.)

• Which properties does this algorithm provide?

 • **Integrity**
 • Correct process p delivers m at most once
 • Delivered m was supplied to R-multicast by sender(m)

 • **Validity**: if correct p multicasts m, then it will eventually deliver m

 • **Agreement**: if correct p delivers m, then all other correct processes in $\text{group}(m)$ will eventually deliver m.

• Other comments on algorithm?
Reliable multicast over IPMC

- Alternate impl.: use IPMC, piggybacked ACKS, and NACKS
 - Observation: IPMC is efficient, and usually successful
 - No separate ACKs, piggyback on messages multicasted to group
 - Send a NACK only when detect missed a message
 - Assume groups closed

- Basic idea
 - p tracks seqns $S[p,g]$ and last delivered $R[q,g]$
 - R-multicast(g, m) piggybacks on IPMC msg $S[p,g]++$ and all $R[q,g]$
 - R-deliver(m) delivers m w/seqn S from p when $S= (R[p,g]++) + 1$
 - Otherwise queues it in **holding queue**
 - Learn about missing messages this way, can send NACK
 - R-multicast(g, m) code must buffer m for some time at all processes
Figure 15.10
The hold-back queue for arriving multicast messages

- Not strictly necessary for reliability property
- But simplifies algorithm
- Also later helps provide ordered delivery
Reliable multicast over IPMC (cont.)

• Which properties does this algorithm provide?

 • **Integrity**
 • Correct process p delivers m at most once
 • Delivered m was supplied to R-multicast by sender(m)

 • **Validity**: if correct p multicasts m, then it will eventually deliver m

 • **Agreement**: if correct p delivers m, then all other correct processes in $\text{group}(m)$ will eventually deliver m.

• Other comments on algorithm?
Uniformity

• Agreement so far only dealt w/ correct processes: never fail

• **Uniform properties**: hold whether or not processes are correct or not

 • **Uniform agreement**: if a process, whether correct or fails, delivers message m, then all correct processes in $\text{group}(m)$ will eventually deliver m

 • Does Fig 15.9 provide uniformity: if crash after R-deliver?

• Why care about dead processes’ behavior anyway?
Ordered multicast [15.4.3]

• B-multicast delivers a message to group members in an arbitrary order

• Some apps need more than that
 - **FIFO ordering**: if a correct process issues `multicast(g,m)` and then `multicast(g,m')`, every correct process will deliver `m` before `m'`.
 - **Causal ordering**: if `multicast(g,m) \rightarrow multicast(g,m')`, where \(\rightarrow\) is the happened-before relationship induced only by messages sent between the members of `g`, then any correct process that delivers `m'` will deliver `m` before `m'`.
 - Does Causal imply FIFO?
 - **Total ordering**: if a correct process delivers message `m` before it delivers `m'`, then any other correct process that delivers `m'` will deliver `m` before `m'`.
 - Note: for now assume process only in one group … later extend
Notice the consistent ordering of totally ordered messages T_1 and T_2; the FIFO-related messages F_1 and F_2 and the causally related messages C_1 and C_3 – and the otherwise arbitrary delivery ordering of messages.
Ordered multicast (cont.)

• Ordering does not assume or imply reliability!
 • Reliable (all-or-none) and total AKA “atomic broadcast” sometimes
 • Called atomic+total often called ABCAST
 • Also reliable versions of FIFO, causal, and some hybrid orderings

• Performance
 • Very expensive and not largely scalable
 • E.g., some have proposed application-specific message semantics to define orderings [Cheriton and Skeen 1993, Pedone and Schiper 1999]
 • VERY interesting papers for student presentations in 562 (fault-tolerant computing)
Example: bulletin board system

• App: users post messages
• Each user has a local process delivering to user
• Each topic has its own process group
 • User posts: multicasts to others
 • Receive message: deliver in “right” order
• What ordering (if any) is desirable here?
Figure 15.12
Display from bulletin board (AKA discussion forum) program

<table>
<thead>
<tr>
<th>Item</th>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>A.Hanlon</td>
<td>Mach</td>
</tr>
<tr>
<td>24</td>
<td>G.Joseph</td>
<td>Microkernels</td>
</tr>
<tr>
<td>25</td>
<td>A.Hanlon</td>
<td>Re: Microkernels</td>
</tr>
<tr>
<td>26</td>
<td>T.L’ Heureux</td>
<td>RPC performance</td>
</tr>
<tr>
<td>27</td>
<td>M.Walker</td>
<td>Re: Mach</td>
</tr>
</tbody>
</table>

- FIFO at least desireable
- Causal: needed so “Re:” comes after original (23→27)
- Total: numbers consistent (and useable as message IDs)
- Note: USENET does not provide (full) causal or any total
Implementing FIFO ordering

• Use a per-sender sequence number
• As with R-multicast, $S[p,g]$ and $R[q,g]$ kept at p, for all q in g
• p calls FO-$multicast(g,m)$:
 • Piggyback $S[p,g]$++ onto m
 • Call B-$multicast(g,m)$
• p receives m from q with sequence S
 • $R=R[q,g]$++
 • IF $S= R+1$: FO-$deliver(m)$ to p
 • ELSE if $S>(R+1)$: put in holding queue until ready
 • ELSE: discard // duplicate, $S \leq R$
• Can use any implementation of B-$multicast$
• If use R-multicast, then have reliable FIFO
• Note: above only works if groups are non-overlapping
Implementing total ordering

• **TO-multicast(g,m) and TO-deliver(m)**
 - Basic idea: assign TO-IDs for each multicast message
 - Similar to FIFO, but track *group-specific IDs, not process-specific*
 - Two main algorithms: sequencer proc. and distributed agreement

• **TO sequencer process idea (Kaashok on Amoeba Dist OS)**
 - Main process that assigns the TO-ID(m)
 - **TO-multicast(g,m)**
 - attaches unique ID to m, id(m)
 - B-multicast(g,m) and to sequencer(g)
 - sequencer(g) assigns TO-ID(m)
 - Sequencer does B-multicast to group to tell TO-ID(m)
 - Group members now know when to deliver m (wait until at f+1 processes)

• Evaluation? Comments?
Figure 15.13
Total ordering using a sequencer

1. Algorithm for group member p

 On initialization: $r_g := 0$;

 To TO-multicast message m to group $g
 \[B\text{-multicast}(g \cup \{ \text{sequencer}(g) \}, <m, i>) ; \]

 On B-deliver($<m, i>$) with $g = \text{group}(m)$
 Place $<m, i>$ in hold-back queue;

 On B-deliver($m_{\text{order}} = <\text{"order"}, i, S>$) with $g = \text{group}(m_{\text{order}})$
 wait until $<m, i>$ in hold-back queue and $S = r_g$;
 \[\text{TO-deliver } m; \quad // \text{(after deleting it from the hold-back queue)} \]
 \[r_g = S + 1 ; \]

2. Algorithm for sequencer of g

 On initialization: $s_g := 0$;

 On B-deliver($<m, i>$) with $g = \text{group}(m)$
 \[B\text{-multicast}(g, <\text{"order"}, i, s_g)> ; \]
 \[s_g := s_g + 1 ; \]
Total ordering via distributed agreement (ISIS)

• Basic Idea
 1. Process p B-multicast message m to members (open or closed)
 2. Receiving processes propose a sequence number
 1. Tracks agreed $A[q,g]$ and its proposed so far $P[q,g]$
 3. Processes agree on TO-ID(m)

• Details
 1. p calls B-multicast(m, $id(m)$), where $id(m)$ globally unique
 2. Each proc q replies to p w/ $P[q,g] = \text{MAX}(A[q,g],P[q,g]) + 1$
 3. p collects sequence numbers and chooses the largest one, a
 4. p calls B-Multicast($g,id(m),a$)
 5. All processes now know a is TO-ID(m)

• Evaluation? Comments? (more details in text…)
Figure 15.14
The ISIS algorithm for total ordering

Note: here P_1 is both sender(m) and sequencer(g)
Implementing causal ordering (ISIS)

• Each process maintains its own vector time, V[q]
 • Tracks the number of events it has seen from each process that happened-before the message about to be multicasted

• CO-multicast(m,g) at p:
 • V[p]++
 • B-multicast(g,m, id(m), V)

• When p_i B-delivers m from p_j, puts in holdback queue before can CO-deliver it
 • Must ensure all happened-before messages have arrived
 • p_i waits until
 • It has delivered any earlier message sent by p_j
 • It has delivered any message p_j had delivered before it sent m
Algorithm for group member p_i ($i = 1, 2, \ldots, N$)

On initialization

$V^g_i[j] := 0$ ($j = 1, 2, \ldots, N$);

To **CO-multicast** message m to group g

$V^g_i[i] := V^g_i[i] + 1$;

B-multicast(g, $<V^g_i, m>$);

On B-deliver($<V^g_j, m>$) from p_j, with g = group(m)

place $<V^g_j, m>$ in hold-back queue;

wait until $V^g_j[j] = V^g_i[j] + 1$ and $V^g_j[k] \leq V^g_i[k]$ ($k \neq j$);

CO-deliver m; // after removing it from the hold-back queue

$V^g_i[j] := V^g_i[j] + 1$;
Discussion

• Many possible global orderings (see text): global FIFO, global causal, pairwise total, global total, overlapping groups

• So far, did not give algorithm guaranteeing both reliable and total ordered delivery! [Why?]
Consensus and related problems [15.5]

• Similar problems here: consensus, Byzantine generals, interactive consistency … plus earlier DME, and total ordering … all fundamentally agreement.

• Exploring 3 variations deeper
 • Byzantine generals
 • Interactive consistency
 • Totally ordered multicast
 • … Plus
 • Impossibility result [FLP85]
 • Practical algorithms “circumventing” [FLP85]
System model and problem definitions [15.5.1]

• As before, collection of N processes (only message passing)
• Consensus must be reached even with faults
• Communication channels reliable
• Processes may fail: crash, Byzantine (up to f of N)
 • And if digitally sign or not (can’t successfully lie about what another process told you); default is no
Definition of consensus problem

• Each proc p_i (i=1,2,…N)
 • Begins in undecided state
 • Proposes value v_i from set D
 • Exchanges values with others
 • Sets decision variable d_i, entering decided state can’t change
Figure 15.16
Consensus for three processes

Consensus algorithm

\[v_1 = \text{proceed} \]
\[v_2 = \text{proceed} \]
\[v_3 = \text{abort} \]

\[d_1 := \text{proceed} \]
\[d_2 := \text{proceed} \]

\(P_1 \)
\(P_2 \)
\(P_3 \) (crashes)
Requirements for consensus algorithm

• Every execution of it always provides:
 • **Termination**: eventually each correct process sets its decision variable
 • **Agreement**: the decision value of all correct processes is the same: if p_i and p_j are correct and have entered the decided state, then $d_i = d_j$ for all i, j
 • **Integrity**: If the correct processes all proposed the same value, then any correct process in the decided state has chosen that value
 • AKA validity in the literature
 • Weaker variation: decision value a value that some, not all, propose [use?]
 • **Simple** without process failures … multicast , wait for all, all choose majority(v_1, v_2, \ldots, v_N), UNDEF if no majority
 • Could use minimum, maximum, … for some apps and data types
Requirements for Byzantine generals problem

• Three or more generals agree to attack or retreat, one (distinguished process, the commander) issues orders, one or more faulty
 • Different from other flavors of consensus: distinguished process proposes value (most others are peer-to-peer)

• Every execution of it always provides:
 • **Termination (same)**: eventually each correct process sets its decision variable
 • **Agreement** (same): the decision value of all correct processes is the same: if \(p_i \) and \(p_j \) are correct and have entered the decided state, then \(d_i = d_j \) for all \(i, j \)
 • **Integrity**: If the commander is correct, then all correct processes decide on the value the commander proposed
 • Note: commander need not be correct, no agreement then
Requirements for interactive consistency

• Every process proposes a value, agree on a vector of values

• Every execution of it always provides:
 • **Termination** (same): eventually each correct process sets its decision variable
 • **Agreement**: the decision value of all correct processes is the same
 • **Integrity**: If \(p_i \) the correct, all correct processes agree on \(v_i \) as the \(i \)th component of the vector
Equivalence of the fundamental problems

- Problems are equivalent: consensus (C), Byzantine generals (BG), and interactive consistency (IC)
 - See text for details: expressing one in terms of the other
 - Also total order (TO), e.g. consensus on sequence# for a message
- For all, it is reasonable to consider them in terms of
 - Failure model: arbitrary or crash of process
 - Boundedness: synchronous or asynchronous DS
Consensus in a **synchronous** system [15.5.2]

- Algorithm by Dolev and Strong [1983]
 - $f+1$ rounds of collecting info from each other via B-multicast
 - In any round a process could crash sending to some but not all processes
 - Fundamental limitation for consensus even with crash failures
 - Modified Integrity property: if all processes (correct or not) proposed the same value, then correct processes in decided state choose it
 - Because only assuming crash failures, any value sent is correct
 - Allows use of the MINIMUM function to choose decision value
- $values[r,i]$ holds set of proposed values known to p_i at start of round r
- Rounds limited by timeout
Algorithm for process $p_i \in g$; algorithm proceeds in $f + 1$ rounds

On initialization

$Values_i^1 := \{v_i\}$; $Values_i^0 = \{\}$;

In round r ($1 \leq r \leq f + 1$)

B-multicast(g, $Values_i^r - Values_i^{r-1}$); // Send only values that have not been sent

$Values_i^{r+1} := Values_i^r$;

while (in round r)

{

 On B-deliver(V_j) from some p_j

 $Values_i^{r+1} := Values_i^{r+1} \cup V_j$;

}

After ($f + 1$) rounds

Assign $d_i = \text{minimum}(Values_i^{f+1})$;
Byzantine generals problem in a *synchronous* system [15.5.3]

- **System model**
 - Processes can fail arbitrarily
 - Communication channels are pairwise and private
 - I.e., a process can’t snoop and then determine another process is lying
 - No process can inject a message into the channel
 - Need $\geq 3f+1$ processes to tolerate f failures with unsigned messages
 - Need $\geq f+1$ rounds for both crash and arbitrary process failure [why?]

- **Scenario:** commander sends order to lieutenants, who then agree on what they were ordered to do

- **Notation:** $x:y:z$ means p_x says p_y said value z.
Figure 15.18
Three Byzantine generals

Faulty processes are shown coloured

p_2 can’t tell who failed (whose value to ignore); could if messages signed
Figure 15.19
Four Byzantine generals

Faulty processes are shown coloured

- MAJORITY in correct processes chooses \(v \) (left) or UNDEF (right)
- Complexity: \(f+1 \) rounds \(O(N^{f+1}) \) messages, later \(O(N^2) \) signed
- Implicit timeout (not shown) turns lack of vote into UNDEF
- Ergo simple majority fine
Impossibility in asynchronous systems

- Assumed so far: rounds of messages, can set a timeout and assume failed
- In asynchronous system, can’t be guaranteed to reach consensus with even 1 process crash failure [FLP85]
 - Can’t distinguish a crashed process from a slow one
 ➔ no solution to Byzantine generals, interactive consistency, totally ordered multicast
- Workaround #1: Mask faults (see [2.4.2])
 - Use persistent storage of state & process restart
 - Takes longer but still works
Impossibility in asynchronous systems (cont.)

• Workaround #2: using “perfect by design” failure detectors
 • Declare the unresponsive process to have failed
 • Remove from the group
 • Ignore any messages from it
 • Analysis?

• Workaround #3: use eventually weak failure detectors
 • [Chandra and Toueg 1996], with reliable coms and <half crashed
 • Eventually weak complete: each faulty process is eventually suspected permanently by some correct process
 • Eventually weak accurate: after some point in time, at least one correct process is never suspected by any correct process
 • Adaptive timeout scheme (15.1) can come close to this
• W. #4: consensus w/randomization (confuse adversary)