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Introduction [2.1]
• Real-world systems should (ideally) be designed to function 
in widest possible range of circumstances (incl. difficulties 
and threats)

• Chap2: how properties and design issues of DSs can be 
captured and analyzed with descriptive models

• Physical models: HW composition of computers (and devices) 
and networks that interconnect them

• Architectural models: describe w.r.t. computational tasks done by 
computational elements (single or aggregate) connected by 
networks

• Fundamental models: abstract perspective examining an 
individual aspect of a distributed system

•Interaction models (struct+seq of elements’ comms), failure models, 
security models
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Difficulties and Threats for DSs
• Many problems face designers of DSs!
• Widely varying modes of use

• Workload
• Some parts disconnected or with flaky connectivity
• Some need high bandwidth and/or low latency

• Wide range of system environments
• Heterogenieties discussed earlier
• Networks vary widely in performance (statically and dynamically)
• Scale from tens to millions of computers
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Difficulties and Threats for DSs (cont.)
• Internal problems

• Non-synchronized clocks
• Conflicting data updates
• Many modes of HW+SW failure for individual components

• External threats: attacks on
• Confidentiality
• Integrity
• Availabiilty (incl. DoS attacks)
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Physical Models [2.2]
• Physical model: representation of underlying HW in a DS 
that abstracts away specific details of techs (comp+net)

• Baseline model (minimal): extensible set of computer nodes 
interconnected by a network that passes messages

• Beyond this, 3 generations of DSs: early, internet-scale, 
contemporary

• Early DSs: 
• Late 70s and early 80s, when Ethernet came
• Typically 10-100 nodes connected by a LAN, sharing files+printers
• Internet: limited connectivity, low bandwidth; email, file transfer
• Mostly homogeneous, openness not a concern (or known!)
• QoS in its infancy (lotsa research started)
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Internet-Scale DSs
• Emerged in 1990s (google 1996): dramatic growth of 
Internet (broadband)

• Early DSs model extended to systematically expoit 
“network of networks” (internet)

• Large # nodes, global reach and use
• Significant heterogeneity
• Lead to open standards and middleware (started late 70s)
• QoS greatly improved
• Nodes typcailly

• Desktop computers
• Discrete (not embedded within other physical entities)
• Autonomous: endependent of other computers largely
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Contemporary DSs
• Mobile computing, ergo need service discovery and 
spontaneous interoperation

• Ubiquitous computing, ergo handle where computers are 
embedded in everyday objects and in surroundings

• Cloud computing and clusters: autonomous nodes 
cluster that provides a given service

• Result: huge increase in heterogeneity (all types)
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Figure 2.1
Generations of Distributed Systems



Distributed System-of-Systems (SoS)
• System (esp. software) organized into system of systems 
(analogy to internet: network of networks)

• Subsystems subsystems are almost independent systems 
(architecturally) assembled for a particular task

• Composition issues for QoS are huge (DARPA 90s, EC 
2012)

• Emergent properties: when simple(r) subsystems form 
complex collective behaviors

• Biological examples: flock of birds or school of fish
• New and subtle behaviors emerge
• Observable in many structures: hierarchies, decentralized (e.g., 

marketplace)
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Architectural Models [2.3]
• Structure a system in terms of separately specified 
components and their relationships

• Goal: ensure structure meets present & (likely) future req.
• Concerns: reliability, manageability, adaptability, cost-
effectiveness

• Three-phase buildup of concepts (long sub-chapter!)
• Core underlying architectural elements [2.3.1]
• Composite arch. patterns usable in isolation or combination [2.3.2]
• Middleware platforms supporting programming styles emerging 

from [2.3.1] and [2.3.3]
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Architectural Elements [2.3.1]
Need to consider 4 key questions:
1. What entities are communicating in the DS?
2. What communication paradigm/pattern do entities use?
3. What roles and responsibilities do entities have

• May change!
4. How are entities mapped onto physical infrastructure 

(placement)
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Communicating Entities
• System perspective: processes are communicating

• Simple environments (sensors): no processes, so entities≡nodes
• Most environments: threads, so technically the endpoints

• Programming perspective: more problem-oriented abstr.
• Objects: coherent packaging of code+data, multiple instances

•Problem-oriented abstractions, units of decomposition
•Access via interfaces (spec. in IDL)
•Distributed objects more in Chap 5, 8

• Components
•Similar to objects: code+data, interfaces
•Also specify assumptions made (needed external components/interfaces) … 
i.e., dependencies made explicit … better “contract” for constructing systems

• Web services (access objects/components via WWW)
•Rather ugly underlying technologies at time
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Communication Paradigms
• 3 kinds: interprocess comm., remote invoc., indirect comm.
• Interprocess communication (IPC)

• Low-level support for communication
• Usually socket API
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Remote Invocation
• Most common (arguably), two-way exchange; buildup…
• Request-reply protocols (application level)

• Pattern imposed on underlying message passing to support client-
server

• Client app code sends message with operation, params, 
bookeeping in request message

• Server sends msg with bookkeeping, params in reply message
• Low-level, typically simple embedded systems w/strong RT needs

• Remote procedure call (RPC)
• Make a remote call look (almost) like a local call
• Supports many transparencies and heterogeneities
• Directly supports client-server computing at higher level than RRPs
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Remote Invocation
• Remote method invocation (RMI)

• Extends procedural RPC to object-oriented programming
• Multiple object instances: can pass object refs/IDs as params
• Tighter integration than RPC into the language
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Decoupled communication
• IPC, RRP, RPC, RMI all have explicit receivers/endpoints 
for each direction of comm

• Senders must know (or obtain through name service) receivers 
IDs; receivers often know senders

• Sender and receiver must both exist at same time
• Can be less flexible than desirable for some apps

• Space uncoupling: senders do not need to know who 
sending to

• Time uncoupling: senders and receivers don’t have to 
have overlapping lifetimes (exist at same time)

• Uncouplings support indirect communication (Chap 6)
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Overview of Indirect Communication Techniques
• Group communication

• 1:many comms with group ID
• Recipients join group, senders send to group
• Groups often maintain membership,  handle member failures
• IP multicast trivial example, but many more fancier ones

• Publish-subscribe
• Producers (publishers) send out info, publishers get it
• Intermediate service is in between
• Can subscribe based on data: topics
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Overview of Indirect Communication Techniques (cont.)
• Message queues

• Senders send to a specific queue, point-to-point
• Consumers can get from queue (or be notified if new items)

• Tuple spaces
• Structured data: (int, float, string, …) with a given signature
• Processes can read or remove tuples, can match values of 

some/all fields in tuple
• Distributed shared memory (DSM)

• Abstraction of a shared address space or data structures therein
• Lots of research in the late 80s and 90s, died out mostly
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Figure 2.2
Communicating entities and communication paradigms



Roles and Responsibilities
• Issue: what role does a given entity take
• Client-server

• Most widely studied and deployed
• Client sends request to server, which replies
• Can be either RPC or RMI
• C/S w.r.t a given interaction: ABC means B client and server

• Peer-to-peer (P2P): scales better, no centralized service
• Observation: use not (just) centralized servers from a service, but 

end user can support that service (plenty of resources at edges!)
• All entities are equals (and none/few “more equal than others”)
• Entities run same program with same interfaces
• Examples: BitTorrent, Skype (originally), ..
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Figure 2.3
Clients invoke individual servers

Server

Client

Client

invocation

result

Serverinvocation

result

Process:
Key:

Computer:



Placement
• How to map entities (objects, services, …) onto physical 
infrastructure

• Must take into account many things:
• Patterns of communication
• Reliability and current load of given machines
• (Often) strong knowledge of application/service

• No optimal solutions, only strategies that help
• Mapping services onto multiple servers
• Caching
• Mobile code
• Mobile agents
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Placement (cont)
• Mapping services to multiple servers (Fig 2.4)
• Caching

• Cache: a store of recently used data objects closer or at a client
• Examples?
• Lotsa bookkeeping passed around to track updates/staleness/etc
• If client requests stale object, it is fetched

• Mobile code
• Applets …. And client-side (edge) resources usually plentiful

• Mobile agents
• Agent: a running program (code+data) that travels to carry out a 

task for some entity, and returns results
• Difference from mobile code?
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Figure 2.4
A service provided by multiple servers (servers are P2P)
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Figure 2.5
Web proxy server
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Figure 2.6
Web applets

a) client request results in the downloading of applet code 
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Architectural Patterns [2.3.2]
• Build on more primitive architectural elements in [2.3.1] and 
before

• “not themselves necessarily complete solutions but rather 
offer partial insights that, when combined with other 
patterns, lead the designer to a solution for a given problem 
domain”.

• Extremely nice definition, lots of issues behind it!
• Patterns we cover

• Layering
• Tiered architectures
• Thin clients
• Other misc: proxy, brokerages, reflection
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Layering
• Familiar from networking design
• In a DS, means a vertical organization of services into 
service layers

• Platform: lowest-level HW and SW layers
• Middleware: layer(s) of software above platform

• masking heterogeneities
• Providing higher-level programming abstraction

•much closer to application’s items of domains than the platform
• Supports different kinds of interactions: RCP, RMI, pub-sub, …
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Figure 2.7
Software and hardware service layers in distributed systems
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Tiered Architectures
• Horizontal organization of application/service functionality 
across different servers

• Typical three-tiered architecture:
• Presentation logic: user interactions and visualization
• Application logic: app-specific processing (AKA business logic)
• Data logic: persistent storage of data (e.g., database)
• Above on separate processes

• Two-tiered can split above functionality across client-server 
in different ways

• (Read about AJAX, testable but not lecturing on)
• Q: tiered architectures contradictory or complimentary to 
layering?
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Figure 2.8
Two-tier and three-tier architectures



Thin Clients & Other Patterns
• General-purpose desktop computer can be a pain to 
manage

• Thin client: SW layer supporting a window-based UI 
accessing remote programs and servers

• X-Windows early example
• Other architectural patterns

• Proxy: intermediate in local address space (MW, web proxies)
• Brokerage: service broker helps service requester find the right 

service provider
• Reflection: applicaition/service utilizes knowledge of its internal 

structure; very very useful (Blair research)
•Introspection: dynamic discovery of properties (read-only)
•Intercession: dynamically modifying structure or behavior
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Figure 2.10
Thin clients and compute servers
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Figure 2.11
The web service architectural pattern



Associated Middleware Solutions [2.3.3]
• Categories: RPC, group communication, client-server, 
publish-subscribe, …..

• Limitations of middleware
• Sometimes need application-specific knowledge for performance 

and reliability reasons
•E.g., reliable email delivery on top of TCP/IP

• Classic paper: end-to-end argument in system design [Saltzer et al 
1984]: required for 564 AND 464

•Some comms-related functions can only be done right with app knowledge
•So don’t push those functions into the comms layer

• Authors consider this a limitation of MW, I consider it an 
opportunity for MW (and good research done on it, e.g., DARPA 
Quorum …)

•QoS-enabled, adaptive MW can really help here (BBN QuO)
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Figure 2.12
Categories of middleware (some overlap, more in Chap 8)



Fundamental Models [2.4]
• Above arch. models all share some fundamental properties!
• Fundamental models: contain only essential details to 
reason about some aspect of system’s behavior

• Purpose
• Make explicit all relevant assumptions
• Make generalizations about what is possible or impossible, given 

assumptions
• Fundamental models studied here [2.4.x]

1. Interaction model: what kind of information (message) flow
2. Failure model: in what ways we assume components can fail
3. Security model: what kinds of attacks may we suffer, and what 

can be done about them?
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Interaction model [2.4.1]
• Processes composed in many ways in arch. models!
• Distributed algorithm: steps distributed components take, 
including message sending/receiving

• Cannot often predict rate and timing of messages. Why?
• Performance of communications channels

• Latency
• Bandwidth
• Jitter

• Computer clocks and timing events
• Internal clocks can REALLY drift on unmanaged machines (2003 

blackout post-mortem)
• GPS helps, but not a panacea
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Synchronous and Asynchronous DSs
• Synchronous DS: known (lower and upper) bounds on

• Time to execute each step in a distributed algorithm
• Message transmission time
• Clock drift rate

• Asynchronous DS: no bounds above known. (impacts?)
• Technique (here and for failures): transform Asynch. DS 
into Synch. DS plus assumed failures (timeouts!)

• Q: concrete examples of both kinds, in practice?
• Q: causes of asynch. Behavior?
• Note: synch/asynch DS vs. invocation
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Agreement in Pepperland
• Famous “Byzantine Generals” problem from 1982
• Two divisions of Pepperland Army (Apple, Orange) camped 
atop two hills with enemy (Blue Meanies) inbetween

• If attack, successful if both attack at once, one attacker dies
• Safe if stay in camp (0 attack)
• Need to both decide same thing: who leads, and when

• Distributed agreement: agreeing on a common decision
• Can still do under some circumstances with asynch. DS
• E.g., divisions both send other #soldiers left, one with most leads 

(tiebreaker predefined)
• But in an Asynch. Pepperland can’t decide when to charge safely
• Synch. Pepperland, can agree to charge after max delivery time
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Event ordering (Chapter 14)
• Often very useful to describe system in terms of message 
passing

• Key issue: MsgA before MsgB, concurrent, or after?
• Problem: 

• clocks not accurate enough to tell, but order can affect what we 
need to do!

• Messages can be delivered to app in different orders (Fig 2.13)
• E.g. email (or netnews) reply display problem

• Logical time: builds basis to reason about events
• Based on message receive and send events
• E.g., in global (logical) time, send(msg) < recv(msg)
• Event orderings transitive

41



Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5   
©  Pearson Education 2012 

Figure 2.13
Real-time ordering of events
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Failure model [2.4.2]
• Nice textbook: spread throughout book systematically…
• Omission failure: component (process or comm. channel) 
fails to do what supposed to do

• Can bound degree of omission (e.g., ≤3 consecutive omissions)
• Crash failure: fails “cleanly”: no errors
• Omission failure: fails “cleanly” but not necessarily permanently
• Fail-Stop failure: fails “cleanly” and detectably (Schlichting ~1983)
• Can have above happen with either process or comm. channel

• Arbitrary failure: can do anything (including omission, …)
• Send wrong value (worst possible for algorithm) or lie about ID

•Lie about what received from others in a step
•Two-faced behavior: tell different processes different “decision”

• Send bad syntax
• Timing failure: do something later (or earlier!) than should43
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Figure 2.15
Omission and arbitrary failures

Class of failure Affects Description
Fail-stop Process Process halts and remains halted. Other processes may

detect this state.
Crash Process Process halts and remains halted. Other processes may

not be able to detect this state.
Omission Channel A message inserted in an outgoing message buffer never

arrives at the other end’s incoming message buffer.
Send-omission Process A process completes a send, but the message is not put

in its outgoing message buffer.
Receive-omission Process A message is put in a process’s incoming message

buffer, but that process does not receive it.
Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.
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Figure 2.16
Timing failures

Class of Failure Affects Description
Clock Process Process’s local clock exceeds the bounds on its

rate of drift from real time.
Performance Process Process exceeds the bounds on the interval

between two steps.
Performance Channel A message’s transmission takes longer than the

stated bound.



Masking failures
• Can build a reliable DS from unreliable components!

• Have to make failure assumptions and build on them
• Service can mask a failure (hide it from other components)

• Hide it (e.g., replicated servers)
• Convert to easier type to deal with: checksums convert arbitrary 

failure to omission failure
• A failure detection service can convert crash failures into fail-stop 

ones.
• Temporal redundancy can mask an omission failure (with bounded 

degree) of the communications channel
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Failure detection in Pepperland
• Failure detection: assume Blue Meanies could defeat either 
Pepperland division while encamped

• I.e., either division can fail (to exist!)
• Assume if alive, division sends “heartbeat” messages regularly

• Asynch. DS: neither Pepperland division can tell if other 
defeated or messengers slow

• Synch DS: can tell
• But division may be defeated after last messenger 
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Agreement in Pepperland
• What if messenger delivery unbounded: asynch. comms.

• Pepperland divisions can’t decide to both either charge or 
surrender

• I.e., can’t both agree, may get incorrect agreement
• E.g, if last message does not get there, can we live without it?
• Second to last then?
• …

• Bottom line: in asynch. DS, in presence of even one comm. 
Failure, cannot guarantee agreement will be reached

• Very fundamental result in DC
• Fischer, Lynch, and Patterson 1985 (called “FLP85”)
• E.g., Bakken’s Razor derivation uses this 

48



Security Model [2.4.3]
• It’s a nasty world out there!
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Figure 2.17
Objects and principals
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Figure 2.18
The enemy (modeling security threats)

Communication channel

Copy of m

Process p Process qm

The enemy
m’

• Server can’t always know principal of message sender
• Client can’t always know principal of sender of reply
• Comms channels: can copy, alter, inject, replay msgs

• Can defeat with abstraction of secure channel



Defeating security threats
• Cryptography
• Shared secrets
• Authentication
• Secure channels (Fig 2.19)
• Other possible threats from an enemy

• Denial of Service
• Mobile code

• Uses of Security models
• Not just straightforward use of access control etc!
• “If you think encryption is the solution to your problem, then you 

don’t understand encryption, and you don’t understand your 
problem.” Needham or Lampson
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Figure 2.19
Secure channels
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• Each process reliably knows other principal
• Channel provides privacy and integrity
• Message has physical or logical timestamp to prevent 
replay or reordering of messages
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