
From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:

Concepts and Design
Edition 5, © Addison-Wesley 2012

Text extensions to slides © David E. Bakken, 2012-2020

Slides for Chapter 4:
Interprocess Communication

Next 2 Chapters:
Communication Aspects of MW
• Chap 4: IPC

• API for Internet protocols
• External data representation and marshalling
• Multicast communications
• Network virtualization: overlay networks
• Case Study: MPI

• Chapter 5: Remote invocation paradigms
• Request-reply protocols
• Remote procedure call
• Remove method invocation
• Case study: Java RMI

2© 2012 David E. Bakken

API for Internet Protocols [4.2]
4.2.1: How to implement send/receive of Sec 2.3.2
4.2.2: Sockets
4.2.3: UDP in Java
4.2.4: TCP in Java

3© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.1
Middleware layers

• APIs for Internet protocols
• UDP: message passing abstraction (incl. multicast)
• TCP: stream processing

Text © 2012 David E. Bakken

Characteristics of IPC [4.2.1]
• Message passing supported by send+receive to endpoints
(“message destination” in text)

• Synchronous and asynchronous communication
• Associate a queue with each endpoint

•Senders add msg to remote queue; Receivers remote msg from local queue
•Send and receive both have synch. (blocking) and asynch. (non-blocking)
•Non-blocking receive not always supported cause more complex for app

• Can combine in nice ways
• SR Language from U. Arizona 1990s, http://www.cs.arizona.edu/sr/

5© 2012 David E. Bakken

Receiver
Blocking wait Proc creation

Sender Asynch call (non-
blocking)

Asynch. Msg passing Dynamic proc creation

Synch call (blocks) Rendezvous RPC

http://www.cs.arizona.edu/sr/

Characteristics of IPC (cont.)
• Message destinations

• Endpoint on internet is (IP address, (remote) port #)
• Local port created for both sides to access
• One receiving process per port
• Process can use multiple ports to receive messages
• Transparency support: look up endpoint from name (Sec 5.4.2)

• Reliability
• Reliable: msg delivered despite “reasonable” packets lost
• Integrity support: msgs must be uncorrupted and no dups

•More “above” too to verify sender etc

• Ordering
• Some apps require sender order (FIFO)
• Layer above UDP (if multicast), or with TCP 6© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.2
Sockets and ports

message

agreed portany port socketsocket

Internet address = 138.37.88.249Internet address = 138.37.94.248

other ports
client server

• Socket abstraction: hide steps in lower-level protocols etc
• To receive: socket bound to local port
• Can use same socket to both send and receive
• “large number” (!!) of ports, 216

• Anyone can send to a socket if know endpoint
• Can not have multiple receivers (except for mulitcast ..)

Java API for IP Addresses
• Class InetAddress (both IPv4 and IPv6)
•InetAddress aComputer =

InetAddress.getByName(“foo.bar.edu”)

• Can throw UnknownHostException

8© 2012 David E. Bakken

UDP datagram communication [4.2.3]
• Sent without ACKs or retries
• Issues

• Message size: receiver gives fixed-sized buffer, if msg big trunc.
• Blocking: receive blocks (unless timeout set), send rtns quickly

•Receiver can get msg later if not blocked (queued)
• Timeouts: can set, choosing really hard
• Receive from any: no origin (sender) specified, endpoint in header

• Failure model: omissions, ordering
• Uses of UDP

• DNS
• VOIP and other video/audio
• Higher-level multicast with stronger properties

9© 2012 David E. Bakken

Java API for UDP datagrams
•DatagramPacket class

• Sending constructor takes array of bytes, length, endpoint
• Another constructor for receiving msgs: array of bytes, length
• DatagramPacket.getData: receiver gets buffer

•DatagramSocket class
• Constructor: port (also no-port: choose any free local port)
• Send() and receive()
• setSoTimeout: for receive, if times out throws
InterruptedIOException

• Connect: connect to remote endpoint

10© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.3
UDP client sends a message to the server and gets a reply

import java.net.*;
import java.io.*;
public class UDPClient{

public static void main(String args[]){
// args give message contents and server hostname
DatagramSocket aSocket = null;

try {
aSocket = new DatagramSocket();
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]);
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m, m.length(), aHost, serverPort);
aSocket.send(request); // send message to the remote endpoint
byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length);
aSocket.receive(reply); // blocking wait for reply
System.out.println("Reply: " + new String(reply.getData()));

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());}

}finally {if(aSocket != null) aSocket.close();}
}

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.4 UDP server repeatedly receives a request
and sends it back to the client

import java.net.*;
import java.io.*;
public class UDPServer{

public static void main(String args[]){
DatagramSocket aSocket = null;

try{
aSocket = new DatagramSocket(6789);
byte[] buffer = new byte[1000];
while(true){ // typical infinite server waiting loop: get request, send reply

DatagramPacket request = new DatagramPacket(buffer, buffer.length);
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),

request.getLength(), request.getAddress(), request.getPort());
aSocket.send(reply);

}
}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e) {System.out.println("IO: " + e.getMessage());}

}finally {if(aSocket != null) aSocket.close();}
}

}

TCP stream communication [4.2.4]
• Hides many details beyhind socket abstraction

• Message sizes: sender chooses how much data to read or write
•Underlying impl decides when to send packets
•Can flush/synch to force a send (why need?)

• Lost packets
• Flow control
• Packet duplication and ordering
• Message destinations (once socket set up)

•Server creates listening socket
•Client calls connect(…)
•Server calls accept(…)

13© 2012 David E. Bakken

TCP stream communication (cont)
• API

• Assumes for setup one side client other server
• After that bidirectional with no distinction (both input and output

stream in socket)
• Listening socket maintains queue of connect requests

• Issues with TCP (and stream communication)
• Matching data items: need to agree on data types (UDP too)
• Blocking: like UDP
• Threads: server usually forks new process for each client (why?)

14© 2012 David E. Bakken

TCP stream communication (cont)
• Failure model

• Checksums detects and rejects corrupted packets
• Sequence numbers: detect and reject duplicate packets
• If too many lost packets, socket declared to be closed

•I.e., not (very) reliable communication
• Uses of TCP (lots): HTTP, FTP, Telnet, SMTP

15© 2012 David E. Bakken

Java API for TCP streams
•ServerSocket class: for listening to connect requests

• Method accept gets connect request or blocks if none queued
•Returns a Socket object to communication with the client

•Socket: for pair to communicate with
• Client uses constructor to create a given endpoint
• Can throw UnknownHostexception or IOException
• getInputStream and getOutputStream to access streams

16© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.5: TCP client makes connection to server, sends
request and receives reply

import java.net.*;
import java.io.*;
public class TCPClient {

public static void main (String args[]) {
// arguments supply message and hostname of destination
Socket s = null;

try{
int serverPort = 7896;
s = new Socket(args[1], serverPort);
DataInputStream in = new DataInputStream(s.getInputStream());
DataOutputStream out =

new DataOutputStream(s.getOutputStream());
out.writeUTF(args[0]); // UTF is a string encoding see Sn 4.3
String data = in.readUTF();
System.out.println("Received: "+ data) ;

}catch (UnknownHostException e){
System.out.println("Sock:"+e.getMessage());

}catch (EOFException e){System.out.println("EOF:"+e.getMessage());
}catch (IOException e){System.out.println("IO:"+e.getMessage());}

}finally {if(s!=null) try {s.close();}catch (IOException e){System.out.println("close:"+e.getMessage());}}
}

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.6
TCP server makes a connection for each client and then echoes the client’s request

import java.net.*;
import java.io.*;
public class TCPServer {

public static void main (String args[]) {
try{

int serverPort = 7896;
ServerSocket listenSocket = new ServerSocket(serverPort);
while(true) {

Socket clientSocket = listenSocket.accept();
Connection c = new Connection(clientSocket);

}
} catch(IOException e) {System.out.println("Listen :"+e.getMessage());}

}
}

// this figure continues on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.6 continued

class Connection extends Thread {
DataInputStream in;
DataOutputStream out;
Socket clientSocket;
public Connection (Socket aClientSocket) {

try {
clientSocket = aClientSocket;
in = new DataInputStream(clientSocket.getInputStream());
out =new DataOutputStream(clientSocket.getOutputStream());
this.start();

} catch(IOException e) {System.out.println("Connection:"+e.getMessage());}
}
public void run(){

try { // an echo server
String data = in.readUTF();
out.writeUTF(data);

} catch(EOFException e) {System.out.println("EOF:"+e.getMessage());
} catch(IOException e) {System.out.println("IO:"+e.getMessage());}
} finally{ try {clientSocket.close();}catch (IOException e){/*close failed*/}}

}
}

External data representation and marshalling [4.3]
• Procedures/methods called with params, msgs take buffers
• Marshalling does this translation, unmarshalling reverses
• External data representations describe how

• Endian-ness, ASCI or Unicode text, etc
• Two main techniques

• Neutral format
• Sender’s format (“receiver makes right”)

20© 2012 David E. Bakken

Approaches to marshalling and external data representation
1. CORBA’s common data rep. (CDR): structs, primitives
2. Java serialization: object or tree of objects
3. XML: textual description of data
• Comparisons

• CDR, Java: middleware layer, XML more for hand coding in app
• CDR, Java: binary form, XML text
• CDR: only values (sort of), Java, XML: type info
• XML larger, more error prone than automatic marshalling by

middleware compiler
• Other possibilities (more “lightweight”)

• Google protocol buffers (20.4.1): describe stored&transmitted data
• JavaScript Object Notation (JSON)

21© 2012 David E. Bakken

CORBA’s Common Data Representation (CDR) [4.3.1]
• All 15 primitive types: short, long, boolean, … any

• Defn’s for both big- and little-endian (sent in sender’s order; tag)
• Other types straightforward: IEEE floats, chars agreed between

client and server
• Constructed/composite types (Fig 4.7, next)

• Primitive types that make them up added in a byte sequence in a
given order

• Marshalling generated automatically from IDL

22© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.7
CORBA CDR for constructed types

Type Representation
sequence length (unsigned long) followed by elements in order
string length (unsigned long) followed by characters in order (can also

can have wide characters)
array array elements in order (no length specified because it is fixed)
struct in the order of declaration of the components
enumerated unsigned long (the values are specified by the order declared)
union type tag followed by the selected member

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.8
CORBA CDR message

The flattened form represents a Person struct with value: {‘Smith’, ‘London’, 1984}

0–3
4–7
8–11
12–15
16–19
20-23
24–27

5

"Smit"
"h___"

6
"Lond"

"on__"

1984

index in
sequence of bytes 4 bytes

notes
on representation
length of string

‘Smith’

length of string
‘London’

unsigned long

struct Person

{

string name;

string place;

unsigned long
year;

};

Java Object Serialization [4.3.2]
• Java class equivalent to CORBA Person struct:
public class Person implements Serializable {

private String name;
private String place;
private int year;
public Person(String aName, String aPlace, int aYear) {

name = aName;

place = aPlace;

year = aYear;

}

// followed by methods for accessing the instance vars

}// class Person

25© 2012 David E. Bakken

Java Serialization (cont.)
• Handles: serialized references to other objects
• Reflection:used by serialization to find class name of object
to be serialized, when deserialized to create class

• (Read rest of details in text, not covering)

26© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.9
Indication of Java serialized form

The true serialized form contains additional type markers; h0 and h1 are handles

Serialized values
Person

3

1984

8-byte version number

int year

5 Smith

java.lang.String
name:

6 London

h0

java.lang.String
place:
h1

Explanation

class name, version number

number, type and name of
instance variables

values of instance variables

Extensible Markup Language (XML) [4.3.3]
• Markup language: encodes both text and its structure

• HTML: for web pages
• XML: for structured documents for web
• Both: derived from (very complext) SGML

• XML namespaces: provided for scoping names (avoid
name collisions)

• XML schemas: define elements and attributes for a doc,
nesting, order and number of elements, etc

• Overview in this lecture, read details in text
• Gory details not testable (don’t memorize minutia)
• But should really have intuition into difference from CORBA and

Java: purpose, why design decisions made, efficiency, readability,
other comparisons

28© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.10 XML definition of the Person structure

<person id="123456789">
<name>Smith</name>
<place>London</place>
<year>1984</year>
<!-- a comment -->

</person >

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.11 Illustration of the use of a namespace in the
Person structure

<person pers:id="123456789" xmlns:pers = "http://www.cdk5.net/person">
<pers:name> Smith </pers:name>
<pers:place> London </pers:place >
<pers:year> 1984 </pers:year>

</person>

http://www.cdk5.net/person

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.12 An XML schema for the Person structure

<xsd:schema xmlns:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />

<xsd:complexType name="personType">
<xsd:sequence>

<xsd:element name = "name" type="xs:string"/>
<xsd:element name = "place" type="xs:string"/>
<xsd:element name = "year" type="xs:positiveInteger"/>

</xsd:sequence>
<xsd:attribute name= "id" type = "xs:positiveInteger"/>

</xsd:complexType>
</xsd:schema>

Remote object references [4.3.4]
• (Only applies to CORBA &Java: distributed object model)
• NOT XML
• Remote object reference: identifier valid thru a DS
• Generated so unique over space and time

• Lots of processes in a DS!
• Must not reuse

32© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.13
Representation of a remote object reference

Internet address port number time object number interface of
remote object

32 bits 32 bits 32 bits 32 bits

CORBA Object References (not in texbook)
• Object reference

• Opaque handle for client to use
• Identifies exactly one CORBA object
• IOR == “Interoperable Object Reference”

• References may be passed among processes on different
hosts

• As parameters, return values, or “stringified”
• ORB will marshall
• ORB on receiver side unmarshalling will

•create a proxy
•return a pointer to it

• Basically functions as a remote “pointer” that works across
heterogeneity in language, OS, net, vendor, …

34© 2012 David E. Bakken

CORBA Object References (cont.)

35© 2012 David E. Bakken

• Object Key
• Opaque to client
• ORB-specific

• Object ID
• Can be created by user or POA

•Components: Optional data
• e.g., alternate endpoint, info for security policies, etc

Repository ID Profile for Protocol1 Profile for Protocol2IOR:

IIOP Profile:

Object Key (one possible implementation):

TAG_INTERNET_IOP IIOP version Host addr. Port Object Key Components…

POA ID Object ID

Multicast Communication [4.4]
• Point-to-point communications not great for process groups
• Multicast: 1:many communications, many uses

• Fault-tolerance based on replicated services
• Discovering services in spontaneous networking
• Better performance through replicated data (multicast updates)
• Propagation of event notices (Facebook, implement pub-sub)

36© 2012 David E. Bakken

IP Multicast (IPMC) [4.4.1]
• One implementation of multicast, using UDP not TCP

• Use normal sockets to join (receiving) group
• Multicast routers: can send to multiple LANs (use its mcast)
• Multicast addresses

• Permanent: assigned by IANA, exist even if no members
• Temporary: come and go dynamically

• Failure model:
• Same as UDP (omission)
• Some group members may receive, others not
• AKA unreliable multicast (reliable multicast in Chapter 15, for

562)

37© 2012 David E. Bakken

Java API for IP Multicast
• Class MulticastSocket

• Subclass of DatagramSocket
• joinGroup(…)
• leaveGroup(…)

38© 2012 David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.14: Multicast peer joins a group and sends and
receives datagrams

import java.net.*;
import java.io.*;
public class MulticastPeer{

public static void main(String args[]){
// args give message contents & destination multicast group (e.g. "228.5.6.7")
MulticastSocket s =null;
try {

InetAddress group = InetAddress.getByName(args[1]);
s = new MulticastSocket(6789);
s.joinGroup(group);
byte [] m = args[0].getBytes();
DatagramPacket messageOut =

new DatagramPacket(m, m.length, group, 6789);
s.send(messageOut);

// this figure continued on the next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.14
continued

// get 3 messages from others in group
byte[] buffer = new byte[1000];
for(int i=0; i< 3; i++) {

DatagramPacket messageIn =
new DatagramPacket(buffer, buffer.length);

s.receive(messageIn);
System.out.println("Received:" + new String(messageIn.getData()));

}
s.leaveGroup(group);

}catch (SocketException e){System.out.println("Socket: " + e.getMessage());
}catch (IOException e){System.out.println("IO: " + e.getMessage());}
}finally {if(s != null) s.close();}

}
}

Reliability and ordering of multicast [4.4.2]
• IPMC: dropped msgs, partial delivery to group, no ordering
• Effects on different apps?

• Fault-tolerance based on replicated services
•E.g., keep replicas with same state, multicast requests
•What happens with failures above?

• Discovering services in spontaneous networking
•What happens with failures above?

• Better performance through replicated data (multicast updates)
•What happens with failures above?

• Propagation of event notices (Facebook, implement pub-sub)
• What happens with failures above?

41© 2012 David E. Bakken

Network virtualization: overlay networks [4.4]
• Some applications need (much) more advanced delivery
services than Internet protocols provide

• End-to-end argument says to not push functions down here
• Network virtualization: construct many different virtual
networks over Internet

• Support specific services needed
• Answers end-to-end argument: app-specific virtual network

42© 2012 David E. Bakken

Overlay networks [4.5.1]
• Overlay network: virtual network consisting of topology of
virtual nodes and virtual links (above underlay network’s)

• Tailor services to specific app (e.g., multimedia content)
• More efficient in some network environments (ad hoc)
• Add more features: multicast, secure communications, …

• Can redefine addressing, protocols, routing
• Advantages

• Add services without having to change (and standardize) underlay
• Encourage experimentation
• Can exist with other overlays (same kind or different)

43© 2012 David E. Bakken

Overlay networks (cont)
• Disadvantages:

• extra level of indirection
•Placement (overlayunderlay) is key for efficiency

• add to complexity
• Examples in book

• Skype next
• Chap 10: P2P file sharing, distributed hash tables
• Chap 19: mobile/ubiquitous: ad hoc and disruption-tolerant
• Chap 20: multimedia streaming

44© 2012 David E. Bakken

45
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 4.15
Types of overlay

table continues on the next slide

46
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 4.15 (continued)
Types of overlay

Skype [4.5.2]
• P2P VOIP overlay network (instant msgs, video, telephony)
• Addresses: skype username or phone number
• Original architecture: P2P

• Ordinary user machines “hosts”
• Well enabled/connected hosts: super node

• Authenticate users over well-known login server, gives
them super node

• Supernodes goal: search for users efficiently
• Direct voice connection between two parties

• Signalling: TCP
• Call: UDP or TCP (latter only to circumvent firewalls)

• Codecs key: optimized for ≥ 32 kbps
47© 2012 David E. Bakken

48
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 4.16
Skype overlay architecture (pre-cloud)

Case Study: MPI [4.6]
• Started in grid computing (and influenced it)
• NOT Covering: required for 564 (not for 464)

49© 2012 David E. Bakken

	Slide Number 1
	Next 2 Chapters: �Communication Aspects of MW
	API for Internet Protocols [4.2]
	Figure 4.1�Middleware layers
	Characteristics of IPC [4.2.1]
	Characteristics of IPC (cont.)
	Figure 4.2�Sockets and ports
	Java API for IP Addresses
	UDP datagram communication [4.2.3]
	Java API for UDP datagrams
	Figure 4.3�UDP client sends a message to the server and gets a reply
	Figure 4.4		UDP server repeatedly receives a request and sends it back to the client
	TCP stream communication [4.2.4]
	TCP stream communication (cont)
	TCP stream communication (cont)
	Java API for TCP streams
	Figure 4.5: TCP client makes connection to server, sends request and receives reply
	Figure 4.6 �TCP server makes a connection for each client and then echoes the client’s request
	Figure 4.6 continued
	External data representation and marshalling [4.3]
	Approaches to marshalling and external data representation
	CORBA’s Common Data Representation (CDR) [4.3.1]
	Figure 4.7�CORBA CDR for constructed types
	Figure 4.8�CORBA CDR message
	Java Object Serialization [4.3.2]
	Java Serialization (cont.)
	Figure 4.9�Indication of Java serialized form
	Extensible Markup Language (XML) [4.3.3]
	Figure 4.10 XML definition of the Person structure
	Figure 4.11 Illustration of the use of a namespace in the Person structure
	Figure 4.12 An XML schema for the Person structure
	Remote object references [4.3.4]
	Figure 4.13�Representation of a remote object reference
	CORBA Object References (not in texbook)
	CORBA Object References (cont.)
	Multicast Communication [4.4]
	IP Multicast (IPMC) [4.4.1]
	Java API for IP Multicast
	Figure 4.14: Multicast peer joins a group and sends and receives datagrams
	Figure 4.14�continued
	Reliability and ordering of multicast [4.4.2]
	Network virtualization: overlay networks [4.4]
	Overlay networks [4.5.1]
	Overlay networks (cont)
	Figure 4.15	�Types of overlay
	Figure 4.15 (continued)	�Types of overlay
	Skype [4.5.2]
	Figure 4.16�Skype overlay architecture (pre-cloud)
	Case Study: MPI [4.6]

