
From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:

Concepts and Design
Edition 5, © Addison-Wesley 2012

Text extensions to slides © David E. Bakken, 2012-2020

Slides for Chapter 5:
Remote Invocation

Introduction [5.1]
• This chapter: how processes/objects/components/services
communication via remote invocation (Chap 2)

• Request-reply
• Small/thin pattern on top of message passing
• Can use directly in app (“app protocols”), or build RPC/RMI on

• Remote Procedure Call (RPC)
• Make a remote procedure look (almost) like a local one to call

• Remove Method Invocation (RMI)
• Make a remote object look (almost) like a local one to invoke
• Note: ‘RMI’ is generic category, Java RMI is a specific instance

2© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.1
Middleware layers

Applications

Middleware
layersUnderlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

UDP and TCP

Remote invocation, indirect communication
This chapter

(and Chapter 6)

Request-reply protocols [5.2]
• Support low-level client-server interactions

• Usually synchronous and reliable
• Built on top of send and receive operations from Chapter
4

• Usually use UDP datagrams, could use TCP streams
• Three primitives

• doOperation: client sends request message to server
• getRequest: server receives request msg, selects+invokes oper.
• sendReply: server sends reply message back to (blocked) client

4© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.2
Request-reply communication

Request

ServerClient

doOperation

(wait)

(continuation)

Reply
message

getRequest

execute
method

message
select object

sendReply

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.3
Operations of the request-reply protocol

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)
sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and
the arguments of that operation.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.4
Request-reply message structure

messageType

requestId

remoteReference

operationId

arguments

int (0=Request, 1= Reply)

int

RemoteRef

int or Operation

array of bytes

Request-reply protocols (cont.)
• Message identifiers: must identify request uniquely

• requestId: usually a sequence counter (makes unique at client)
• Client/sender identifier endpoint (with requestId, globally unique)

• Failure model
• Over UDP: omission, misordering
• Over UDP or TCP: server crash failure (later, Byzantine…)

• Timeouts: doOperation uses when blocked for reply
• Options to use?

• Duplicate request msgs: server may get >1 times
• how? problem?
• Soln: server tracks what got from client (how?)

8© 2012-2018David E. Bakken

Request-reply protocols (cont.)
• Lost reply messages

• Idempotent operation: just redo
• Else store reply history (how many? How to use?)

• Q: should client and/or server ACK messages?

9© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.5
RPC exchange protocols

R Request

RR Reply

RRA Acknowledge reply

Request

Request Reply

Client Server Client

Name Messages sent by

Using TPC streams to implement request-reply protocol
• Advantages

• Never need multi-packet protocols
• “Reliable”

• Disadvantages
• More CPU intensive: scale

11© 2012-2018David E. Bakken

HTTP RR protocol SUMMARY (Read rest on in CDKB5 text)

• HTTP protocol specifies
• Messages in RR exchange
• Methods
• Arguments
• Results
• Marshalling rules
• Content negotiation
• Authentication

• Implemented over TCP streams
• Early versions: new connection for each request (later persistent)
• Zinky(Akamki) ~2019: http3 will replace virtually all current TCP+UDP

• Request & reply msgs marshalled into ASCII
• Resource data can be represented as a byte sequence

12© 2012-2018David E. Bakken

Remote procedure call [5.3]
• Design issues

• Style of programming promoted by RPC: using interfaces
• Call semantics
• Transparency

13© 2012-2018David E. Bakken

Programming with interfaces
• Explicit interface

• Hide a lot of implementation details
• Tell exactly how a client can access the server

• Keeping implementation separate from interface
• Good idea? Why?

• Differences from local procedure interface
• Can’t access shared memory variables between client and server
• Call by reference does not make sense for RPC

•Parameters are in, out, or inout

• Can’t pass pointers
• Anything else?

• IDL originally developed for RPC
14© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.8
CORBA IDL example

// In file Person.idl
struct Person {

string name;
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};

RPC call semantics
• Choices for implementing doOperation

• Retry request message
• Duplicate request filtering at server
• Retransmission of results: keep reply history, or re-execute

procedure

16© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.9
Call semantics

Fault tolerance measures Call
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

• How can each of these happen?
• What would you call local procedure call semantics?

Transparency
• RPC tries to offer at least location and access transparency
• Does client need to know call semantics?
• Implement RPC with stub/proxy over an RR protocol (Fig
5.10)

• Note: not covering Sun RPC (5.3.3), not testable

18© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.10
Role of client and server stub procedures in RPC

client

Request

Reply

CommunicationCommunication
modulemodule dispatcher

service

client stub server stub
procedure procedure

client process server process

procedureprogram

Remote method invocation [5.4]
• Fundamental difference between a procedure and an obj.?
• Similarities between RPC and RMI

• Programming with interfaces
• Both constructed on top of some RR protocol and have same

choices in call semantics
• Similar level of transparency

• Differences providing added expressiveness in RMI
• Full expressive power of OO programming (not just a “fad”…)
• Can cleanly pass object references as parameters

20© 2012-2018David E. Bakken

On Objects and QoS
“I have a cat named Trash. In the current political climate, it would seem that if I were trying

to sell him (at least to a Computer Scientist), I would not stress that he is gentle to humans
and is self-sufficient, living mostly on field mice. Rather, I would argue that he is object-
oriented.”
Prof. Roger King, U. Colorado at Boulder, 1989

“My cat is CORBA-compliant”.
Dr. John Nicol, GTE Labs, 1995

“My CORBA-compliant cat has great quality of service.”
Dr. David Bakken, BBN, 1996

“The DCOM architecture is fundamentally ugly and unclean, at a profound and deeply-
disturbing level.”

Dr. David Bakken, BBN, 1998

21© 2012-2018David E. Bakken

Design issues for RMI: object model!
• Local object model (C++, Java, …)

• Collection/packaging of code and data
• Communicate by invoking methods
• Sometimes allowed to invoke instance variables directly
• Object references are first-class values: assigned to variables,

passed as parameters, …
• Interfaces:impl sometimes 1:1 (C++), or many:1 (Java class can

implement multiple interfaces)
• Action: invocation can have side effects at invoked object: state

changed, instantiate new object, invoked object invokes another…
• Exceptions
• Garbage collection (manual or automatic)

22© 2012-2018David E. Bakken

Distributed objects and distribited object models
• Most ways similar/identical to local object model
• Client-server architecture (encapsulation), with variations

• Replication
• Migration

• Distributed object model (Fig 5.12)
• Process is a collection of objects (some remotely invoke-able)
• Remote object references: need one to invoke a remote object
• Remote interfaces: each object must have one

23© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.12
Remote and local method invocations

invocation invocation
remote

invocation
remote

local
local

local
invocation

invocation
A B

C

D

E

F

Remote object references and remote interfaces
• Remote object reference

• ID that can be used throughout a DS
• Strongly analogous to local object references

• Remote interfaces
• A class implements one or more remote interfaces (Fig 5.13)
• CORBA: see previous, uses IDL
• Java RMI: just like any other Java interface (extends it)
• Multiple inheritance of interfaces in both CORBA and Java

25© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.13
A remote object and its remote interface

interface
remote

m1
m2
m3

m4
m5
m6

Data

implementation

remoteobject

{ of methods

Actions in a distributed object system
• Can result in chain of invocations across computers
• Can instantiate new objects

• Usually local
• Or via a factory interface

• Garbage collection
• Harder than local garbage collection (why?)
• Local GC and distributed GC module cooperate (using ref. counts)

• Exceptions:
• Similar to local
• But more for remote problems
• Also can have app-level exceptions (e.g., CORBA cross-language)

27© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.14
Instantiation of remote objects

Implementation of RMI
• (See Fig 5.15)
• Communication modules: cooperate to implement the call
semantics

• Remove reference modeue
• Translate between local and remote object references
• Create remote object references

• Servant: instance of a class, body of remote object
• RMI software

• Proxy: provide transparency
• Dispatcher & Skeleton: one per class of a remote object

29© 2012-2018David E. Bakken

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.15
The role of proxy and skeleton in remote method invocation

Implementation of RMI (cont.)
• Dynamic invocation

• Don’t use a compiler-generatated proxy (doOperation body),
program one!

• Useful when IDL not available when compiling program
•CORBA Interface Repository

• Examples: debugger, class browser, shared whiteboard
• Dynamic skeletons: server side analogue

• Binder: mapping from text names to remote obj. refs
• Activator: manages object activation and passivation

• Registers passive objects available for activation
• Start named server processes (incl. remote object in them)
• Keep track of servers for activated remote objects

31

Implementation of RMI (cont.)
• Persistent object stores

• Persistent object: one guaranteed to live between activations
• Managed by a persistent object store
• Marshalled state in file or database

• Object location
• Objects can migrate!
• Location service: maps from object references to probable

current locations

32

Distributed garbage collection
• Job: recycle objects no longer “pointed to” by a reference
• Typical scheme

• Use reference counting
• Local garbage collector
• Distributed garbage collector (cooperates with locals)

• Algorithm
• Each server tracks names of processes that have references to its

remote object
• If local GC notices proxy not reachable, lets GC on object host

know
• When no references to object, recycle it

• Complications: ref in msg
33

Leases
• Used in Java, Jini
• Client has “lease” of object for fixed time

• Has to renew it before expiration
• Way of removing un-freed refs
• Avoids the complicated distributed GC algorithm

• Note: not covering Section 5.5 (Case Study: Java RMI)

34

	Slide Number 1
	Introduction [5.1]
	Figure 5.1�Middleware layers
	Request-reply protocols [5.2]
	Figure 5.2�Request-reply communication
	Figure 5.3�Operations of the request-reply protocol
	Figure 5.4�Request-reply message structure
	Request-reply protocols (cont.)
	Request-reply protocols (cont.)
	Figure 5.5�RPC exchange protocols
	Using TPC streams to implement request-reply protocol
	HTTP RR protocol SUMMARY (Read rest on in CDKB5 text)
	Remote procedure call [5.3]
	Programming with interfaces
	Figure 5.8�CORBA IDL example
	RPC call semantics
	Figure 5.9�Call semantics
	Transparency
	Figure 5.10 �Role of client and server stub procedures in RPC
	Remote method invocation [5.4]
	On Objects and QoS
	Design issues for RMI: object model!
	Distributed objects and distribited object models
	Figure 5.12�Remote and local method invocations
	Remote object references and remote interfaces
	Figure 5.13�A remote object and its remote interface
	Actions in a distributed object system
	Figure 5.14�Instantiation of remote objects
	Implementation of RMI
	Figure 5.15�The role of proxy and skeleton in remote method invocation
	Implementation of RMI (cont.)
	Implementation of RMI (cont.)
	Distributed garbage collection
	Leases

