Slides for Chapter 5:
Remote Invocation

From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:
Concepts and Design

Edition 5, © Addison-Wesley 2012

MMSTRIBUTED SYSTEMS:

Text extensions to slides © David E. Bakken, 2012-2020

Introduction [5.1]

* This chapter: how processes/objects/components/services
communication via remote invocation (Chap 2)
* Request-reply
« Small/thin pattern on top of message passing
e Can use directly in app (“app protocols™), or build RPC/RMI on

 Remote Procedure Call (RPC)
 Make a remote procedure look (almost) like a local one to call

 Remove Method Invocation (RMI)
 Make a remote object look (almost) like a local one to invoke
* Note: ‘RMI’ is generic category, Java RMI is a specific instance

© 2012-2018David E. Bakken

Figure 5.1
Middleware layers

Applications

This chapter

(and Chapter 6) Remote invocation, indirect communication

Middleware
Underlying interprocess communication primitives: layers

Sockets, message passing, multicast support, overlay networks

UDP and TCP

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Request-reply protocols [5.2]

e Support low-level client-server interactions
e Usually synchronous and reliable
 Built on top of send and receive operations from Chapter
4
e Usually use UDP datagrams, could use TCP streams
* Three primitives
e doOperation: client sends request message to server
e getRequest: server receives request msg, selects+invokes oper.
* sendReply: server sends reply message back to (blocked) client

© 2012-2018David E. Bakken 4

Figure 5.2
Request-reply communication

Client

Server

getRequest
select object
execute
method

doOperation Request
o message
o
(wait)
° - Reply
message

(continuation)

sendReply

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 5.3
Operations of the request-reply protocol

public byte[] doOperation (RemoteRef s, int operationld, byte[] arguments)
sends a request message to the remote server and returns the reply.
The arguments specify the remote server, the operation to be invoked and
the arguments of that operation.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 5.4
Request-reply message structure

messageType Int (0O=Request, 1= Reply)
requestld Int

remoteReference RemoteRef

operationld Int or Operation

arguments array of bytes

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Request-reply protocols (cont.)

* Message identifiers: must identify request uniquely
e requestld: usually a sequence counter (makes unique at client)
 Client/sender identifier endpoint (with requestld, globally unique)

e Faillure model
e Over UDP: omission, misordering
e Over UDP or TCP: server crash failure (later, Byzantine...)
e Timeouts: doOperation uses when blocked for reply
e Options to use?
* Duplicate request msgs: server may get >1 times
* how? problem?
 Soln: server tracks what got from client (how?)

© 2012-2018David E. Bakken 8

Request-reply protocols (cont.)

 Lost reply messages
 [dempotent operation: just redo
* Else store reply history (how many? How to use?)

* Q: should client and/or server ACK messages?

© 2012-2018David E. Bakken

Figure 5.5
RPC exchange protocols

Name Messages sent by
Client Server Client
R Request
RR Request Reply
RRA Request Reply Acknowledge reply

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Using TPC streams to implement request-reply protocol

e Advantages

* Never need multi-packet protocols
 “Reliable”

e Disadvantages
e More CPU intensive: scale

© 2012-2018David E. Bakken

11

HTTP RR protocol SUMMARY (Read rest on in CDKB5 text)

« HTTP protocol specifies
 Messages in RR exchange
* Methods
e Arguments
* Results
e Marshalling rules
« Content negotiation
« Authentication

 Implemented over TCP streams
» Early versions: new connection for each request (later persistent)
 Zinky(Akamki) ~2019: http3 will replace virtually all current TCP+UDP

* Request & reply msgs marshalled into ASCII
* Resource data can be represented as a byte sequence

© 2012-2018David E. Bakken 12

Remote procedure call [5.3]

e Design issues
o Style of programming promoted by RPC: using interfaces
 Call semantics
e Transparency

© 2012-2018David E. Bakken

13

Programming with interfaces

« EXplicit interface
* Hide a lot of implementation details
 Tell exactly how a client can access the server

e Keeping implementation separate from interface
e Good idea? Why?

 Differences from local procedure interface

e Can’'t access shared memory variables between client and server

o Call by reference does not make sense for RPC
eParameters are 1n, out, or itnout

o Can’t pass pointers
* Anything else?
 IDL originally developed for RPC

© 2012-2018David E. Bakken

14

Figure 5.8
CORBA IDL example

// In file Person.idl
struct Person {
string name;
string place;
long year;
} s
interface PersonList {
readonly attribute string listname;
voild addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

RPC call semantics

e Choices for implementing doOperation

e Retry request message
 Duplicate request filtering at server

« Retransmission of results: keep reply history, or re-execute
procedure

© 2012-2018David E. Bakken

16

Figure 5.9
Call semantics

Fault tolerance measures Call
semantics
Retransmit request Duplicate Re-execute procedure
message filtering or retransmit reply
No Not applicable Not applicable Maybe
Yes No Re-execute procedure At-least-once
Yes Yes Retransmit reply At-most-once

 How can each of these happen?
« What would you call local procedure call semantics?

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Transparency
* RPC tries to offer at least location and access transparency
* Does client need to know call semantics?

 Implement RPC with stub/proxy over an RR protocol (Fig
5.10)

* Note: not covering Sun RPC (5.3.3), not testable

© 2012-2018David E. Bakken 18

Figure 5.10
Role of client and server stub procedures in RPC

client process server process
Request
. Reply
client stub server stub

rocedure procedure
client service
program Communication Communication procedure

module module dispatcher

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Remote method invocation [5.4]

 Fundamental difference between a procedure and an obj.?

e Similarities between RPC and RMI
e Programming with interfaces

» Both constructed on top of some RR protocol and have same
choices in call semantics

e Similar level of transparency
* Differences providing added expressiveness in RMI

 Full expressive power of OO programming (not just a “fad”...)
e Can cleanly pass object references as parameters

© 2012-2018David E. Bakken

20

On Objects and QoS

“l have a cat named Trash. In the current political climate, it would seem that if | were trying
to sell him (at least to a Computer Scientist), | would not stress that he is gentle to humans

and is self-sufficient, living mostly on field mice. Rather, | would argue that he is object-
oriented.”

Prof. Roger King, U. Colorado at Boulder, 1989

“My cat is CORBA-compliant”.
Dr. John Nicol, GTE Labs, 1995

“My CORBA-compliant cat has great quality of service.”
Dr. David Bakken, BBN, 1996

“The DCOM architecture is fundamentally ugly and unclean, at a profound and deeply-
disturbing level.”

Dr. David Bakken, BBN, 1998

© 2012-2018David E. Bakken 21

Design issues for RMI: object model!

 Local object model (C++, Java, ...)
 Collection/packaging of code and data
« Communicate by invoking methods
e Sometimes allowed to invoke instance variables directly

* Object references are first-class values: assigned to variables,
passed as parameters, ...

e Interfaces:impl sometimes 1:1 (C++), or many:1 (Java class can
Implement multiple interfaces)

 Action: invocation can have side effects at invoked object: state

changed, instantiate new object, invoked object invokes another...

* Exceptions
» Garbage collection (manual or automatic)

© 2012-2018David E. Bakken

22

Distributed objects and distribited object models

* Most ways similar/identical to local object model
 Client-server architecture (encapsulation), with variations
 Replication
e Migration
e Distributed object model (Fig 5.12)
* Process is a collection of objects (some remotely invoke-able)

 Remote object references: need one to invoke a remote object
 Remote Iinterfaces: each object must have one

© 2012-2018David E. Bakken 23

Figure 5.12
Remote and local method invocations

remote

e iInvocation
iInvocation

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Remote object references and remote interfaces

 Remote object reference
* ID that can be used throughout a DS
 Strongly analogous to local object references
 Remote Iinterfaces
A class implements one or more remote interfaces (Fig 5.13)
« CORBA: see previous, uses IDL
« Java RMI: just like any other Java interface (extends it)
e Multiple inheritance of interfaces in both CORBA and Java

© 2012-2018David E. Bakken 25

Figure 5.13
A remote object and Iits remote interface

remoteobject

7

Data
remote

interface

— M4
—m
of methods mé

implementation

ml
{ m2
m3

\,

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Actions In a distributed object system

e Can result in chain of invocations across computers

e Can instantiate new objects

e Usually local

 Or via a factory interface
» Garbage collection

e Harder than local garbage collection (why?)

e Local GC and distributed GC module cooperate (using ref. counts)
* EXceptions:

e Similar to local

e But more for remote problems

 Also can have app-level exceptions (e.g., CORBA cross-language)

© 2012-2018David E. Bakken 27

Figure 5.14
Instantiation of remote objects

L

m\
| o Y
Instantiate instantiate

S

remote
invocation

remote
invocation

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Implementation of RMI

*(See Fig 5.15)

« Communication modules: cooperate to implement the call
semantics

 Remove reference modeue
e Translate between local and remote object references
* Create remote object references

e Servant: instance of a class, body of remote object

* RMI software
* Proxy: provide transparency
 Dispatcher & Skeleton: one per class of a remote object

© 2012-2018David E. Bakken 29

Figure 5.15
The role of proxy and skeleton in remote method invocation

client Server

remote

skeleton object B
& dispatcher

for B’s class

object A proxy for B

o B

Request

|

Reply

e L servant
Remote Communication Communication Remote reference

reference module module module module

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Implementation of RMI (cont.)

e Dynamic invocation

e Don’t use a compiler-generatated proxy (doOperation body),
program one!

e Useful when IDL not available when compiling program
* CORBA Interface Repository

« Examples: debugger, class browser, shared whiteboard
* Dynamic skeletons: server side analogue

e Binder: mapping from text names to remote obj. refs
e Activator. manages object activation and passivation
» Registers passive objects available for activation

 Start named server processes (incl. remote object in them)
» Keep track of servers for activated remote objects

31

Implementation of RMI (cont.)

* Persistent object stores
e Persistent object: one guaranteed to live between activations
 Managed by a persistent object store
* Marshalled state in file or database

* Object location

* Objects can migrate!

e Location service: maps from object references to probable
current locations

32

Distributed garbage collection

« Job: recycle objects no longer “pointed to” by a reference

e Typical scheme

» Use reference counting

 Local garbage collector

e Distributed garbage collector (cooperates with locals)
 Algorithm

e Each server tracks names of processes that have references to its
remote object

o If local GC notices proxy not reachable, lets GC on object host
Know

* When no references to object, recycle it
e Complications: ref in msg

33

Leases

e Used In Java, Jini

 Client has “lease” of object for fixed time
* Has to renew it before expiration
« Way of removing un-freed refs
 Avoids the complicated distributed GC algorithm

e Note: not covering Section 5.5 (Case Study: Java RMI)

34

	Slide Number 1
	Introduction [5.1]
	Figure 5.1�Middleware layers
	Request-reply protocols [5.2]
	Figure 5.2�Request-reply communication
	Figure 5.3�Operations of the request-reply protocol
	Figure 5.4�Request-reply message structure
	Request-reply protocols (cont.)
	Request-reply protocols (cont.)
	Figure 5.5�RPC exchange protocols
	Using TPC streams to implement request-reply protocol
	HTTP RR protocol SUMMARY (Read rest on in CDKB5 text)
	Remote procedure call [5.3]
	Programming with interfaces
	Figure 5.8�CORBA IDL example
	RPC call semantics
	Figure 5.9�Call semantics
	Transparency
	Figure 5.10 �Role of client and server stub procedures in RPC
	Remote method invocation [5.4]
	On Objects and QoS
	Design issues for RMI: object model!
	Distributed objects and distribited object models
	Figure 5.12�Remote and local method invocations
	Remote object references and remote interfaces
	Figure 5.13�A remote object and its remote interface
	Actions in a distributed object system
	Figure 5.14�Instantiation of remote objects
	Implementation of RMI
	Figure 5.15�The role of proxy and skeleton in remote method invocation
	Implementation of RMI (cont.)
	Implementation of RMI (cont.)
	Distributed garbage collection
	Leases

