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Introduction [5.1]
• This chapter: how processes/objects/components/services 
communication via remote invocation (Chap 2)

• Request-reply
• Small/thin pattern on top of message passing
• Can use directly in app (“app protocols”), or build RPC/RMI on

• Remote Procedure Call (RPC)
• Make a remote procedure look (almost) like a local one to call

• Remove Method Invocation (RMI)
• Make a remote object look (almost) like a local one to invoke
• Note: ‘RMI’ is generic category, Java RMI is a specific instance
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Figure 5.1
Middleware layers
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Request-reply protocols [5.2]
• Support low-level client-server interactions

• Usually synchronous and reliable
• Built on top of send and receive operations from Chapter 
4

• Usually use UDP datagrams, could use TCP streams
• Three primitives

• doOperation: client sends request message to server
• getRequest: server receives request msg, selects+invokes oper.
• sendReply: server sends reply message back to (blocked) client
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Figure 5.2
Request-reply communication
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Figure 5.3
Operations of the request-reply protocol

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)
sends a request message to the remote server and returns the reply. 
The arguments specify the remote server, the operation to be invoked and 
the arguments of that operation.

public byte[] getRequest ();
acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);
sends the reply message reply to the client at its Internet address and port.
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Figure 5.4
Request-reply message structure
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Request-reply protocols (cont.)
• Message identifiers: must identify request uniquely

• requestId: usually a sequence counter (makes unique at client)
• Client/sender identifier endpoint (with requestId, globally unique)

• Failure model 
• Over UDP: omission, misordering
• Over UDP or TCP: server crash failure (later, Byzantine…)

• Timeouts: doOperation uses when blocked for reply
• Options to use?

• Duplicate request msgs: server may get  >1 times 
• how? problem?
• Soln: server tracks what got from client (how?)
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Request-reply protocols (cont.)
• Lost reply messages

• Idempotent operation: just redo
• Else store reply history (how many? How to use?)

• Q: should client and/or server ACK messages?
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Figure 5.5
RPC exchange protocols
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Using TPC streams to implement request-reply protocol
• Advantages

• Never need multi-packet protocols
• “Reliable”

• Disadvantages
• More CPU intensive: scale
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HTTP RR protocol SUMMARY (Read rest on in CDKB5 text)

• HTTP protocol specifies
• Messages in RR exchange
• Methods
• Arguments
• Results
• Marshalling rules
• Content negotiation
• Authentication

• Implemented over TCP streams
• Early versions: new connection for each request (later persistent)
• Zinky(Akamki) ~2019: http3 will replace virtually all current TCP+UDP

• Request & reply msgs marshalled into ASCII
• Resource data can be represented as a byte sequence
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Remote procedure call [5.3]
• Design issues

• Style of programming promoted by RPC: using interfaces
• Call semantics
• Transparency
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Programming with interfaces
• Explicit interface

• Hide a lot of implementation details
• Tell exactly how a client can access the server

• Keeping implementation separate from interface
• Good idea? Why?

• Differences from local procedure interface
• Can’t access shared memory variables between client and server
• Call by reference does not make sense for RPC

•Parameters are in, out, or inout

• Can’t pass pointers
• Anything else?

• IDL originally developed for RPC
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Figure 5.8
CORBA IDL example

// In file Person.idl
struct Person {

string name; 
string place;
long year;

} ;
interface PersonList {

readonly attribute string listname;
void addPerson(in Person p) ;
void getPerson(in string name, out Person p);
long number();

};



RPC call semantics
• Choices for implementing doOperation

• Retry request message
• Duplicate request filtering at server
• Retransmission of results: keep reply history, or re-execute 

procedure
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Figure 5.9
Call semantics
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• How can each of these happen?
• What would you call local procedure call semantics?



Transparency
• RPC tries to offer at least location and access transparency
• Does client need to know call semantics?
• Implement RPC with stub/proxy over an RR protocol (Fig 
5.10)

• Note: not covering Sun RPC (5.3.3), not testable
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Figure 5.10 
Role of client and server stub procedures in RPC
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Remote method invocation [5.4]
• Fundamental difference between a procedure and an obj.?
• Similarities between RPC and RMI

• Programming with interfaces
• Both constructed on top of some RR protocol and have same 

choices in call semantics
• Similar level of transparency

• Differences providing added expressiveness in RMI
• Full expressive power of OO programming (not just a “fad”…)
• Can cleanly pass object references as parameters
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On Objects and QoS
“I have a cat named Trash.  In the current political climate, it would seem that if I were trying 

to sell him (at least to a Computer Scientist), I would not stress that he is gentle to humans 
and is self-sufficient, living mostly on field mice. Rather, I would argue that he is object-
oriented.”
Prof. Roger King, U. Colorado at Boulder, 1989

“My cat is CORBA-compliant”.
Dr. John Nicol, GTE Labs, 1995

“My CORBA-compliant cat has great quality of service.”
Dr. David Bakken, BBN, 1996

“The DCOM architecture is fundamentally ugly and unclean, at a profound and deeply-
disturbing level.”

Dr. David Bakken, BBN, 1998
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Design issues for RMI: object model!
• Local object model (C++, Java, …)

• Collection/packaging of code and data
• Communicate by invoking methods
• Sometimes allowed to invoke instance variables directly
• Object references are first-class values: assigned to variables, 

passed as parameters, …
• Interfaces:impl sometimes 1:1 (C++), or many:1 (Java class can 

implement multiple interfaces)
• Action: invocation can have side effects at invoked object: state 

changed, instantiate new object, invoked object invokes another…
• Exceptions
• Garbage collection (manual or automatic)
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Distributed objects and distribited object models
• Most ways similar/identical to local object model
• Client-server architecture (encapsulation), with variations

• Replication
• Migration

• Distributed object model (Fig 5.12)
• Process is a collection of objects (some remotely invoke-able)
• Remote object references: need one to invoke a remote object
• Remote interfaces: each object must have one
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Figure 5.12
Remote and local method invocations
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Remote object references and remote interfaces
• Remote object reference

• ID that can be used throughout a DS
• Strongly analogous to local object references

• Remote interfaces
• A class implements one or more remote interfaces (Fig 5.13)
• CORBA: see previous, uses IDL
• Java RMI: just like any other Java interface (extends it)
• Multiple inheritance of interfaces in both CORBA and Java
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Figure 5.13
A remote object and its remote interface
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Actions in a distributed object system
• Can result in chain of invocations across computers
• Can instantiate new objects

• Usually local
• Or via a factory interface

• Garbage collection
• Harder than local garbage collection (why?)
• Local GC and distributed GC module cooperate (using ref. counts)

• Exceptions: 
• Similar to local
• But more for remote problems
• Also can have app-level exceptions (e.g., CORBA cross-language)
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Figure 5.14
Instantiation of remote objects 



Implementation of RMI
• (See Fig 5.15)
• Communication modules: cooperate to implement the call 
semantics

• Remove reference modeue
• Translate between local and remote object references
• Create remote object references

• Servant: instance of a class, body of remote object
• RMI software

• Proxy: provide transparency
• Dispatcher & Skeleton: one per class of a remote object
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Figure 5.15
The role of proxy and skeleton in remote method invocation



Implementation of RMI (cont.)
• Dynamic invocation

• Don’t use a compiler-generatated proxy (doOperation body), 
program one!

• Useful when IDL not available when compiling program
•CORBA Interface Repository

• Examples: debugger, class browser, shared whiteboard
• Dynamic skeletons: server side analogue 

• Binder: mapping from text names to remote obj. refs
• Activator: manages object activation and passivation

• Registers passive objects available for activation
• Start named server processes (incl. remote object in them)
• Keep track of servers for activated remote objects
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Implementation of RMI (cont.)
• Persistent object stores

• Persistent object: one guaranteed to live between activations
• Managed by a persistent object store
• Marshalled state in file or database

• Object location
• Objects can migrate!
• Location service: maps from object references to probable 

current locations
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Distributed garbage collection
• Job: recycle objects no longer “pointed to” by a reference
• Typical scheme

• Use reference counting
• Local garbage collector
• Distributed garbage collector (cooperates with locals)

• Algorithm
• Each server tracks names of processes that have references to its 

remote object
• If local GC notices proxy not reachable, lets GC on object host 

know
• When no references to object, recycle it

• Complications: ref in msg
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Leases
• Used in Java, Jini
• Client has “lease” of object for fixed time

• Has to renew it before expiration
• Way of removing un-freed refs
• Avoids the complicated distributed GC algorithm

• Note: not covering Section 5.5 (Case Study: Java RMI)

34


	Slide Number 1
	Introduction [5.1]
	Figure 5.1�Middleware layers
	Request-reply protocols [5.2]
	Figure 5.2�Request-reply communication
	Figure 5.3�Operations of the request-reply protocol
	Figure 5.4�Request-reply message structure
	Request-reply protocols (cont.)
	Request-reply protocols (cont.)
	Figure 5.5�RPC exchange protocols
	Using TPC streams to implement request-reply protocol
	HTTP RR protocol SUMMARY (Read rest on in CDKB5 text)
	Remote procedure call [5.3]
	Programming with interfaces
	Figure 5.8�CORBA IDL example
	RPC call semantics
	Figure 5.9�Call semantics
	Transparency
	Figure 5.10 �Role of client and server stub procedures in RPC
	Remote method invocation [5.4]
	On Objects and QoS
	Design issues for RMI: object model!
	Distributed objects and distribited object models
	Figure 5.12�Remote and local method invocations
	Remote object references and remote interfaces
	Figure 5.13�A remote object and its remote interface
	Actions in a distributed object system
	Figure 5.14�Instantiation of remote objects 
	Implementation of RMI
	Figure 5.15�The role of proxy and skeleton in remote method invocation
	Implementation of RMI (cont.)
	Implementation of RMI (cont.)
	Distributed garbage collection
	Leases

