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Introduction [6.1]
• Cambridge researchers:

• “All problems in computer science can be solved by another level 
of indirection.”

• Jim Gray (RIP)
• “There is no performance problem that cannot be solved by 

eliminating a level of indirection.”
• Indirect communication: communication between entities 
in a DS through an intermediary with no direct coupling 
between sender and receiver(s).

• Lots of variations in
• Intermediary
• Coupling
• Implementation details and tradeoffs therein
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Indirect communication (cont.)
• Why have decoupled comms? Client-server interaction

• Hard to change server to one with same functionality
• Harder to deal with failure
• …. Other change is expected (what kinds?)

• Note: continuum between server “group” and intermediary..
• We look at group communication in Sec 6.2
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Figure 6.1
Space and time coupling in distributed systems

Q: is time/space uncoupling same as asynchronous invocation?



Group communication [6.2]
• Group communication: Send messages to a group 
endpoint

• Delivered to all members (modulo reliability guarantees)
• Sender not aware of identity of receivers
• Ergo, (thin) abstraction layer above IP multicast or an overlay net

• Adds a lot of value 
• Detecting failures
• Managing group membership (processes in the group)
• Reliability guarantees
• Ordering guarantees
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Group communication (cont.)
• Very useful building block for DSs, esp. reliable ones

• Reliable dissemination of info to large # “clients” (esp. finance)
• Collaborative applications: multiple users with common view
• Wide range of fault-tolerance building blocks

•Consistent update of replicated data
•Highly available (replicated) servers

• More on group communications next:
• Programming models
• Implementation issues
• Case study: JGroups toolkit [NOT TESTABLE]
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Programming model [6.3.1]
• Central abstraction: group & associated membership

• Processes join (explicitly) or leave (explicitly or by failure)
• Send single message to the group of N, not N unicast messages

• Compare and contrast with IP multicast?
• Early work started in the late 1980s, still going strong
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Process groups and object groups
• Most research on process groups

• Abstraction: resilient process
• Messages delivered to a process endpoint, no higher
• Messages typically unstructured byte arrays, no marshalling etc
• Level of service ≈ socket

• Object group: higher level approach
• Collection of objects (same class!) process same invocations
• Replication can be transparent to clients

•Invoke on single object (proxy)
•Requests sent by group communication
•Voting in proxy usually

• Research started in mid 1990s (Electra, Eternal, AQuA)
• Process groups still more widely researched & deployed
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Other key distinctions in group comm. services
• Closed group: only members may multicast to it

• Useful: coordinating among cooperating servers (usually replicas)
• Open group: a process outside group may send to it

• Useful: delivering events to interested parties, client request to 
server replica group

• Overlapping groups: entities may belong to >1 group
• Non-overlapping groups: 0 or 1 groups for an entity
• Synchronous and asynchronous systems
• Note: above has HUGE impact on multicast algorithms

• Big reason why lots of research on this!
• …. And that is even without Byzantine failure
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Figure 6.2
Open and closed groups
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Implementation issues [6.2.2]
• Reliable delivery

• Unicast delivery reliability properties (note: not my favorite terms!)
•Delivery integrity: message received same as sent, never delivered twice
•Delivery validity: outgoing message eventually delivered

• Group communication reliability properties build on this
•Delivery integrity: deliver message correctly at most once to group 
members

• Note: stronger than  RPC delivery guarantees!
•Delivery validity: message sent will be eventually delivered (if not all group 
members fail)

•Agreement/consensus: Delivered to all or none of the group members
• Note: also called atomic delivery
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Ordered delivery
• Possible strengths of ordering

• FIFO ordering: first-in-first-out from a single sender to the group
• Causal ordering: preserves potential causality, happens before 

(Chap 14)
• Total ordering: messages delivered in same order to all 

processes
• Perspective (not testable unless later covered…)

• Strong reliability and ordering is expensive: scale limited
• More probabilistic approaches & weaker delivery guarantees 

researched a lot last decade
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Group membership management
• Key elements

• Provide interface for group membership changes
• Failure detection
• Notifying members of group membership changes

•Sometimes with strong properties: virtual synchrony
• Performing group address expansion
• Q: what of these does IP multicast perform?
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Figure 6.3
The role of group membership management
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Case study: JGroups toolkit [NOT TESTABLE]
• Java toolkit, based on Cornell/Birman’s research
• Architecture

• Channel: most primitive API
• Building blocks: higher-level APIs built on top of channels
• Protocol stack: different underlying comms. protocols
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Figure 6.4
The architecture of JGroups



JGroups channels
• Channel object: handle/reference for a group

• Note: different from channel-based publish-subscribe (6.3.1)
• Sends messages with some form of reliable multicast
• Basic operations

• connect to a named group
• Leave a group: disconnect operation
• close: shut down channel object

• Other operations (admin stuff)
• getView returns current member list
• getState returns app state history
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JGroups example
• Simple example: intelligent fire alarm sends “Fire!” 
message to group 

• To raise the alarm:
FireAlarmJG alarm = new FireAlarmJG();
Alarm.raise();

• To receive the alarm:
FireAlarmConsumerJG alarmCall = new FireAlarmConsumerJG();
String msg = alarmCall.await();
System.out.println(“Alarm received: “ + msg);
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Figure 6.5
Java class FireAlarmJG

=====================================
import org.jgroups.JChannel;
public class FireAlarmJG { 
public void raise() { // raise alarm, i.e. send “Fire!” message

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel"); // can create group
Message msg = new Message(null, null, "Fire!"); 
channel.send(msg);

} 
catch(Exception e) { 
}

}
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Figure 6.6
Java class FireAlarmConsumerJG

import org.jgroups.JChannel;

public class FireAlarmConsumerJG { 
public String await() {
try {

JChannel channel = new JChannel(); 
channel.connect("AlarmChannel"); 
Message msg = (Message) channel.receive(0); 
return (String) msg.GetObject();

} catch(Exception e) {
return null;

}
}

}



JGroups building blocks & protocol stack
• Building blocks examples

• MessageDispatcher: sends msg, waits for (some) replies
• RpcDispatcher: invokes a method on all objects, wait for replies
• NotificationBus: distribited event bus, with any serializable

Java object
• Protocol stack (some, from Fig 6.4):

• UDP: obvious, but uses IP multicast with UDP
• FRAG: message fragmentation and reassembly
• MERGE: deals with network partitioning (multiple versions)
• GMS: group membership
• CAUSAL: causal ordering
• (lots of other protocols available: FIFO, total, discover, failure 

detection, encryption, flow-control, … & layers stack in any order)
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Public-subscribe systems [6.3]
• Pub-sub AKA distributed event systems

• Most widely used from this chapter
• Publishers publish structured events to event service (ES)
• Subscribers express interest in particular events
• ES matches published events to subscriptions

• Applications (lots…)
• Financial info systems
• Other live feeds of real-time data (including RSS)
• Cooperative working (events of shared interest)
• Ubiquitous computing (location events, .... from infrastructure)
• Lots of monitoring applications, including internet net. mon.
• Key part of Google infrastructure (chap 21)
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Example: dealing room system
• Example: dealing room for stock trading

• Let users see latest market prices of stock they care about
• Info for a given stock arrives from multiple sources
• Dealers only care about stocks they own (or might)
• May only care to know above some threshold, in addition

• Possible structure: two (kinds of) tasks
• Info provider process receives updates (events) from a single 

external source
• Dealer process creates subscription for each stock its user(s) 

express interest in
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Figure 6.7
Dealing room system
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Characteristics of pub-sub systems
• Heterogeneity

• Able to glue together systems not designed to work together, with 
pub-sub technology

• Have to come up with an external description of what can be 
subscribed to: simple flat, rich taxonomy, etc

• Asynchrony
• Decoupling means you never have to block!

• Possible delivery guarantees
• All subscribers receive all events (atomicity)
• Real-time
• …
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Pub-sub programming model
• Publishers 

• Disseminate event e through publish(e)
• (Sometimes, fancier) register/advertise via a filter (pattern over all 

events) f : advertise (f)
• Expressiveness of pattern is the subscription model (later slide)
• Can also remove the offer to publish: unadvertise (f)

• Subscribers
• Subscribe via a filter (pattern) f: subscribe(f)
• Receive event e matching f: notify(f)
• Cancel their subscription: unsubscribe(f)
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Figure 6.8
The publish-subscribe paradigm



Subscription models of pub-sub systems
• Channel-based

• Publishers publish to named channels
• Subscribers get ALL events from channel
• Very simplistic, no filtering (all other models below do)
• CORBA Event Services uses this (DDS precursor)

• Topic-based (AKA subject-based)
• Each notification expressed in multiple fields, one being topic
• Subscriptions choose topics
• Hierarchical topics can help (e.g., old USENET rec.sports.cricket)
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Subscription models of pub-sub systems (cont.)
• Content-based

• Generalization of topic based
• Subscription is expression over range of fields (constraints on 

values)
• Far more expressive than channel-based or topic-based

• Type-based
• Use object-based approaches with object types
• Subscriptions defined in terms of types of events
• Matching in terms of types or subtypes of filter
• Ranges from coarse grained (type names) to fine grained 

(attributes and methods of object)
• Advantage: clean integration with object-based programming 

languages
29



Subscription models of pub-sub systems (cont.)
• Other kinds
• Objects of interest: like type-based, but on change in 
state of object

• For mobile: also match based on context
• Concept-based subscriptions: not just syntax, but 
semantics of events.

• Fancier (e.g., financial trading): complex event 
processing (CEP)

• Patterns between different events, locations, time, ..
• I.e. patterns can be logical, temporal, or spatial
• For more, see ACM’s Distributed Event-Based Systems (DEBS) 

conference
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Implementation issues [6.2.3]
• Many ways to delivery events efficiently to subscribers
• Also can be requirements for security, scalability, failure 
handling, concurrency, QoS

• A number of key implementation choices follow..
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Centralized vs. distributed implementations
• Simple way: single centralized broker node
• Q: Limitations?
• Most implementations are network of brokers (Fig 6.9)

• E.g., GridStat
• Some implementations are peer-to-peer (P2P)

• All publisher and subscriber nodes act as the pub-sub broker
• E.g., RTI DDS

• Q: Plusses and minuses of network of brokers vs. P2P?
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Figure 6.9
A network of brokers



Overall systems architecture
• Centralized schemes simple…
• Implementing channel-based or topic-based simple

• Map channels/topics onto groups
• Use the group’s multicast (possibly reliable, ordered, ..)

• Implementation of content/type/ more complicated
• Ranges of choices follow in fig 6.10

34



35
Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4   

©  Pearson Education 2005 

Figure 6.10
The architecture of publish-subscribe systems



Implementation choices in content-based routing (CBR)
• Flooding (with duplicate suppression)

• Simplest version
•Send event to all nodes on a network
•Can use underlying multicast/broadcast

• More complicated
•Brokers arranged in acyclic forwarding graph
•Each node forwards to all its neighbors (except one that sent it to node)

• Filtering (filter-based routing)
• Only forward where path to valid subscriber
• I.e., subscription info propagated through network towards publ’s
• Detail: 

•Each node maintain neighbors list
•For each neighbor, maintain subscription list/criteria
•Routing table with list of neighbors and subscribers downstream
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Figure 6.11
Filtering-based routing

upon receive publish(event e) from node x 1
matchlist := match(e, subscriptions) 2
send notify(e) to matchlist; 3
fwdlist := match(e, routing); 4
send publish(e) to fwdlist - x;5

upon receive subscribe(subscription s) from node x 6
if x is client then 7

add x to subscriptions; 8
else add(x, s) to routing; 9
send subscribe(s) to neighbours - x;10



Implementation choices in CBR (cont.)
• Advertisements

• propagate advertisements towards subs’ (symmetrical to filtering)
• Rendezvous (Fig 6.12)

• Consider set of possible events as an event space
• Partition event space among brokers in net. (rendezvous nodes)
• SN(s): for given subscrip. s, returns set of nodes responsible for it
• EN(e): for event e, rtn list of nodes that match e against 

subscriptions
• Mapping intersection rule: SN(s)∩ EN(e) must be nonempty if 
e matches s

• Distributed hash table (DHT) variant: map events and 
subscriptions onto a rendezvous nodes via DHT (Sec 4.5.1)

• Routing can be done via gossiping (epidemic multicast)
38
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Figure 6.12
Rendezvous-based routing

upon receive publish(event e) from node x at node i
rvlist := EN(e);
if i in rvlist then begin 

matchlist :=match(e, subscriptions); 
send notify(e) to matchlist;

end
send publish(e) to rvlist - i; 

upon receive subscribe(subscription s) from node x at node i
rvlist := SN(s); 
if i in rvlist then

add s to subscriptions; 
else

send subscribe(s) to rvlist - i;
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Figure 6.13
Example publish-subscribe system



Message queues [6.4]
• (Distributed) message queues: intermediary between 
producers and consumers of data

• Point-to-Point, not one-to-many
• Supports time and space uncoupling
• AKA Message-Oriented Middleware (MOM)
• LOTS of commercial products
• Main use: Enterprise Application Integration (EAI)
• Also a lot for transactions (6.4.1)

• Programming model: producer sends msg; consumers can
• Blocking receive
• Non-blocking receive (polling)
• Notify
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Figure 6.14
The message queue paradigm



Programming model [6.4.1] (cont.)
• Many processes can send to a queue, many can remove 
from it

• Queuing policy: usually FIFO, but also priority-based
• Consumers can select based on metadata
• Database integration common use; e.g. Oracle AQ

• Messages are a row in a (relational) database
• Queues are database tables that can be SQL-queried against

43



Programming model (cont)
• Messages are persistent

• Store until removed
• Store on a disk

• Other common functionality
• Transaction support: all-or-none operations
• Automatic message transformation: on arrival, message transforms 

data from one format to another (data heterogeneity)
• Security (at least confidentiality)

• Q: How different from message passing from Chap 4?
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Implementation issues [6.3.2]
• Key choice: centralized vs. distributed implementation

• Tradeoffs?
• Case study: IBM Websphere MQ

• Queue managers host and manage queues, enable apps to 
access via Message Queue Interface (MQI)

•Connect or disconnect to/from a queue
•Send/receive messages to/from a queue (via a RPC call)
•Clients not on same host (usual case) vi a client channel (w/proxy+stub)
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Figure 6.15
A simple networked topology in WebSphere MQ



IBM WebSphere (cont.)
• Queues usually linked into a federated structure

• Resembles pub-sub, but choose right topology for app
• Queues linked with message channel(MC)
• Message channel agent (MCA) manages each end of MC
• Queue managers have routing tables
• Lots of tools to create different topologies, manage components, 

etc
• Hub-and-spoke topology (common)

• Hub has lots of services (and resources to support)
• Spoke queues are distant, place close(r) to clients
• Clients interface with spoke queues
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Case study: Java Messaging Service (JMS) [6.4.3] [NOT 
TESTABLE]
• JMS supports both pub-sub and MQs

• Many vendors; others provide interface (e.g., WebSphere)
• Key roles in JMS

• JMS client: Java app that produces or consumes messages
•JMS producer: creates a message and places in a queue
•JMS consumer: removes a message from a queue and uses it

• JMS provider: any system that implements the JMS spec
• JMS message: object used to communicate between JMS clients
• JMS destination: object supporting indirect communication in JMS

•JMS topic: supports pub-sub
•JMS queue: (um, obvious)
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Programming with JMS
• First create a connection from client to providor with 
connection factory

• TopicConnection or QueueConnection

•Use connection to create ≥1 session
• Series of ops for creating, producing, consuming msgs for a given 

logical task
• Also supports transactions
• One session can handle topics OR queues, not both
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Figure 6.16
The programming model offered by JMS



JMS session objects
• Message has 3 parts

• Header: everything needed to identify & route msg
•Destination, priroity, expiration date, message ID, timestamp

• Properties: user-defined meta-data
• Body: opaque data

• Message producer: object that publishes messages to a 
topic or sends to a queue

• Message consumer: subscribe to topics or receive from Q
• Can associate filters w/consumer: specify a message selector

•subset of SQL
• Two modes for receiving messages

1. Block with receive operation
2. Create message listener object with a callback object onMessage
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Figure 6.17
Java class FireAlarmJMS

// Usage: alarm.raise()
import javax.jms.*;
import javax.naming.*;
public class FireAlarmJMS { // more complex than Jgroups: create connection, session, publisher, message
// Lines 2-5 find the right connection factory and topic with JNDI (Lines 2-5)
public void raise() { 

try {                                                             1
Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup ("TopicConnectionFactory"); 4
Topic topic = (Topic)ctx.lookup("Alarms");  5
TopicConnection topicConn =     6

topicConnectionFactory.createTopicConnection(); 7
TopicSession topicSess = topicConn.createTopicSession(false, // false means not transactional 8

Session.AUTO_ACKNOWLEDGE);   // session ACKS msg receipt 9
TopicPublisher topicPub = topicSess.createPublisher(topic); 10;
TextMessage msg = topicSess.createTextMessage(); 11
msg.setText("Fire!");12
topicPub.publish(message); 13

} catch (Exception e) { 14
} 15

}
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Figure 6.18
Java class FireAlarmConsumerJMS

import javax.jms.*;  import javax.naming.*;
public class FireAlarmConsumerJMS // similar to producer!
public String await() { 

try {                                                             1
Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5
TopicConnection topicConn =         6

topicConnectionFactory.createTopicConnection();        7
TopicSession topicSess = topicConn.createTopicSession(false,        8

Session.AUTO_ACKNOWLEDGE);        9
TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10
topicSub.start(); 11
TextMessage msg = (TextMessage) topicSub.receive(); 12
return msg.getText(); 13

} catch (Exception e) { 14
return null; 15

}16
} // await()

} // FireAlarmConsumerJMS – this missing in book!



Shared memory approaches [6.5]
• Abstraction: memory locations then tuple space
• Distributed shared memory (DSM) [6.5.1] 

• Read and write with API “like” ordinary memory
• Updates propagated by the runtime system of the DSM
• Mostly for parallel apps or if data items can be directly accessed
• Not as appropriate for client-server
• Replicas of data kept & managed (problems: replication, caching)
• Can be very useful in non-uniform access (NUMA) parallel comp’s
• Memory space can be persistent
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Figure 6.19
The distributed shared memory abstraction



Message passing (MP) compared to DSM
• Both are lower-level than client-server or pub-sub
• Service offered

• MP: 
•variables have to be marshalled by apps
•Producers and consumers protected from each other (no shared memory)

• DSM: 
•No marshalling (implications?)
•Supports pointers
•No app-level synchronization: DSM runtime takes care of
•Persistent DSM supports temporal decoupling

• Efficiency
• DSM peformance varies widely, including access patterns
• DSM can hide the fact that something is remote (good or bad?)
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Tuple space communication [6.5.2]
• A tuple is an ordered list of type values
• Tuple space is an (unordered) bag of tuple
• Can withdraw based on a specified value (or any value)
• Primitives added

• out(“Subtask”, velocity, i, j, k)
• in(“subtask”, ?myVelocity, ?row, 3, ?factor)
• rd(“subtask”, ?myVelocity, ?row, 3, ?factor)

• Journal paper from Bakken’s dissertation cited on Page 
268 of CDKB5 (“Bakken and Schlichting [1995]”).
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Figure 6.27
Summary of indirect communication styles
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