
From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:

Concepts and Design
Edition 5, © Addison-Wesley 2012

Text extensions to slides © David E. Bakken, 2012-2020

Slides for Chapter 6:
Indirect Communication

Introduction [6.1]
• Cambridge researchers:

• “All problems in computer science can be solved by another level
of indirection.”

• Jim Gray (RIP)
• “There is no performance problem that cannot be solved by

eliminating a level of indirection.”
• Indirect communication: communication between entities
in a DS through an intermediary with no direct coupling
between sender and receiver(s).

• Lots of variations in
• Intermediary
• Coupling
• Implementation details and tradeoffs therein

2

Indirect communication (cont.)
• Why have decoupled comms? Client-server interaction

• Hard to change server to one with same functionality
• Harder to deal with failure
• …. Other change is expected (what kinds?)

• Note: continuum between server “group” and intermediary..
• We look at group communication in Sec 6.2

3

4
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 6.1
Space and time coupling in distributed systems

Q: is time/space uncoupling same as asynchronous invocation?

Group communication [6.2]
• Group communication: Send messages to a group
endpoint

• Delivered to all members (modulo reliability guarantees)
• Sender not aware of identity of receivers
• Ergo, (thin) abstraction layer above IP multicast or an overlay net

• Adds a lot of value
• Detecting failures
• Managing group membership (processes in the group)
• Reliability guarantees
• Ordering guarantees

5

Group communication (cont.)
• Very useful building block for DSs, esp. reliable ones

• Reliable dissemination of info to large # “clients” (esp. finance)
• Collaborative applications: multiple users with common view
• Wide range of fault-tolerance building blocks

•Consistent update of replicated data
•Highly available (replicated) servers

• More on group communications next:
• Programming models
• Implementation issues
• Case study: JGroups toolkit [NOT TESTABLE]

6

Programming model [6.3.1]
• Central abstraction: group & associated membership

• Processes join (explicitly) or leave (explicitly or by failure)
• Send single message to the group of N, not N unicast messages

• Compare and contrast with IP multicast?
• Early work started in the late 1980s, still going strong

7

Process groups and object groups
• Most research on process groups

• Abstraction: resilient process
• Messages delivered to a process endpoint, no higher
• Messages typically unstructured byte arrays, no marshalling etc
• Level of service ≈ socket

• Object group: higher level approach
• Collection of objects (same class!) process same invocations
• Replication can be transparent to clients

•Invoke on single object (proxy)
•Requests sent by group communication
•Voting in proxy usually

• Research started in mid 1990s (Electra, Eternal, AQuA)
• Process groups still more widely researched & deployed

8

Other key distinctions in group comm. services
• Closed group: only members may multicast to it

• Useful: coordinating among cooperating servers (usually replicas)
• Open group: a process outside group may send to it

• Useful: delivering events to interested parties, client request to
server replica group

• Overlapping groups: entities may belong to >1 group
• Non-overlapping groups: 0 or 1 groups for an entity
• Synchronous and asynchronous systems
• Note: above has HUGE impact on multicast algorithms

• Big reason why lots of research on this!
• …. And that is even without Byzantine failure

9

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.2
Open and closed groups

Closed group Open group

Implementation issues [6.2.2]
• Reliable delivery

• Unicast delivery reliability properties (note: not my favorite terms!)
•Delivery integrity: message received same as sent, never delivered twice
•Delivery validity: outgoing message eventually delivered

• Group communication reliability properties build on this
•Delivery integrity: deliver message correctly at most once to group
members

• Note: stronger than RPC delivery guarantees!
•Delivery validity: message sent will be eventually delivered (if not all group
members fail)

•Agreement/consensus: Delivered to all or none of the group members
• Note: also called atomic delivery

11

Ordered delivery
• Possible strengths of ordering

• FIFO ordering: first-in-first-out from a single sender to the group
• Causal ordering: preserves potential causality, happens before

(Chap 14)
• Total ordering: messages delivered in same order to all

processes
• Perspective (not testable unless later covered…)

• Strong reliability and ordering is expensive: scale limited
• More probabilistic approaches & weaker delivery guarantees

researched a lot last decade

12

Group membership management
• Key elements

• Provide interface for group membership changes
• Failure detection
• Notifying members of group membership changes

•Sometimes with strong properties: virtual synchrony
• Performing group address expansion
• Q: what of these does IP multicast perform?

13

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 6.3
The role of group membership management

Join

Group
address

expansion

Multicast
communication

Group
send

Fail Group membership
management

Leave

Process group

Case study: JGroups toolkit [NOT TESTABLE]
• Java toolkit, based on Cornell/Birman’s research
• Architecture

• Channel: most primitive API
• Building blocks: higher-level APIs built on top of channels
• Protocol stack: different underlying comms. protocols

15

16
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 6.4
The architecture of JGroups

JGroups channels
• Channel object: handle/reference for a group

• Note: different from channel-based publish-subscribe (6.3.1)
• Sends messages with some form of reliable multicast
• Basic operations

• connect to a named group
• Leave a group: disconnect operation
• close: shut down channel object

• Other operations (admin stuff)
• getView returns current member list
• getState returns app state history

17

JGroups example
• Simple example: intelligent fire alarm sends “Fire!”
message to group

• To raise the alarm:
FireAlarmJG alarm = new FireAlarmJG();
Alarm.raise();

• To receive the alarm:
FireAlarmConsumerJG alarmCall = new FireAlarmConsumerJG();
String msg = alarmCall.await();
System.out.println(“Alarm received: “ + msg);

18

19
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 6.5
Java class FireAlarmJG

=====================================
import org.jgroups.JChannel;
public class FireAlarmJG {
public void raise() { // raise alarm, i.e. send “Fire!” message

try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel"); // can create group
Message msg = new Message(null, null, "Fire!");
channel.send(msg);

}
catch(Exception e) {
}

}

20
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 6.6
Java class FireAlarmConsumerJG

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {
public String await() {
try {

JChannel channel = new JChannel();
channel.connect("AlarmChannel");
Message msg = (Message) channel.receive(0);
return (String) msg.GetObject();

} catch(Exception e) {
return null;

}
}

}

JGroups building blocks & protocol stack
• Building blocks examples

• MessageDispatcher: sends msg, waits for (some) replies
• RpcDispatcher: invokes a method on all objects, wait for replies
• NotificationBus: distribited event bus, with any serializable

Java object
• Protocol stack (some, from Fig 6.4):

• UDP: obvious, but uses IP multicast with UDP
• FRAG: message fragmentation and reassembly
• MERGE: deals with network partitioning (multiple versions)
• GMS: group membership
• CAUSAL: causal ordering
• (lots of other protocols available: FIFO, total, discover, failure

detection, encryption, flow-control, … & layers stack in any order)
21

Public-subscribe systems [6.3]
• Pub-sub AKA distributed event systems

• Most widely used from this chapter
• Publishers publish structured events to event service (ES)
• Subscribers express interest in particular events
• ES matches published events to subscriptions

• Applications (lots…)
• Financial info systems
• Other live feeds of real-time data (including RSS)
• Cooperative working (events of shared interest)
• Ubiquitous computing (location events, from infrastructure)
• Lots of monitoring applications, including internet net. mon.
• Key part of Google infrastructure (chap 21)

22

Example: dealing room system
• Example: dealing room for stock trading

• Let users see latest market prices of stock they care about
• Info for a given stock arrives from multiple sources
• Dealers only care about stocks they own (or might)
• May only care to know above some threshold, in addition

• Possible structure: two (kinds of) tasks
• Info provider process receives updates (events) from a single

external source
• Dealer process creates subscription for each stock its user(s)

express interest in

23

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.7
Dealing room system

Dealer’s computer

Information
provider

Dealer

External
source

External
source

Information
provider

Dealer

Dealer
Dealer

Notification

Notification

Notification

Notification

Notification
Notification

Notification

Notification

Dealer’s computer

Dealer’s computerDealer’s computer
Notification

Notification

Characteristics of pub-sub systems
• Heterogeneity

• Able to glue together systems not designed to work together, with
pub-sub technology

• Have to come up with an external description of what can be
subscribed to: simple flat, rich taxonomy, etc

• Asynchrony
• Decoupling means you never have to block!

• Possible delivery guarantees
• All subscribers receive all events (atomicity)
• Real-time
• …

25

Pub-sub programming model
• Publishers

• Disseminate event e through publish(e)
• (Sometimes, fancier) register/advertise via a filter (pattern over all

events) f : advertise (f)
• Expressiveness of pattern is the subscription model (later slide)
• Can also remove the offer to publish: unadvertise (f)

• Subscribers
• Subscribe via a filter (pattern) f: subscribe(f)
• Receive event e matching f: notify(f)
• Cancel their subscription: unsubscribe(f)

26

27
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.8
The publish-subscribe paradigm

Subscription models of pub-sub systems
• Channel-based

• Publishers publish to named channels
• Subscribers get ALL events from channel
• Very simplistic, no filtering (all other models below do)
• CORBA Event Services uses this (DDS precursor)

• Topic-based (AKA subject-based)
• Each notification expressed in multiple fields, one being topic
• Subscriptions choose topics
• Hierarchical topics can help (e.g., old USENET rec.sports.cricket)

28

Subscription models of pub-sub systems (cont.)
• Content-based

• Generalization of topic based
• Subscription is expression over range of fields (constraints on

values)
• Far more expressive than channel-based or topic-based

• Type-based
• Use object-based approaches with object types
• Subscriptions defined in terms of types of events
• Matching in terms of types or subtypes of filter
• Ranges from coarse grained (type names) to fine grained

(attributes and methods of object)
• Advantage: clean integration with object-based programming

languages
29

Subscription models of pub-sub systems (cont.)
• Other kinds
• Objects of interest: like type-based, but on change in
state of object

• For mobile: also match based on context
• Concept-based subscriptions: not just syntax, but
semantics of events.

• Fancier (e.g., financial trading): complex event
processing (CEP)

• Patterns between different events, locations, time, ..
• I.e. patterns can be logical, temporal, or spatial
• For more, see ACM’s Distributed Event-Based Systems (DEBS)

conference
30

Implementation issues [6.2.3]
• Many ways to delivery events efficiently to subscribers
• Also can be requirements for security, scalability, failure
handling, concurrency, QoS

• A number of key implementation choices follow..

31

Centralized vs. distributed implementations
• Simple way: single centralized broker node
• Q: Limitations?
• Most implementations are network of brokers (Fig 6.9)

• E.g., GridStat
• Some implementations are peer-to-peer (P2P)

• All publisher and subscriber nodes act as the pub-sub broker
• E.g., RTI DDS

• Q: Plusses and minuses of network of brokers vs. P2P?

32

33
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.9
A network of brokers

Overall systems architecture
• Centralized schemes simple…
• Implementing channel-based or topic-based simple

• Map channels/topics onto groups
• Use the group’s multicast (possibly reliable, ordered, ..)

• Implementation of content/type/ more complicated
• Ranges of choices follow in fig 6.10

34

35
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.10
The architecture of publish-subscribe systems

Implementation choices in content-based routing (CBR)
• Flooding (with duplicate suppression)

• Simplest version
•Send event to all nodes on a network
•Can use underlying multicast/broadcast

• More complicated
•Brokers arranged in acyclic forwarding graph
•Each node forwards to all its neighbors (except one that sent it to node)

• Filtering (filter-based routing)
• Only forward where path to valid subscriber
• I.e., subscription info propagated through network towards publ’s
• Detail:

•Each node maintain neighbors list
•For each neighbor, maintain subscription list/criteria
•Routing table with list of neighbors and subscribers downstream

36

37
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.11
Filtering-based routing

upon receive publish(event e) from node x 1
matchlist := match(e, subscriptions) 2
send notify(e) to matchlist; 3
fwdlist := match(e, routing); 4
send publish(e) to fwdlist - x;5

upon receive subscribe(subscription s) from node x 6
if x is client then 7

add x to subscriptions; 8
else add(x, s) to routing; 9
send subscribe(s) to neighbours - x;10

Implementation choices in CBR (cont.)
• Advertisements

• propagate advertisements towards subs’ (symmetrical to filtering)
• Rendezvous (Fig 6.12)

• Consider set of possible events as an event space
• Partition event space among brokers in net. (rendezvous nodes)
• SN(s): for given subscrip. s, returns set of nodes responsible for it
• EN(e): for event e, rtn list of nodes that match e against

subscriptions
• Mapping intersection rule: SN(s)∩ EN(e) must be nonempty if
e matches s

• Distributed hash table (DHT) variant: map events and
subscriptions onto a rendezvous nodes via DHT (Sec 4.5.1)

• Routing can be done via gossiping (epidemic multicast)
38

39
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.12
Rendezvous-based routing

upon receive publish(event e) from node x at node i
rvlist := EN(e);
if i in rvlist then begin

matchlist :=match(e, subscriptions);
send notify(e) to matchlist;

end
send publish(e) to rvlist - i;

upon receive subscribe(subscription s) from node x at node i
rvlist := SN(s);
if i in rvlist then

add s to subscriptions;
else

send subscribe(s) to rvlist - i;

40
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.13
Example publish-subscribe system

Message queues [6.4]
• (Distributed) message queues: intermediary between
producers and consumers of data

• Point-to-Point, not one-to-many
• Supports time and space uncoupling
• AKA Message-Oriented Middleware (MOM)
• LOTS of commercial products
• Main use: Enterprise Application Integration (EAI)
• Also a lot for transactions (6.4.1)

• Programming model: producer sends msg; consumers can
• Blocking receive
• Non-blocking receive (polling)
• Notify

41

42
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.14
The message queue paradigm

Programming model [6.4.1] (cont.)
• Many processes can send to a queue, many can remove
from it

• Queuing policy: usually FIFO, but also priority-based
• Consumers can select based on metadata
• Database integration common use; e.g. Oracle AQ

• Messages are a row in a (relational) database
• Queues are database tables that can be SQL-queried against

43

Programming model (cont)
• Messages are persistent

• Store until removed
• Store on a disk

• Other common functionality
• Transaction support: all-or-none operations
• Automatic message transformation: on arrival, message transforms

data from one format to another (data heterogeneity)
• Security (at least confidentiality)

• Q: How different from message passing from Chap 4?

44

Implementation issues [6.3.2]
• Key choice: centralized vs. distributed implementation

• Tradeoffs?
• Case study: IBM Websphere MQ

• Queue managers host and manage queues, enable apps to
access via Message Queue Interface (MQI)

•Connect or disconnect to/from a queue
•Send/receive messages to/from a queue (via a RPC call)
•Clients not on same host (usual case) vi a client channel (w/proxy+stub)

45

46
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.15
A simple networked topology in WebSphere MQ

IBM WebSphere (cont.)
• Queues usually linked into a federated structure

• Resembles pub-sub, but choose right topology for app
• Queues linked with message channel(MC)
• Message channel agent (MCA) manages each end of MC
• Queue managers have routing tables
• Lots of tools to create different topologies, manage components,

etc
• Hub-and-spoke topology (common)

• Hub has lots of services (and resources to support)
• Spoke queues are distant, place close(r) to clients
• Clients interface with spoke queues

47

Case study: Java Messaging Service (JMS) [6.4.3] [NOT
TESTABLE]
• JMS supports both pub-sub and MQs

• Many vendors; others provide interface (e.g., WebSphere)
• Key roles in JMS

• JMS client: Java app that produces or consumes messages
•JMS producer: creates a message and places in a queue
•JMS consumer: removes a message from a queue and uses it

• JMS provider: any system that implements the JMS spec
• JMS message: object used to communicate between JMS clients
• JMS destination: object supporting indirect communication in JMS

•JMS topic: supports pub-sub
•JMS queue: (um, obvious)

48

Programming with JMS
• First create a connection from client to providor with
connection factory

• TopicConnection or QueueConnection

•Use connection to create ≥1 session
• Series of ops for creating, producing, consuming msgs for a given

logical task
• Also supports transactions
• One session can handle topics OR queues, not both

49

50
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.16
The programming model offered by JMS

JMS session objects
• Message has 3 parts

• Header: everything needed to identify & route msg
•Destination, priroity, expiration date, message ID, timestamp

• Properties: user-defined meta-data
• Body: opaque data

• Message producer: object that publishes messages to a
topic or sends to a queue

• Message consumer: subscribe to topics or receive from Q
• Can associate filters w/consumer: specify a message selector

•subset of SQL
• Two modes for receiving messages

1. Block with receive operation
2. Create message listener object with a callback object onMessage

51

52
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.17
Java class FireAlarmJMS

// Usage: alarm.raise()
import javax.jms.*;
import javax.naming.*;
public class FireAlarmJMS { // more complex than Jgroups: create connection, session, publisher, message
// Lines 2-5 find the right connection factory and topic with JNDI (Lines 2-5)
public void raise() {

try { 1
Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup ("TopicConnectionFactory"); 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5
TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7
TopicSession topicSess = topicConn.createTopicSession(false, // false means not transactional 8

Session.AUTO_ACKNOWLEDGE); // session ACKS msg receipt 9
TopicPublisher topicPub = topicSess.createPublisher(topic); 10;
TextMessage msg = topicSess.createTextMessage(); 11
msg.setText("Fire!");12
topicPub.publish(message); 13

} catch (Exception e) { 14
} 15

}

53
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.18
Java class FireAlarmConsumerJMS

import javax.jms.*; import javax.naming.*;
public class FireAlarmConsumerJMS // similar to producer!
public String await() {

try { 1
Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3

(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5
TopicConnection topicConn = 6

topicConnectionFactory.createTopicConnection(); 7
TopicSession topicSess = topicConn.createTopicSession(false, 8

Session.AUTO_ACKNOWLEDGE); 9
TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10
topicSub.start(); 11
TextMessage msg = (TextMessage) topicSub.receive(); 12
return msg.getText(); 13

} catch (Exception e) { 14
return null; 15

}16
} // await()

} // FireAlarmConsumerJMS – this missing in book!

Shared memory approaches [6.5]
• Abstraction: memory locations then tuple space
• Distributed shared memory (DSM) [6.5.1]

• Read and write with API “like” ordinary memory
• Updates propagated by the runtime system of the DSM
• Mostly for parallel apps or if data items can be directly accessed
• Not as appropriate for client-server
• Replicas of data kept & managed (problems: replication, caching)
• Can be very useful in non-uniform access (NUMA) parallel comp’s
• Memory space can be persistent

54

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 6.19
The distributed shared memory abstraction

Message passing (MP) compared to DSM
• Both are lower-level than client-server or pub-sub
• Service offered

• MP:
•variables have to be marshalled by apps
•Producers and consumers protected from each other (no shared memory)

• DSM:
•No marshalling (implications?)
•Supports pointers
•No app-level synchronization: DSM runtime takes care of
•Persistent DSM supports temporal decoupling

• Efficiency
• DSM peformance varies widely, including access patterns
• DSM can hide the fact that something is remote (good or bad?)

56

Tuple space communication [6.5.2]
• A tuple is an ordered list of type values
• Tuple space is an (unordered) bag of tuple
• Can withdraw based on a specified value (or any value)
• Primitives added

• out(“Subtask”, velocity, i, j, k)
• in(“subtask”, ?myVelocity, ?row, 3, ?factor)
• rd(“subtask”, ?myVelocity, ?row, 3, ?factor)

• Journal paper from Bakken’s dissertation cited on Page
268 of CDKB5 (“Bakken and Schlichting [1995]”).

57

58
Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.27
Summary of indirect communication styles

	Slide Number 1
	Introduction [6.1]
	Indirect communication (cont.)
	Figure 6.1	�Space and time coupling in distributed systems
	Group communication [6.2]
	Group communication (cont.)
	Programming model [6.3.1]
	Process groups and object groups
	Other key distinctions in group comm. services
	Figure 6.2�Open and closed groups
	Implementation issues [6.2.2]
	Ordered delivery
	Group membership management
	Figure 6.3�The role of group membership management
	Case study: JGroups toolkit [NOT TESTABLE]
	Figure 6.4	�The architecture of JGroups
	JGroups channels
	JGroups example
	Figure 6.5�Java class FireAlarmJG
	Figure 6.6�Java class FireAlarmConsumerJG
	JGroups building blocks & protocol stack
	Public-subscribe systems [6.3]
	Example: dealing room system
	Figure 6.7�Dealing room system
	Characteristics of pub-sub systems
	Pub-sub programming model
	Figure 6.8	�The publish-subscribe paradigm
	Subscription models of pub-sub systems
	Subscription models of pub-sub systems (cont.)
	Subscription models of pub-sub systems (cont.)
	Implementation issues [6.2.3]
	Centralized vs. distributed implementations
	Figure 6.9	�A network of brokers
	Overall systems architecture
	Figure 6.10�The architecture of publish-subscribe systems
	Implementation choices in content-based routing (CBR)
	Figure 6.11�Filtering-based routing
	Implementation choices in CBR (cont.)
	Figure 6.12�Rendezvous-based routing
	Figure 6.13	�Example publish-subscribe system
	Message queues [6.4]
	Figure 6.14	�The message queue paradigm
	Programming model [6.4.1] (cont.)
	Programming model (cont)
	Implementation issues [6.3.2]
	Figure 6.15	�A simple networked topology in WebSphere MQ
	IBM WebSphere (cont.)
	Case study: Java Messaging Service (JMS) [6.4.3] [NOT TESTABLE]
	Programming with JMS
	Figure 6.16	�The programming model offered by JMS
	JMS session objects
	Figure 6.17�Java class FireAlarmJMS
	Figure 6.18�Java class FireAlarmConsumerJMS
	Shared memory approaches [6.5]
	Figure 6.19�The distributed shared memory abstraction
	Message passing (MP) compared to DSM
	Tuple space communication [6.5.2]
	Figure 6.27	�Summary of indirect communication styles

