
1CptS 464/564 Spring 2020

Prof. Dave Bakken

Cpt. S 464/564 Lecture (partial)
Spring, 2020

Overview of
Ordering and
Logical Time

2CptS 464/564 Spring 2020

Context
• This material is NOT in CDKB5 textbook
• Rather, from second text by Verissimo and

Rodrigues, chapters 1.4 & 2.7
• Do read the pertinent sections in CKDB5 Chapter

14, however!

3CptS 464/564 Spring 2020

Outline
• Logical Time
• Global States
• DS Properties

4CptS 464/564 Spring 2020

Logical Time
• Time in Distributed Systems

– Computers can only be synchronized by network
messages, but the latency can vary

– We can not synchronize enough to be able to, in general,
tell the ordering of two arbitrary events at different
computers.

– We can, however, establish an ordering on some of the
events, and this can be used in many situations.

• Logical Time
– Builds up a notion of what we can reason about w.r.t. the

order of events
– Defines the “Happened-before” relation
– Source: Lamport, Leslie. “Time, Clocks and the Ordering of

Event in a Distributed System”, Communications of the
ACM, Vol. 21, July 1978, pp. 558-565.

• One of the seminal works in distributed systems…
• Assigned for 564 students to read (see web page)

5CptS 464/564 Spring 2020

Happened-Before Relation

• Happened-Before relation, , based on observations:
1. If two events occur in the same process, then they

occurred in the order in which that process observes
them.

2. The receipt of a message happens after its being sent.
3. “Happened-before” is transitive

• Corresponding Rules for events x, y, z, process p, and
message m
HB1: x –p – > y, then x y
HB2: send(m)  recv(m)
Transitivity: x  y and y  z, then x  z

• Concurrency: If a ~ b and b ~ a, then a||b (“a is
concurrent with b”)’

• Note: if x y (“x happened before y”) then y x (“y
happened after x”), notationally

6CptS 464/564 Spring 2020

Representing Distributed Computations
• Events at a process can be

– execution events: internal computations
– send events: sending a message to another process
– receive events: receiving a message from another process

• Message exchanges depicted with timelines: e.g.

p1

p2

p3

m

a b

c

de

7CptS 464/564 Spring 2020

Happened-Before Example

• Example table of , , ||
• Limitations of Happened-Before

– Covert channels
– Too pessimistic: some things ab did not have a causing b!

• Happened-before also called
– Causal ordering
– Potential causality
– Lamport ordering
– (irreflexive) partial ordering

p3

p2

p1

physical
time

m1

m2

a b

e

c d

f g

i

j h

m3

8CptS 464/564 Spring 2020

Logical Clocks
• How to implement “Happened Before”??
• Logical Clock, a monotonically increasing counter.
• Let

– Each process p keeps its own logical clock, Cp, which it uses to
timestamp events

– Cp (a) is the logical time at process p at which event a occurred
– C(a) is the logical time at which event a occurred at the process it

occurred at
• Processes keep their own logical clocks, initialized to 0.

Updated by rules:
– LC1: Before each event occurs, increment Cp

– LC2:
• When a process p sends a message m, it piggybacks on m value t= Cp

• When process q receives <m,t>, q computes Cq = max(Cq,t) + 1 then
timestamps m

9CptS 464/564 Spring 2020

Logical Clock Example

• Note if a b then LC(a) < LC(b)
• However, LC(a) < LC(b) does not imply a b

– Above, C(e) < C(b) yet b || e
– Also note that concurrency is not transitive: a||e

and e||b yet ab

p3

p2

p1

physical
time

m1

m2

a b

e

c d

f

1

1

2

3 4

5
g
6

i
5

j

3
k
7

10CptS 464/564 Spring 2020

Logical Time & Clocks from 2003 Midterm

a b c d e f g h i j k
a — || 

b || —
c —
d  —
e —
f —
g —
h —
i —
j —
k —

P1

P2

P3

a c g

b e f i

d h

j

k
[22 points] On the diagram above,

write the Logical Clock (LC)
time at its processor for each
event to the left of the dot for
that event.

[45 points] Fill out the empty cells in
the table to give the relations
between each event: “”
denotes “happened before”,
“” denotes “happened after”,
and “||” denotes “concurrent”.
(For examples of this notation,
because there is a message
from ‘a’ to ‘d’, it is filled in “”
in the [a,d] cell and “” in the
[d,a] cell. Also, ‘b’ and ‘a’ are
concurrent, and are so marked.)

11CptS 464/564 Spring 2020

Global States
• Sometimes very useful to get a global “picture” of a

distributed system
• Global state (GS) of a DS at any point is a vector of

its individual process states: S = {S1, S2, …, SM}
• Two viewpoints of how a system evolves:

– Interleaving view: system goes through a succession of
states (like above)

– Space-time view: system goes through a partially ordered
set of events occuring in several processes in the system

• A cut (in space-time view) is a segment intersecting
the timelines of all processes.
– A cut involves coordination with computers across a DS
– Many different ways to implement a cut in a DS that

provide a range of properties and costs

12CptS 464/564 Spring 2020

Global States (cont.)
• Inconsistent cut (IC)

– Snapshot gives invalid picture of the DS (a state that could
never happen)

– Example: message received but not sent in the snapshot
• Consistent cut (CC)

– Snapshot gives correct (state that could have happened)
but possibly incomplete picture of the DS

– Example: messages in transit not accounted for in a
snapshot

• Strongly consistent cut (SCC)
– Snapshot is a faithful representation of an actual global

state of the DS
– No messages in transit when state read at each node,

atomic checkpoints taken in that interval across nodes, …
• Note: TvS Chap6 has lots on consistency; we may

cover some later in this class…

13CptS 464/564 Spring 2020

Example Cuts for Global States

• Strongly consistent cut (SCC): faithfully represents
GS of the system

• Inconsistent cut (IC): gives invalid picture of any GS
• Consistent cut (CC): gives valid but possibly

incomplete picture of the GS of the system

SCC IC CC
p1

p2

p3

p4

m3
m1

m2

m4

14CptS 464/564 Spring 2020

DS Properties
• Goal: specify a system with high-level properties
• Safety properties: something bad (wrong events)

never take place
– Specification: predicate P will never be true in the DS

• Liveness properties: something good (positive
event) eventually takes place
– Specification: predicate P will eventually be true in the DS

• “any delivered message is delivered to all correct
participants”: safety property (atomicity)

• “any message sent is delivered to at least one
participant”: liveness property

• Timeliness properties specify a time that a predicate
will be true in the DS at a given instant in time

15CptS 464/564 Spring 2020

Examples of DS Properties (aux)
p2p1

message
garbage object

object
reference

a. Garbage collection

p2p1 wait-for

wait-forb. Deadlock

p2p1

activate
passive passivec. Termination

	Overview of�Ordering and Logical Time
	Context
	Outline
	Logical Time
	Happened-Before Relation
	Representing Distributed Computations
	Happened-Before Example
	Logical Clocks
	Logical Clock Example
	Logical Time & Clocks from 2003 Midterm
	Global States
	Global States (cont.)
	Example Cuts for Global States
	DS Properties
	Examples of DS Properties (aux)

