Overview of

Ordering and

Logical Time
Prof. Dave Bakken

Cpt. S 464/564 Lecture (partial)
Spring, 2020

Context

e This material iIs NOT in CDKB5 textbook

« Rather, from second text by Verissimo and
Rodrigues, chapters 1.4 & 2.7

* Do read the pertinent sections in CKDB5 Chapter
14, however!

Cpts 2627562 Spring 2020

Outline

e Logical Time
* Global States
DS Properties

CotS 2647562 Spring 2020

Logical Time

« Time in Distributed Systems

— Computers can only be synchronized by network
messages, but the latency can vary

— We can not synchronize enough to be able to, in general,
tell the ordering of two arbitrary events at different
computers.

— We can, however, establish an ordering on some of the
events, and this can be used in many situations.
 Logical Time

— Builds up a notion of what we can reason about w.r.t. the
order of events

— Defines the “Happened-before” relation

— Source: Lamport, Leslie. “Time, Clocks and the Ordering of
Event in a Distributed System”, Communications of the
ACM, Vol. 21, July 1978, pp. 558-565.

* One of the seminal works in distributed systems...
 Assigned for 564 students to read (see web page)

Cpts 2627562 Spring 2020

Happened-Before Relation

« Happened-Before relation, =, based on observations:

1. If two events occur in the same process, then they
occurred in the order in which that process observes
them.

2. The receipt of a message happens after its being sent.
3. “Happened-before” Is transitive

 Corresponding Rules for events x, y, z, process p, and
message m

HB1: X ——>y,thenx >y
HB2: send(m) - recv(m)
Transitivity: X 2> yandy =2 z,thenx 2 z

« Concurrency: Ifa~-> bandb ~- a, then allb (“ais
concurrent with b”)’

 Note: If x 2 y (“x happened before y”) theny < x (“y
happened after x”), notationally

Cpts 2627562 Spring 2020

Representing Distributed Computations

 Events at a process can be
— execution events: internal computations
— send events: sending a message to another process
— receive events: receiving a message from another process

 Message exchanges depicted with timelines: e.qg.

a b
pl_. ® >
pz—g >

w‘
P3 5 .d >

Cpts 2627562 Spring 2020

Happened-Before Example

a b J h
p, —® ® ®
1]
P, ® > physical
m, time
e f
P3 ® >

« Example table of >, &, ||

e Limitations of Happened-Before
— Covert channels
— Too pessimistic: some things a->b did not have a causing b!

 Happened-before also called
— Causal ordering
— Potential causality
— Lamport ordering
— (irreflexive) partial ordering

Cpts 2627562 Spring 2020

Logical Clocks

« How to implement “Happened Before”??
« Logical Clock, a monotonically increasing counter.

e Let

— Each process p keeps its own logical clock, C, which it uses to
timestamp events

— C, (a) is the logical time at process p at which event a occurred
- C(a) IS the logical time at which event a occurred at the process it
occurred at
* Processes keep their own logical clocks, initialized to O.
Updated by rules:
— LC1: Before each event occurs, increment C,

— LC2:
* When a process p sends a message m, it piggybacks on m value t= C/

 When process g receives <m,t>, g computes C, = max(C,t) + 1 then
timestamps m

Cpts 2627562 Spring 2020

Logical Clock Example

we'—

> physical
time

®]
w
=Y Jq»

 Note if a - b then LC(a) < LC(b)
« However, LC(a) < LC(b) does not implya 2> b
— Above, C(e)<C(b) yet blle

— Also note that concurrency is not transitive: alle
and e||b yet a=>b

Cpts 2627562 Spring 2020

Logical Time & Clocks from 2003 Midterm

QD
|
v

d k h

[22 points] On the diagram above,

write the Logical Clock (LC)

time at its processor for each
event to the left of the dot for

that event.
[45 points] Fill out the empty cells in

the table to give the relations
between each event: “ 2"

denotes “happened before”,
“ €’ denotes “happened after”,

S/KQ |-~ |D | QO | T
|

and “||” denotes “concurrent”.

(For examples of this notation,
because there is a message

from ‘a’ to ‘d’, it is filled in * 2"
in the [a,d] cell and “ €” in the

hl

[d,a] cell. Also, ‘b’ and ‘a’ are K
concurrent, and are so marked.)

Cpts 2627562 Spring 2020

Global States

e Sometimes very useful to get a global “picture” of a
distributed system

 Global state (GS) of a DS at any point is a vector of
its individual process states: S = {S,, S,, ..., Sy}
 Two viewpoints of how a system evolves:

— Interleaving view: system goes through a succession of
states (like above)

— Space-time view: system goes through a partially ordered
set of events occuring in several processes in the system
o A cut (in space-time view) Is a segment intersecting
the timelines of all processes.
— A cut involves coordination with computers across a DS

— Many different ways to implement a cut in a DS that
provide a range of properties and costs

Cpts 2627562 Spring 2020

11

Global States (cont.)

 Inconsistent cut (IC)

— Snapshot gives invalid picture of the DS (a state that could
never happen)

— Example: message received but not sent in the snapshot

e Consistent cut (CC)

— Snapshot gives correct (state that could have happened)
but possibly incomplete picture of the DS

— Example: messages in transit not accounted for in a
snhapshot

o Strongly consistent cut (SCC)

— Snapshot is a faithful representation of an actual global
state of the DS

— No messages in transit when state read at each node,
atomic checkpoints taken in that interval across nodes, ...

 Note: TvS Chap6 has lots on consistency; we may
cover some later In this class...

Cpts 2627562 Spring 2020

Example Cuts for Global States

SCC IC CC
P1
P2 —e
P3 \
P4

o Strongly consistent cut (SCC): faithfully represents
GS of the system

* Inconsistent cut (IC): gives invalid picture of any GS
o Consistent cut (CC): gives valid but possibly
Incomplete picture of the GS of the system

CptS 2647562 Spring 2020

13

DS Properties

Goal: specify a system with high-level properties

Safety properties: something bad (wrong events)
never take place

— Specification: predicate P will never be true in the DS
Liveness properties: something good (positive
event) eventually takes place

— Specification: predicate P will eventually be true in the DS

“any delivered message Is delivered to all correct
participants”. safety property (atomicity)

*any message sent Is delivered to at least one
participant™. liveness property

Timeliness properties specify a time that a predicate
will be true in the DS at a given instant in time

Cpts 2627562 Spring 2020

Examples of DS Properties (aux)

P1 P2
object
reference
message
a. Garbage collection garbage object
Py wait-for P2
b. Deadlock wait-for

Py P2
activate
c. Termination = |

CotS 2647562 Spring 2020

15

	Overview of�Ordering and Logical Time
	Context
	Outline
	Logical Time
	Happened-Before Relation
	Representing Distributed Computations
	Happened-Before Example
	Logical Clocks
	Logical Clock Example
	Logical Time & Clocks from 2003 Midterm
	Global States
	Global States (cont.)
	Example Cuts for Global States
	DS Properties
	Examples of DS Properties (aux)

