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Abstract— Three-dimensional (3D) Network-on-Chip (NoC) is 

an emerging technology that has the potential to achieve high 

performance with low power consumption for multicore chips. 

However, to fully realize their potential, we need to consider novel 

3D NoC architectures. In this paper, inspired by the inherent 

advantages of small-world (SW) 2D NoCs, we explore the design 

space of SW network-based 3D NoC architectures. We leverage 

machine learning to intelligently explore the design space to 

optimize the placement of both planar and vertical communication 

links for energy efficiency. We demonstrate that the optimized 3D 

SW NoC designs perform significantly better than their 3D MESH 

counterparts. On an average, the 3D SW NoC shows 35% energy-

delay-product (EDP) improvement over 3D MESH for the nine 

PARSEC and SPLASH2 benchmarks considered in this work. The 

highest performance improvement of 43% was achieved for 

RADIX. Interestingly, even after reducing the number of vertical 

links by 50%, the optimized 3D SW NoC performs 25% better 

than the fully connected 3D MESH, which is a strong indication of 

the effectiveness of our optimization methodology.  

Keywords— Small-World, 3D NoC, Discrete Optimization, 

Machine Learning. 

I. INTRODUCTION  

Three-dimensional (3D) ICs are capable of achieving better 
performance, functionality, and packaging density compared to 
the traditional planar ICs [1]. On the other hand, network-on-
chip (NoC) enables integration of large numbers of embedded 
cores in a single die. 3D NoC architectures combine the benefits 
of these two new paradigms to offer an unprecedented 
performance gain [2]. With freedom in the third (vertical) 
dimension, NoC architectures that were previously impossible 
or prohibitive due to wiring constraints in planar ICs are now 
realizable in 3D NoC, and many 3D implementations can 
outperform their 2D counterparts. However, existing 3D NoC 
architectures predominantly follow straightforward extensions 
of regular 2D NoC designs, which do not fully exploit the 
advantages provided by the 3D integration technology [2].  

In this paper, we consider the design space of 3D small-
world (SW) NoC architectures, where the vertical connections 
mostly work as long-range shortcuts for SW networks. The key 
challenge is to place the long-range shortcuts optimally to 
achieve the desired goal. We formulate an objective function 
called communication cost and leverage machine learning to 
intelligently explore the combinatorial space of 3D SW NoC 
architectures to optimize this objective. Eventually, it helps us 
to achieve low latency and less energy consumption. We show 
that the proposed 3D SW NoC outperforms the state-of-the-art 
NoC architectures on multiple benchmarks. We also 

demonstrate the efficacy and robustness of our optimization 
methodology by producing 3D SW NoC architectures that can 
perform as well as or better than the fully connected 3D MESH 
with significantly less number of vertical links.  

The rest of the paper is organized as follows: Section 2 
describes the related work. We present problem formulation, 
proposed solution, and the optimization algorithm in section 3. 
In Section 4, we present the experimental results and related 
analysis. Finally, Section 5 concludes the paper by summarizing 
the salient features of this work. 

II. RELATED PRIOR WORK 

Most of the existing 3D NoC architectures utilize a 
conventional mesh [2][3][4]. However, it is well-known that 
mesh-based architectures suffer from high network latency and 
energy consumption due to its multi-hop communication links. 
To exploit the reduced distance along the vertical dimension of 
3D IC, NoC-bus hybrid architecture was proposed in [5] that 
uses Dynamic Time Division Multiple Access (dTDMA) to 
reduce the network latency. To reduce energy consumption of 
the system, the 3D Dimensionally Decomposed (DimDe) NoC 
router architecture [6] was developed. Reducing the number of 
input ports, an improved version of 3D NoC router architecture 
was developed in [7]. All of these architectures have buses in the 
Z-dimension; and hence, with increase in the network size, they 
are subject to traffic congestion and high latency under high 
traffic injection loads.  

Despite recent advances in TSV technologies, TSVs are still 
subject to manufacturing defects and wearout [8], so researchers 
have developed NoCs with partial vertical connections [9]. To 
compensate for the loss in performance due to TSV failure, fault 
tolerant router and NoC architectures with redundant vertical 
links [10] were proposed. However, these designs give rise to 
additional area and power overheads.  

The Sunfloor 3D was developed for synthesizing application 
specific 3D NoCs [11]. The design of application-specific 3D 
NoC architectures was also investigated in [12][13].  Later, more 
general-purpose 3D NoC was proposed in [14] using an ILP 
based algorithm to insert long-range links to develop low 
diameter and low radix architecture. However, the reduction in 
energy consumption was found to be limited.  

Photonic interconnects offer high bandwidth and low power 
for future multi-core chip design. A number of hybrid 
3D/photonic NoC architectures [15][16]were designed 
considering these benefits. However, on-chip photonics still 
suffer from performance variation due to thermal issues [17]. In 
addition, the challenges of integrating two emerging paradigms, 
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namely 3D IC and silicon nano-photonics, are yet to be 
adequately addressed.  

In this work, we focus on designing a robust 3D NoC 
architecture that combines the benefits of 3D ICs and the 
robustness of the SW architecture. We present a detailed design 
methodology and a machine learning based optimization 
algorithm for developing energy-efficient 3D NoC 
architectures. We also perform comparative performance 
analysis with respect to conventional 3D MESH and other 
irregular architectures. Finally, exploiting the inherent 
robustness of SW network in the presence of link failure, we also 
show that our proposed 3D NoC outperforms traditional NoCs 
even in the presence of significant TSV failures without the need 
of any extra resources. 

III. OPTIMIZATION OF 3D NOC 

In this section, we first describe our design problem and then 
present a high-level overview of the proposed machine learning 
based optimization methodology. Next, we provide the specific 
details of all the main components of our method for 3D NoC 
optimization. 

Problem Description: The goal of on-chip communication 
system design is to transmit data with low latencies and high 
throughput using the least possible power and resources. In this 
context, the design of SW network based NoC architectures [18] 
is a notable example. It has been shown that either by inserting 
long-range shortcuts in a regular mesh architecture to induce a 
SW effect or by adopting power-law based SW connectivity, it 
is possible to achieve significant performance gain and lower 
energy consumption compared to the traditional multi-hop mesh 
networks [18][19]. In this work, we advocate that the concept of 
small-worldness should be adopted in 3D NoCs too. 
Specifically, the vertical links in 3D NoC should enable the 
design of long-range shortcuts necessary for a SW network. 
However, the appropriate placement of the planar and the long-
range links along the vertical dimension are crucial for 
maximizing the performance benefits. Hence, our goal is to 
optimize the placement of the planar and vertical links in a 3D 
NoC where the overall interconnection architecture follows the 
power-law based connectivity [19]. The probability of having a 
direct link between nodes in a SW network varies exponentially 
with the link length, i.e., p(ℓ) α ℓ-α . The parameter α governs the 
nature of connectivity, e.g., a larger α means a locally connected 
network with a few, or even no long-range links. By the same 
token, a zero value of α generates an ideal SW network 
following the Watts-Strogatz model [20] – one with long-range 
shortcuts that are virtually independent of the distance between 
the cores.  

Small-world (SW) Network: An SW network lies in 
between a regular, locally interconnected mesh network and a 
completely random Erdös-Rényi topology. SW graphs have a 
very short average path length, defined as the number of hops 
between any pair of nodes. The average shortest path length of 
SW graphs is bounded by a polynomial in log (N), where N 
refers to the number of nodes; this property makes SW graphs 
particularly interesting for efficient communication with 
minimal resource [19].  

Starting from a power-law based connectivity, we attempt to 
optimize the location of the horizontal and vertical links to 
achieve lower latency and energy consumption. We define an 
objective function O called communication cost, which 

combines the NoC performance metrics namely the network 
latency and energy consumption per message in a principled 
manner. Optimizing the communication cost ensures lower 
average hop count and improvement in the network performance 
in terms of both latency and energy consumption. However, the 
space of physically feasible SW based 3D NoC designs D is 
combinatorial in nature and our goal is to find the design d ϵ D 
that minimizes O. One could employ search algorithms such as 
hill-climbing and simulated annealing, which are very popular 
in the design community for this task. However, we leverage 
machine learning techniques that are shown to outperform these 
local search algorithms to intelligently explore the design space 
[21]. This optimization process is undertaken before the actual 
NoC implementation. 

A. Optimization based on Machine Learning  

We employ an online learning algorithm called STAGE 
[21], which was originally developed to improve the 
performance of local search algorithms (e.g., hill climbing) with 
random-restarts for combinatorial optimization problems. The 
key insight behind STAGE is to leverage some extra features 
ϕ(d) ϵ Rm (m is the number of features) of the optimization 
problem to learn an improved evaluation function E that can 
estimate the promise of a design d as a starting point for the local 
search procedure A. It employs E to intelligently select 
promising starting states that will guide A towards significantly 
better solutions. Past work in the search community concluded 
that many practical optimization problems exhibit a “globally 
convex” or “big valley” structure, where the set of local optima 
appear convex with one global optimum in the center [22]. The 
main advantage of STAGE over popular algorithms such as 
simulated annealing is that it tries to learn the solution space 
structure, and uses this information cleverly to explore a much 
bigger design space in the given time. To the best of our 
knowledge, this is the first work that applies STAGE to an NoC 
design optimization problem.  

The algorithm repeatedly alternates between two types of 
search as shown in Fig. 1: 1) Base search, where A is run with 
the original objective O until it reaches a local optima and new 
training data is generated to improve E; and 2) Meta search, 
where it performs search with the learned evaluation function E 
to select good starting states to improve the performance of the 
local search procedure A. We want to learn E such that the 
estimated value of design d is equal to the expected best 
objective (O) value seen on a search trajectory that starts from 
design d and follows the local search method A guided by O. In 
the initial exploration phase, E may not lead to good solutions 
but as the iterations progress, E will improve with the training 
data generated from the search experience in base search mode. 

 
Fig. 1: High-level overview of the optimization algorithm. 
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The effectiveness of the learned E depends on a small subset of 
critical training examples that successfully teach how to avoid 
different local optima during the meta-search phase. The 
STAGE algorithm tries to quickly identify this critical set in an 
adaptive manner. 

We initialize E, training set Z, and initial design d0. The 
following high-level algorithmic steps of STAGE are repeated 
for several iterations.  

Base search using A guided by O: From d0, run the search 
procedure A until a local optima is reached thereby leading to a 
search trajectory (d0, d1,..., dT). 

Improve E: For each design di on the search path, add (ϕ(di), 
yi) to Z, where yi is the best value along the search. Re-train E 
using a regression learner R with the updated training set Z. 

Meta search guided by E: Continue from dT and optimize 
E by performing a hill-climbing search to produce the best 

predicted starting state  𝒅̂ . If 𝒅̂  is the same as dT (no search 

progress), set d0 to a random design. Otherwise, set d0 = 𝒅̂. 
At the end, we return the best design found over all the 

iterations. 

B. Instantiation for 3D NoC Optimization 

In this section, we provide all the details needed to apply the 
STAGE algorithm to our 3D NoC optimization problem. 

Design Space: Our design space depends on a set of network 
resources, which are given as input to the optimization 
algorithm. These resources are defined as follows. 1) Cores (C): 
A set of all cores C = {C1, C2,...,CN}, where N is total number of 
cores. We assume that every core is connected to at least one 
router; 2) Planar Dies (P): A set of all dies P. For N = 64, we 
consider four dies with each die containing 16 cores. For core 
placement, we follow a greedy algorithm to minimize (fij*dij), 
where fij and dij are the communication frequency and Cartesian 
distance between the cores respectively. In this step, we form 
clusters with 16 cores in each die; 3) Link Distribution (L): The 
link length distribution L = {l1, l2,...,lk}, where k depends on the 
size and topology of the network; li's are determined based on 
the SW connectivity parameter α. For higher values of α, lk 
decreases; and 4) Communication Frequency (F): The 
communication frequency among different cores F = {fij | 1≤i, 
j≤N, i≠j}.We assume that F for each application is given as an 
input to perform application-specific network optimization. 

The set of all physically realizable SW NoC designs with the 
given link distribution L forms our design space.   

Objective Function O: We define O as the communication 
cost of the given 3D NoC, which is the product of hop count, 
frequency of communication, and link length summed over 
every source and destination pair, i.e., 

𝑂 = ∑ ∑ (𝑟 ∗ ℎ𝑖𝑗 + 𝑑𝑖𝑗) ∗ 𝑓𝑖𝑗

𝑁

𝑗=1,i≠j

𝑁

𝑖=1

                                         (1) 

where fij, and dij are defined as above; hij is hop count between i- 
and j-th node, and r denotes the number of router stages. From a 
practical point-of-view, r is the number of cycles a message 
spends inside a router to move from input to output port. An 
NoC design with low O will have low latency and energy 
consumption, and hence, low energy-delay-product (EDP). 

Network Constraints: To explore only physically feasible 
3D NoC designs, we enforce some constraints on the placement 
of vertical links and router configurations. If TSVs are 

considered as the vertical links, we only allow placing them 
point-to-point (regularly) between the routers. Such constraints 
may put additional limits on the performance of NoC designs. 
However, efficient optimization can overcome such limitations. 
The SW network has an irregular connectivity. Hence, the 
number of links connected to each router is not constant. For fair 
comparison between our SW network and 3D MESH, we 
assume that both of them use the same average number of 
connections, <kavg> per router. This also ensures that the 3D SW 
NoC does not introduce additional links compared to a 3D 
MESH. For a 64-core system, <kavg> is 4.5 considering all the 
routers, including the peripheral ones. In addition, the maximum 
connectivity per node, <kmax>, is set to be 7 for the SW network 
as found in [23].  

Starting States and Successor Function: For starting 
states, we randomly generate a SW network that satisfies the 
network constraints. The successor function S takes a network 
as input and returns a set of next states, and allows the search 
procedure to navigate the NoC design space. S generates one 
candidate state for each link connecting two nodes in the input 
network. It simply removes that link and places a link with the 
same length between two nodes in the network that are not 
directly connected.  

The STAGE algorithm can benefit if we can specify the 
starting state distribution using some domain knowledge. 
Therefore, we also consider a starting-state distribution named 
α-Greedy. We formulate the starting state (design) construction 
as a sequential decision-making task, where we select the next 
link to be placed at each step. In α-Greedy distribution, we select 
a link greedily with probability α based on communication 
frequency and a random link with probability (1–α). We start 
with α=1 (completely greedy) and gradually reduce α to increase 
the randomness.  

Local Search Procedure A: We employed a stochastic hill-
climbing procedure, where the next states are sampled 
stochastically. 

Feature Function ϕ: The main challenge in adapting 
STAGE to our NoC domain is to define a set of features ϕ for 
each network that can drive the learner. We divide the whole 
network into several overlapping subgraphs or regions, and 
define a set of features that can be categorized into three types: 
1) Average hop count (h), which calculates the average hop 
count for each region or sub-network; 2) Weighted 
communication which is defined as the sum of the products of 
hop count and communication frequency over all source-

destination pairs for a particular hop count (∑ ∑  𝑓𝑖𝑗 ∗𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1

 ℎ𝑘). The highest value of k depends on the network size and 
topology. If the value of this feature is small, it indicates that 
highly communicating cores are placed in the same 
neighborhood; and 3) Clustering coefficient (Cc), which 
captures the connectivity of one core with its neighbors [24]. 
While the hop count takes into account mainly long-range 
communication, the clustering coefficient focuses more on local 
connectivity among the immediate neighbors. We found these 
features to sufficiently capture the network characteristics, 
efficient to compute, and allow to learn highly accurate 
evaluation function, E.  

Regression Learner: The quality of our optimization 
methodology depends on the accuracy of the evaluation function 
E.  In this work, we employ the support vector regression (SVR) 
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learner to learn E from the training data generated while running 
the STAGE algorithm. 

Our training data consists of a set of input-output 
pairs {(𝑥𝑖 , 𝑦𝑖)}𝑖=1

𝑛 , where each xi ϵ Rm is a feature vector and yi ϵ 
R is the corresponding output. The ε-SVR algorithm tries to learn 
a function E such that the deviation of the predicted output E(xi) 
from correct output yi is less than the error tolerance ε.  

Without loss of generality, we assume E is a linear function 
of the form E = <w, x> + b, and present the ε-SVR formulation 
in primal form: 

 𝑚𝑖𝑛:     
1

2
‖𝑤‖2 + 𝐶 ∑(𝜉𝑖 +  𝜉𝑖

∗)

𝑛

𝑖=1

                                       (2) 

𝑆. 𝑡:        {

𝑦𝑖−< 𝑤, 𝑥𝑖 >  −𝑏 ≤ 𝜀 +  𝜉𝑖

< 𝑤, 𝑥𝑖 >  +𝑏 − 𝑦𝑖  ≤ 𝜀 + 𝜉𝑖
∗

 𝜉𝑖  , 𝜉𝑖
∗  ≥ 0  

                             (3) 

In supervised learning, the goal is to learn a function that will 
perform well on unseen examples (generalization) and not the 
one that minimizes the error on the training data (over-fitting). 
This problem is generally addressed by adding a penalty term to 
discourage complex functions. In Equation (2), the first part is 
the penalty term (regularizer) and the second part is the training 
error.   C is the regularization parameter that provides the 
tradeoff between minimizing the training error and 
generalization to unseen data, and ξi and 𝜉𝑖

∗ are slack variables 
to handle infeasible constraints. Linear functions won't suffice 
for complex problems such as ours. Therefore, we employ the 

radial basis function (RBF) kernel (𝐾(𝑥, 𝑥′) = 𝑒𝛾‖𝑥−𝑥′‖
2

) to be 
able to learn non-linear functions, where γ is a tuning parameter. 
We selected the RBF kernel over other kernels because of its 
flexibility and predictive power. Additionally, to find the best 
learned function, we need to search over different values of (ε, 
C, γ). We employ LibSVM [25] to learn the regression function 
and select the best combination of (ε, C, γ) over training set Z 
via the inbuilt v-fold (v=5 in this work) cross-validation 
approach. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, we present the performance of our optimized 
3D SW NoC architecture. For this performance evaluation, we 
consider three metrics: latency, energy consumption, and 
energy-delay-product (EDP). The EDP is defined as the product 
of network latency and energy consumption, and unifies both of 
them into a single parameter. We also present a comparative 
performance evaluation of the 3D SW NoC with respect to other 
existing regular and irregular counterparts. 

A. Experimental Setup 

To evaluate the performance of different NoCs, we use a 
cycle-accurate NoC simulator that can simulate any regular or 
irregular 3D architecture. Our system consists of 64 cores and 
64 network routers equally partitioned in four layers. The length 
of each packet is 64 flits and each flit consists of 32 bits. The 
routers are synthesized from an RTL level design using TSMC 
65-nm CMOS process in Synopsys™ Design Vision. All router 
ports have a buffer depth of two flits and each router port has 
four virtual channels in case of irregular NoC. The NoC 
simulator uses wormhole routing, where the data flits follow the 
header flits once a path is established by the router. For regular 
3D mesh-based NoC, XYZ-dimension order based routing is 
used. For irregular architectures such as the SW network, the 

topology-agnostic Adaptive Layered Shortest Path Routing 
(ALASH) algorithm is adopted [26]. The energy consumption 
of the network routers, inclusive of the routing strategies, was 
obtained from the synthesized netlist by running Synopsys™ 
Prime Power, while the energy dissipated by wireline links was 
obtained through HSPICE simulations, taking into consideration 
the length of the wireline links. We consider four SPLASH-2 
benchmarks, namely, FFT, RADIX, LU, and WATER [27], and 
five PARSEC benchmarks, namely, DEDUP, VIPS, 
FLUIDANIMATE, CANNEAL, and BODYTRACK (BT) 
[28]in this performance evaluation.  

In this work, for N = 64 cores, we divide the whole network 
into nine regions. For each region, we consider average hop 
counts as the features. In addition, the initial network has the 
highest hop count of eight, and hence we require eight features 
for weighted communication cost. Finally, for each die in the 
network, we consider the average clustering coefficient and it 
gives rise to four more features. Table I lists all these features. 

B. Performance of the Optimization Algorithm  

In Section 3, we described the details of the optimization 
algorithm and how it is applied to design the 3D SW NoC 
architecture. Here we first characterize the performance of the 
optimization algorithm by quantifying various performance 
metrics of the 3D SW NoC. 

1) Communication Cost (O) and Prediction Error 

We create the initial network following the power law 

distribution shown in Section 3, where long-range links are 

placed randomly. Our goal is to find an optimized network 

starting from this random SW network. We call this initial NoC 

architecture as 3D SW_random. Fig. 2 shows the 

communication cost of the optimized network as a function of 

the number of iterations of the STAGE algorithm and the 

corresponding prediction error (in %) of the learned function. 

During this process, the learned function E predicts an initial 

network configuration to start the local search procedure that 

can lead to lower communication cost (O). As seen from the 

figure, during the initial exploration phase, the error-rate is non-

monotonic and high. After a few iterations the prediction error 

reduces to less than 1%, and after 20 iterations, the error is 

almost zero (0.05%). The prediction error remained more or 

less the same for all the subsequent iterations. These results 

indicate the effectiveness of our network features ϕ and the 

SVR learning algorithm. Note that the best O-value decreases 

monotonically as the set of explored designs increases over the 

iterations. We also ran the same experiment with the α-Greedy 

starting state distribution as mentioned above. However, the 

communication cost O and the prediction error have similar 

characteristics as the random distribution for the benchmarks 

and the system size considered in this work. Therefore, we 

present and discuss our results with random starting-state 

distribution.    

Feature Type 
Feature 

Count 

Avg. hop count for nine overlapping regions 9 

Weighted communication  (ΣΣfij*hk) considering 

maximum hop count for N=64 

8 

Avg. Clustering coefficient (Cc) for four planar dies 4 

 

TABLE I: FEATURE DESCRIPTION 
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The learned evaluation function E becomes highly accurate 

after a small number of iterations, and produces good starting 

states to help the local search procedure A in producing 

optimized network architectures with lower objective O 

(communication cost). We denote the final optimized NoC as 

3D SW_optimized.  

2) Characteristics of the Design: Random vs. Optimized 
Now we investigate why the STAGE based optimization 

algorithm is suitable for developing energy-efficient NoC 
architectures. In Section 3.3, we described the details of the 
feature definition (ϕ), to represent each network. So, we will see 
how the design features change before and after optimization. 
Here we specifically consider the role of the weighted 
communication feature mentioned in Section 3.1.1. Fig. 3 shows 
the weighted communication feature, which reveals the 
percentage of total communication that is constrained between 
two nodes separated by k hops (k ≥ 1). Careful observation of 
Fig. 3 shows that for 3D SW_optimized, the traffic constrained 
within one, two, and three hop communication increases 
compared to 3D SW_random.  Moreover, the amount of traffic 
that has to traverse beyond three hops decreases. 

Hence, the inter-node communication that takes place in less 
than three hops becomes more frequent. Since the average hop 
count of the optimized network is calculated to be 2.94, any 
communication below this average hop count can be considered 
as efficient. Essentially, optimized network becomes more 
efficient for the same objective function. 

The inset in Fig. 3 shows the percentage of communication 
versus the number of hops, where the area under the curve 

denotes the weighted communication feature mentioned in 
section 3.2.  We can see that the 3D SW_optimized curve shifts 
towards the left, which means that on an average any message 
in the optimized network traverses less hops compared to the 
initial network.  Hence, it spends less time inside the network 
and occupies less network resources. Therefore, the STAGE-
based optimization algorithm guides the search to converge to 
an efficient architecture. 

C. Effect of Optimization on 3D SW NoC 

In this section, we evaluate and compare the performances 
of the 3D SW_optimized and the un-optimized 3D SW_random 
architectures. For comparison purpose, all the values are 
normalized with respect to 3D MESH. 

1) Network Latency  

Fig. 4.a demonstrates the effect of optimization for 3D SW 

NoC. The optimization improves the network latency on an 

average of 3% over the un-optimized version, and 5.5% over 

the conventional 3D MESH. The optimization process 

redistributes the links among the cores such that cores that have 

to frequently communicate with each other are either directly 

connected or need to traverse a small number of hops. This 

results in reduced average hop count and weighted 

communication for 3D SW_optimized NoC. A new set of 

benchmarks with higher injection rates will highlight the 

benefits of this work even more, which is the focus of our future 

work. 

 
Fig. 2. Best objective value O and error rate of the evaluation function E 

for the STAGE algorithm over iterations 
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Fig. 3.  Effect of optimization algorithm on weighted communication 

features. 
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Fig. 4.b: Normalized energy consumption per message of 3D SW before and after optimization 

 

Fig. 4.c: Normalized energy-delay-product (EDP) of 3D SW before and after optimization 

Fig. 4.a: Normalized network latency of 3D SW before and after optimiztion 
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2) Energy Consumption  

Energy consumption per message depends on the energy 

consumed by the router as well as the planar and vertical links. 
The STAGE-based optimization algorithm reduces average 

hop count and communication cost, which contributes to the 
minimization of the router and link energy consumption 
respectively. Fig. 4.b plots the energy consumption profile 
before and after optimization normalized to these values for the 
3D MESH. On an average, an optimized 3D SW NoC shows 
33% and 17% energy consumption improvement over the 3D 
MESH and 3D SW_random respectively. Fig. 3 helps us in 
understanding the reasons behind the improvement in energy 
consumption. The area under the 3D SW_optimized curve is less 
than that of the un-optimized counterpart. Hence 3D 
SW_optimized reduces the utilization of network resources for 
any message. As a result, both the router and link energy 
decrease and the overall energy consumption profile improves. 

3) Energy-delay-Product (EDP) 
From the EDP profile shown in Fig. 4.c, we observe that the 

average EDP of 3D SW NoC is reduced by approximately 35% 
and 19% compared to 3D MESH and 3D SW_random 
respectively. The improvement in the energy-delay product is 
direct consequence of the improvement in network latency and 
energy consumption of the 3D SW_optimized NoC.  

D. Comparative Performance Evaluation  

 In the previous sections, we showed that 3D SW_optimized 
significantly outperformed 3D SW_random. In this section, we 
compare 3D SW_optimized with several existing 3D NoC 
architectures. Henceforth, we refer 3D SW_optimized as 3D SW 
for simplicity. For this comparative performance evaluation, we 
consider 3D MESH and two recently proposed irregular 3D 
NoCs, namely, mrrm and rrrr [29]. Both the mrrm and rrrr 
NoCs have point-to-point vertical connections as in 3D MESH 
and 3D SW. However, their die-level planar connection pattern 
varies. For rrrr, all the four dies have randomly connected 
interconnection patterns. On the other hand, mrrm has random 
connection patterns in the middle two dies whereas the first and 
the fourth dies follow mesh-based regular connectivity.  To 
build mrrm and rrrr, we follow the method suggested in [29] 
and keep the number of links equal to that of 3D MESH and 3D 

SW. All the performance metric values are normalized with 
respect to the 3D MESH. 

1) Network Latency 
Fig. 5.a shows the network latency of all the 3D NoCs. 

Among all the NoCs, 3D MESH and 3D SW exhibit the highest 
and the lowest latency respectively. The other two architectures 
namely mrrm and rrrr perform somewhere in the middle. As in 
the case of 3D SW NoC, both mrrm and rrrr have irregularities 
in the horizontal planes. However, the number and the length of 
the links are not optimized for these architectures. For rrrr, the 
link distribution has large number of long-range links that help 
communication among long-distant cores at the expense of near-
by communication. In the case of 3D SW NoC, the link 
distribution follows the power law and the connection pattern is 
optimized to facilitate both the nearby and long-range 
communications.  

The mrrm architecture maintains the link distribution in 
between rrrr and 3D SW NoC. Hence, its network latency lies 
in between rrrr and 3D SW. Finally, 3D MESH NoC suffers 
from higher average hop count compared to other 3D 
architectures due to multi-hop communication pattern; hence, it 
suffers from the highest network latency. Table 2 lists the 
communication costs and average hop counts for all these NoCs. 
As expected, 3D SW and 3D MESH exhibit the lowest and 
highest communication cost and hop count respectively, 
whereas mrrm and rrrr reside in between these two. The effect 
of these communication costs is eventually reflected in the 
latency characteristics. 

2) Energy Consumption  

Fig. 5.b shows the energy consumption per message for 

different 3D NoCs. Among all these, 3D MESH has highest 

energy consumption followed by mrrm, rrrr and 3D SW NoC. 

 
Fig. 5.b: Normalized energy consumption per message of different 3D NoCs 

 
Fig. 5.a: Normalized network latency of different 3D NoCs 

 

Fig. 5.c: Normalized EDP for different 3D NoCs 
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TABLE II.   COMPARISON OF AVERAGE HOP COUNT AND COMMUNICATION 

COST OF 3D NOC ARCHITECTURES 
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Higher network latency gives rise to higher network resources 

utilization and hence, higher energy consumption per message. 

For 3D MESH, the router energy consumption is significantly 

higher due to multi hop communication, so it performs the 

worst among all of them. The mrrm and rrrr NoCs are capable 

of reducing the router energy consumption compared to mesh 

and performs better than 3D MESH. However, due to their 

random link distribution, they suffer from higher 

communication cost and average hop count compared to the 

optimized SW NoC. Hence, they consume more link energy 

and router energy. With the least communication cost, 3D SW 

NoC consumes the lowest energy possible among all these 

architectures.  

3) Energy-delay-Product (EDP)  
The energy-delay-product is directly affected by network 

latency and energy consumption. The architecture that performs 
best in terms of latency and energy consumption is expected to 
have lower EDP compared to the others. Fig. 5.c presents the 
EDP profile of different 3D NoCs. As expected, 3D SW NoC 
has the lowest EDP profile followed by mrrm, rrrr and 3D 
MESH. On an average, 3D SW has 35% lower EDP profile 
compared to 3D MESH while the highest improvement of 43% 
was found for RADIX. 

V. ROBUSTNESS OF 3D SW NOC ARCHITECTURE 

In this section, we analyze the robustness of the 3D SW NoC 
architecture under vertical link failure. The reason behind 
studying the scenario of vertical link failures is that despite the 
recent advancements in the TSV technology, TSVs are still 
subject to failure due to voids, cracks, and misalignment [30].  

In this case, after building and optimizing the 3D SW NoC, 
the vertical links are randomly removed to simulate the link 
failure scenario. This principally tests the robustness of the SW 
interconnection network. Starting from the fault free 3D SW 
NoC, we increase the link failure percentage with a step size of 
5% till 50% of the vertical links are randomly removed. In Fig. 
6, we show the average network latency, energy consumption, 
and energy-delay-product (EDP) for all the benchmarks by 
varying the amount of failed links. All parameters are again 
normalized to the values of fault-free fully connected 3D 
MESH. The figures show the worst, best and average 

performance levels for the same amount of link failures over 
1000 different runs.  

From these figures, we observe that as the link failure 
percentage increases, the network latency, energy consumption, 
and EDP increase gradually. The difference between the worst- 
and best case scenarios also increases progressively. This occurs 
due to the fact that with increasing vertical link failure, we have 
fewer routing resources than what is required to achieve 
optimum performance. In addition, for the case of 50% vertical 
link failure, the average network latency and energy 
consumption almost equal the corresponding values for a  fully 
connected fault-free 3D MESH. For this case, it is also quite 
striking that EDP matches with that of the fault-free 3D MESH 
as well. In the worst case, the network latency shows 2% higher 
value whereas, the energy consumption and EDP record 13% 
and 15% higher values respectively compared to fault free 3D 
MESH. These results therefore show that even with significantly 
fewer number of vertical links, the 3D SW NoC  performs as 
well as the fully connected fault free 3D MESH on  average. It 
has been observed in [19][20] that SW networks display 
remarkable resilience to high rates of link failures since  the 
average distance between nodes in a SW network increases by a 
small margin with the rate of failures. Hence, the effect of 
vertical link failures on the performance is minimal. 

A. Optimization Quality with less Resources 

We also analyze the quality of the proposed optimization 
algorithm in the presence of limited resources. To do so, we 
consider the 3D SW NoC with 50% vertical links and optimize 
the placement of the links following our STAGE algorithm-
based methodology. We show that the optimized NoC with 
reduced vertical links can still maintain a high-level of 
performance if the limited resources (vertical links in this case) 
are utilized optimally. For the rest of the work, we denote this 
optimized architecture as 3D SW_partial and compare its 
performance with respect to the fully connected 3D MESH. 

Fig. 7 shows the latency, energy, and EDP for 3D 
SW_partial with respect to the fully connected 3D MESH. We 
observe that on an average, 3D SW_partial still shows 2.5% 
lower latency compared to the fully connected 3D MESH. In 
comparison to the results for the fully connected 3D SW NoC 
shown in Fig. 5.a, 3D SW_partial incurs only 3% higher network 

(b) (a) 
 

(c) 

Fig. 6.  3D SW NoC performances normalized to fault free (fully vertical connected) 3D MESH Vs. the percentage of vertical link failure rate. (a) 

Average normalized network latency;  (b) Average energy consumption per message; and (c) Average EDP  
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latency. The reason for this behavior is that the optimization 
algorithm ensures the most suitable link placement considering 
the available resources. As a result, the latency penalty remains 
low. Similarly, 3D SW_partial shows 24% and 25% lower 
energy and EDP respectively compared to the fully connected 
3D MESH. In addition, by comparing these energy and EDP 
values with Fig. 5.b and 5.c for the fully connected 3D SW, we 
see that 3D SW_partial pays only 12% and 13% penalty 
respectively over its fully connected counterpart. 

This result carries the promise of highly energy-efficient 
design with reduced resources. For 3D SW_partial NoC, we 
have reduced 50% of the vertical links, which are predominantly 
long-range shortcuts and still, on an average, we incur no more 
than 15% penalty. The algorithm optimizes the link distribution 
among the cores such that the overall communication cost is 
minimized. Hence, the 3D SW NoC with reduced number of 
vertical links utilizes its resources very efficiently to compensate 
for the resource reduction. 

If we compare the performances of 3D SW NoC with 50% 
vertical link failure without any optimization (Section 4.5) with 
the optimized 3D SW_partial, then we find that the later 
performs better in every performance metric compared to the 
former. On an average, for latency, energy, and EDP metrics, 
3D SW_partial shows improvements of 2.5%, 27%, and 26% 
respectively compared to its un-optimized counterpart. Hence, 
the optimization algorithm plays a crucial role in minimizing the 
performance penalty due to the limited resources. We can 
emphatically conclude that the proposed 3D SW NoC along 
with the optimization methodology is robust enough to 
compensate for the performance loss due to vertical link 
reduction. Overall, the performance penalty is small compared 
to the proportion of resource reduction. 

VI. CONCLUSIONS  

We proposed a robust design optimization methodology to 
improve the energy efficiency of 3D NoC architectures by 
combining the benefits of SW networks and machine learning 
techniques to intelligently explore the design space. We showed 
that the optimized 3D SW NoC architecture outperforms 
existing 3D NoCs. The optimized 3D SW NoC on an average 
achieves 35% EDP reduction over conventional 3D MESH. We 
also demonstrated the efficacy and robustness of our 
optimization methodology by producing 3D SW NoC 
architectures that can perform equally or better than the fully 
connected 3D MESH with significantly less number of vertical 
links. For the case of 50% reduction in vertical links, the 
optimized 3D SW NoC achieves 25% lower EDP compared to 
fully vertically connected 3D MESH NoC. 
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