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Lecture 2 
 

Introduction to CMOS Gates 
 

Ref: Textbook chapter 2 

Some of the slides are adopted from Digital 
Integrated Circuits by Jan M Rabaey 
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Signals 

• 0 = VSS = Ground = GND = Low = 0V 
 

• 1 = VDD = Power = PWR = High = 5V, 3.3V, 1.5V, 1.2V, 1.0V 

VSS 

VDD 



4 

Switches 

• What is a switch? 

Control 

S D 

Control 

S D 

Electrically open Electrically short 

0 

S D 

1 

S D 

Electrically open Electrically short 
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Switches 

• Function 
F = 𝐴̅𝐴 (inverter) 

 
 
 
 

• Two issues 
1. 
 
 
 
2. Electrical modeling of the operation 

A 

F VSS 

0 1 
1 0 

A 

?? 

0 1 
1 0 

A A 

F VDD 
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Static CMOS Circuit 

• At every point in time (except during the switching transients), 
each gate output is connected to either VDD or VSS via a low-
resistive path. 
 

• The outputs of the gates assume at all times the value of the 
Boolean function implemented by the circuit (ignoring the 
transient effects during switching periods). 

A 

F VSS 

Floating when A=0 
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Switches 

• Two types of switches 

0 

S D 

1 

S D 

1 

S D 

0 

S D 

Normally open 

Normally closed 
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Switches 

• Function 
F = 𝐴̅𝐴 (inverter) 

A 
F 

VSS 

VDD 

A 

0 
F=1 

VSS 

VDD 

0 

1 
F=0 

VSS 

VDD 

1 
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Switches 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

F 

VSS 

0 1 
0 1 1 
1 1 0 

VDD 
A 

B Implementation 
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Switches 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

A B 

F 

VSS 

0 1 
0 1 1 
1 1 0 

VDD 

A 

B A 

B 
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Example 

• 𝐹𝐹 = 𝐴𝐴 + 𝐵𝐵 (NOR2) 
 

• 𝐹𝐹 = 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 (NOR3) 
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Transistors as Switches 

• NMOS and PMOS 

G G 

S D S D 
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Transistors as Switches 

• NMOS and PMOS 

VDD 

1 

0 0 

0 

0 

VDD VDD 

Cut-off 

Cut-off 

0 

S D 

1 

S D 

1 

S D 

0 

S D 

Normally open 

(NMOS) 

Normally closed 

(PMOS) 
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CMOS Gates 

• Function 
F = 𝐴̅𝐴 

F 

VDD 

A 
0 1 
1 0 

A PMOS 

NMOS 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 1 1 
1 1 0 

A 

B 

A 

B 

F 

VDD 

A B PMOS 

NMOS 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

F 

VSS 

VDD 

Implementation 

0 1 
0 0 0 
1 0 1 

A 

B 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 0 0 
1 0 1 

A 

B 

This is not a good design. 

Why? 

A B 

F 

VDD 

A 

B 

PMOS 

NMOS 



18 

Electrical Modeling 

• Ideal switch 
 
 
 
 
 

• Real switch 

0 

Z 

1 

V(t) 

0 1 

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂 ≈ ∞ 

𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 ≈ 0 

𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 0 𝐼𝐼𝑂𝑂𝑂𝑂 = ∞ 

𝑅𝑅𝑂𝑂𝑂𝑂 

𝐼𝐼𝑂𝑂𝑂𝑂 

V(t) V(t) → 0 

Discharge 

A 

F VSS 
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Electrical Modeling 

• Ideal switch 
 
 
 
 
 

• Real switch 

1 

Z 

0 

V(t) 

1 0 

𝑅𝑅𝑂𝑂𝑂𝑂𝑂𝑂 ≈ ∞ 

𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 0 𝐼𝐼𝑂𝑂𝑂𝑂 = ∞ 

𝑅𝑅𝑂𝑂𝑂𝑂 

𝐼𝐼𝑂𝑂𝑂𝑂 

V(t) V(t) → VDD 

Charge 

A 

F VDD VDD VDD 

𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂 = 0 

VDD VDD 
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Transistors as Switches 

• NMOS and PMOS 

VDD 

1 

0 0 

0 VDD 

VDD VDD - VTh 

0 

VDD VDD 

0 

0 VTh 

Cut-off 

Cut-off 
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Threshold Drops 

VDD 

VDD → 0 Pull-down network 

0 → VDD 

CL 

CL 

Pull-up network 

VDD 

0 → VDD - VTn 

CL 

VDD 

VDD 

VDD → |VTp| 

CL 

S 

D S 

D 

VGS 

S 

S D 

D 

VGS 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 1 1 
1 1 0 

A 

B 
F 

Swing [0, VDD] 

A 

B 

VDD 

A B 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 0 0 
1 0 1 

A 

B F 

Swing [VTp, VDD – VTn] 

Threshold drop! 

1. Why does this happen? 

2. Why is this a problem? 

A B 

VDD 

A 

B 
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The MOS Transistor 

Polysilicon 

Aluminum 
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Structural Details 

• Channel length L 
– Typical values of L today vary from 130nm to 22 nm 
– The dimension will continue to scale according to Moore’s law 

 
• Perpendicular to the plane of the figure is the channel width W 

– Much larger than the minimum length 
 

• Gate oxide thickness  
– Around 25 Å 

 

oxt
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Operational Mechanism 

• NMOS 
– N+ source and N+ drain regions separated by p-type material 

 
– The body or substrate, is a single-crystal silicon wafer 

 
– Suppose, source, drain and body are all tied to ground and a 

positive voltage applied to the gate 
• A positive gate voltage will tend to draw electrons from the 

substrate into the channel region 
• A conducting path is created between drain and source 
• Current will flow from drain to source in presence of a voltage 

difference between the source and the drain 
• The gate voltage needed to initiate formation of a conducting 

channel is termed as the threshold voltage Vt 
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Threshold Voltage: Concept 

n+n+

p-substrate

DS
G

B

VGS

+

-

Depletion
Region

n-channel
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Transistor in Linear 

n+n+

p-substrate

D

S
G

B

VGS

xL

V(x) +–

VDS

ID

MOS transistor and its bias conditions
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Transistor in Saturation 

n+n+

S

G

VGS

D

VDS > VGS - VT

VGS - VT
+-

Pinch-off 
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Drain Current (NMOS) 

• Cut-off (𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡 < 0) 
– 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 = 0 

 
• Linear region (𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡 >  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 < 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡) 

– 𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛽𝛽𝑛𝑛 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡 𝑉𝑉𝑑𝑑𝑠𝑠𝑛𝑛 −
1
2
𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑2  

 
• Saturation region (𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡 >  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑  ≥  𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡) 

– 𝐼𝐼𝑑𝑑𝑑𝑑𝑛𝑛 = 1
2
𝛽𝛽𝑛𝑛(𝑉𝑉𝑔𝑔𝑔𝑔𝑛𝑛 − 𝑉𝑉𝑡𝑡𝑡𝑡)2 

𝛽𝛽𝑛𝑛 = 𝜇𝜇𝑛𝑛𝑐𝑐𝑂𝑂𝑂𝑂
𝑊𝑊𝑛𝑛

𝐿𝐿𝑛𝑛
= 𝜇𝜇𝑛𝑛

𝜀𝜀𝑂𝑂𝑂𝑂
𝑡𝑡𝑂𝑂𝑂𝑂

∙
𝑊𝑊𝑛𝑛

𝐿𝐿𝑛𝑛
 

G 

D 

S 

𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 
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Drain Current (PMOS) 

• Cut-off (|𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔| − |𝑉𝑉𝑡𝑡𝑡𝑡| < 0) 
– 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 0 

 
• Linear region (|𝑉𝑉𝑔𝑔𝑔𝑔𝑝𝑝| − |𝑉𝑉𝑡𝑡𝑝𝑝| >  0 𝑎𝑎𝑎𝑎𝑎𝑎 |𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑| < |𝑉𝑉𝑔𝑔𝑔𝑔𝑝𝑝| − |𝑉𝑉𝑡𝑡𝑝𝑝|) 

– 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 𝛽𝛽𝑝𝑝 |𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔| − |𝑉𝑉𝑡𝑡𝑡𝑡| |𝑉𝑉𝑑𝑑𝑠𝑠𝑝𝑝| − 1
2

|𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑|2  

 
• Saturation region ( 𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡𝑡𝑡 >  0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑉𝑉𝑑𝑑𝑑𝑑𝑝𝑝 > |𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔| − |𝑉𝑉𝑡𝑡𝑡𝑡|) 

– 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 = 1
2
𝛽𝛽𝑝𝑝(|𝑉𝑉𝑔𝑔𝑔𝑔𝑝𝑝| − |𝑉𝑉𝑡𝑡𝑝𝑝|)2 

G 

S 

D 

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠 

𝛽𝛽𝑝𝑝 = 𝜇𝜇𝑝𝑝𝑐𝑐𝑂𝑂𝑂𝑂
𝑊𝑊𝑝𝑝

𝐿𝐿𝑝𝑝
= 𝜇𝜇𝑝𝑝

𝜀𝜀𝑂𝑂𝑂𝑂
𝑡𝑡𝑂𝑂𝑂𝑂

∙
𝑊𝑊𝑝𝑝

𝐿𝐿𝑝𝑝
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 1 1 
1 1 0 

A 

B 
F 

Swing [0, VDD] 

A 

B 

VDD 

A B 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 0 0 
1 0 1 

A 

B F 

Swing [VTp, VDD – VTn] 

A B 

VDD 

A 

B 
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CMOS Gates 

• Function 
F = 𝐴𝐴 ∙ 𝐵𝐵 = 𝐴𝐴 ∙ 𝐵𝐵 

0 1 
0 0 0 
1 0 1 

A 

B 

𝐴𝐴 ∙ 𝐵𝐵 
F 

Swing [0, VDD] 

A 

B 

VDD 

A B 
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How to Design CMOS Gates 

VDD 

F(In1,In2,…InN) 

In1 
In2 

InN 

In1 
In2 
InN 

PUN 

PDN 

2. PMOS only = Dual of PDN 

1. NMOS only = 𝑭𝑭� 

Pull-up network (PUN) and 
Pull-down network (PDN) are 

dual logic networks. 

• The function of the 
PUN is to provide a 
connection between 
the output and VDD 
anytime the output of 
the logic gate is meant 
to be 1 

• Similarly the role of 
the PDN is to connect 
the output to GND 
when the output is 
meant to be 0 



36 

Dual Logic 

• Dual of f(X1, X2, …, Xn, 0, 1, AND, OR) 
    = f(X1, X2, …, Xn, 1, 0, OR, AND) 

 
• (A·B)D = A+B 
• (A+B)D = A·B 
• (1·A)D = 0+A=A 
• (1+A)D = 0·A=0 
• (0·A)D = 1+A=1 
• (0+A)D = 1·A=A 
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Example Gate: NAND 
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Example Gate: NOR 
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Complex CMOS Gate 

OUT = D + A • (B + C) 

D 
A 

B C 

D 

A 
B 

C 
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Constructing a Complex Gate 

C

(a) pull-down network

SN1 SN4

SN2

SN3D

F
F

A

DB

C

D

F

A

B

C

(b) Deriving the pull-up network
hierarchically by identifying
sub-nets

D

A

A

B

C

VDD VDD

B

(c) complete gate
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Conversion From a Boolean Equation to a 
Schematic 

• For given F 
1. 𝐹𝐹 
2. 𝐹𝐹 = 𝐹𝐹�� = 
 
 

• 𝐹𝐹 = 𝐴𝐴 ∙ 𝐵𝐵 
 

• 𝐹𝐹 = 𝐴𝐴 ∙ 𝐵𝐵 
 

• 𝐹𝐹 = 𝐴𝐴 ∙ 𝐵𝐵�  

𝐹𝐹� 𝐹𝐹 
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Example 

• 𝐹𝐹 = 𝐴𝐴 ∙ 𝐵𝐵 ∙ 𝐶𝐶 (NAND3) 
 

• 𝐹𝐹 = 𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶 (OR3) 
 

• 𝐹𝐹 = 𝐴𝐴 ∙ 𝐵𝐵 + 𝐶𝐶 (AOI21) 
 

• 𝐹𝐹 = 𝐴𝐴⊕ 𝐵𝐵 (XOR2) 
 

• 𝐹𝐹 = 𝐴𝐴⊕ 𝐵𝐵 (XNOR2) 
 

• 𝑆𝑆 = 𝐴𝐴⊕ 𝐵𝐵⊕𝐶𝐶 (Sum) 
• CO = 𝐴𝐴⊕𝐵𝐵 ∙ 𝐶𝐶 + (𝐴𝐴 ∙ 𝐵𝐵) (Carry-out) 
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DC Characteristics of CMOS Gates 

• Need to consider 
– ON resistance 
– Parasitic capacitance 
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Dynamic Behavior of MOS Transistor 

DS

G

B

CGDCGS

CSB CDBCGB



45 

The Gate Capacitance 

t ox 

n + n + 

Cross section 

L 

Gate oxide 

x d x d 

L d 

Polysilicon gate 

Top view 

Gate-bulk 
overlap 

Source 

n + 

Drain 

n + 
W 
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MOS Capacitance 

• The source and drain regions and the substrate form pn 
junctions that give rise to two additional capacitances 

• The capacitances Csb and Cdb are n+p source/drain junction 
capacitance for NMOS devices 

G 

S D 

B 

Cgs Cgd 

Csb Cdb 

Cgb 
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MOS Capacitance 

G 

S D 

B 

Cgs Cgd 

Csb Cdb 

Cgb 

𝐶𝐶𝑔𝑔 = 𝐶𝐶𝑔𝑔𝑏𝑏 + 𝐶𝐶𝑔𝑔𝑠𝑠 + 𝐶𝐶𝑔𝑔𝑑𝑑 

Cut-off 𝐶𝐶𝑔𝑔𝑔𝑔 = 𝐶𝐶𝑔𝑔𝑑𝑑 = 0 

𝐶𝐶𝑔𝑔𝑏𝑏 =
𝐶𝐶𝑜𝑜𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑
𝐶𝐶𝑜𝑜 + 𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑

 

𝐶𝐶𝑜𝑜 =
𝜀𝜀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

𝑊𝑊𝑊𝑊 

𝐶𝐶𝑑𝑑𝑑𝑑𝑑𝑑 =
𝜀𝜀𝑆𝑆𝑆𝑆𝜀𝜀𝑜𝑜
𝑑𝑑

𝑊𝑊𝐿𝐿 

Linear 𝐶𝐶𝑔𝑔𝑔𝑔 = 0 

𝐶𝐶𝑔𝑔𝑠𝑠 = 𝐶𝐶𝑔𝑔𝑑𝑑 =
1
2
∙
𝜀𝜀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

𝑊𝑊𝑊𝑊 

Saturation 𝐶𝐶𝑔𝑔𝑔𝑔 = 0 
𝐶𝐶𝑔𝑔𝑑𝑑 = 0 

𝐶𝐶𝑔𝑔𝑠𝑠 =
2
3
∙
𝜀𝜀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝜀𝜀𝑜𝑜
𝑡𝑡𝑜𝑜𝑜𝑜

𝑊𝑊𝑊𝑊 

S D

G

CGC

S D

G

CGC

S D

G

CGC
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MOS Resistance 

• Average V/I at two voltages: 
– maximum output voltage 
– middle of linear region 

 
• Voltage is Vds, current is given Id at that drain voltage.  Step 

input means that Vgs = VDD always. 

Saturation: conductance = 𝑔𝑔𝑚𝑚 = 𝛽𝛽(𝑉𝑉𝑔𝑔𝑔𝑔 − 𝑉𝑉𝑡𝑡) 

Linear: conductance = 𝑔𝑔𝑚𝑚 = 𝛽𝛽𝑉𝑉𝑑𝑑𝑠𝑠 
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MOS Resistance Approximation 
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Example 

• 𝐹𝐹 = 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 ∙ 𝐴𝐴𝐴 (NAND8) 
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