EE434 ASIC & Digital Systems

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

> Dae Hyun Kim daehyun@eecs.wsu.edu

Lecture 2

Introduction to CMOS Gates

Ref: Textbook chapter 2

Some of the slides are adopted from Digital Integrated Circuits by Jan M Rabaey

Signals

- $0 = V_{SS} = \text{Ground} = \text{GND} = \text{Low} = 0\text{V}$
- 1 = V_{DD} = Power = PWR = High = 5V, 3.3V, 1.5V, 1.2V, 1.0V

• What is a switch?

Electrically short

Electrically open

D

S

• Function $F = \overline{A}$ (inverter)

• Two issues

1.

2. Electrical modeling of the operation

Static CMOS Circuit

- At every point in time (except during the switching transients), each gate output is connected to either V_{DD} or V_{SS} via a lowresistive path.
- The outputs of the gates assume at all times the value of the Boolean function implemented by the circuit (ignoring the transient effects during switching periods).

• Two types of switches

• Function $F = \overline{A}$ (inverter)

• Function

$$\mathsf{F} = \overline{A \cdot B}$$

• Function

$$\mathsf{F} = \overline{A \cdot B}$$

Example

- $F = \overline{A + B}$ (NOR2)
- $F = \overline{A + B + C}$ (NOR3)

Transistors as Switches

• NMOS and PMOS

NMOS Transistor

PMOS Transistor

D

Transistors as Switches

• NMOS and PMOS

• Function

$$\mathsf{F} = \overline{A}$$

• Function $\mathsf{F} = \overline{A \cdot B}$ V_{DD}-PMOS B**-**A-0 0 F 0 1 В 1 1 B -NMOS A -

111

А

1

1

0

• Function

$$F = A \cdot B$$

Electrical Modeling

- Ideal switch 0 1 $V_{SS} - F$ $\downarrow I_{OFF} = 0$ $\downarrow I_{ON} = \infty$
 - Real switch

0

1

Discharge

Electrical Modeling

• Ideal switch

Ζ

• Real switch

Charge

Transistors as Switches

• NMOS and PMOS

Threshold Drops

• Function $\mathsf{F} = \overline{A \cdot B}$ V_{DD}-В**-**• A-0 А 0 1 - F 0 1 1 В Swing [0, V_{DD}] 1 1 0 В-A -

111

The MOS Transistor

Structural Details

- Channel length L
 - Typical values of L today vary from 130nm to 22 nm
 - The dimension will continue to scale according to Moore's law
- Perpendicular to the plane of the figure is the channel width W
 - Much larger than the minimum length
- Gate oxide thickness $t_{
 m ox}$
 - Around 25 Å

Operational Mechanism

- NMOS
 - N+ source and N+ drain regions separated by p-type material
 - The body or substrate, is a single-crystal silicon wafer
 - Suppose, source, drain and body are all tied to ground and a positive voltage applied to the gate
 - A positive gate voltage will tend to draw electrons from the substrate into the channel region
 - A conducting path is created between drain and source
 - Current will flow from drain to source in presence of a voltage difference between the source and the drain
 - The gate voltage needed to initiate formation of a conducting channel is termed as the threshold voltage Vt

Threshold Voltage: Concept

Transistor in Linear

MOS transistor and its bias conditions

Transistor in Saturation

Drain Current (NMOS)

Cut-off
$$(V_{gsn} - V_{tn} < 0)$$

 $- I_{dsn} = 0$
Linear region $(V_{gsn} - V_{tn} > 0 \text{ and } V_{dsn} < V_{gsn} - V_{tn})$
 $- I_{dsn} = \beta_n \left[(V_{gsn} - V_{tn}) V_{dsn} - \frac{1}{2} V_{dsn}^2 \right]$

• Saturation region $(V_{gsn} - V_{tn} > 0 \text{ and } V_{dsn} \ge V_{gsn} - V_{tn})$

$$-I_{dsn} = \frac{1}{2}\beta_n (V_{gsn} - V_{tn})^2$$

$$\beta_n = \mu_n c_{OX} \frac{W_n}{L_n} = \mu_n \frac{\varepsilon_{OX}}{t_{OX}} \cdot \frac{W_n}{L_n}$$

Drain Current (PMOS)

• Cut-off
$$(|V_{gsp}| - |V_{tp}| < 0)$$

 $- I_{sdp} = 0$
• Linear region $(|V_{gsp}| - |V_{tp}| > 0 \text{ and } |V_{dsp}| < |V_{gsp}| - |V_{tp}|)$
 $- I_{sdp} = \beta_p \left[(|V_{gsp}| - |V_{tp}|) |V_{dsp}| - \frac{1}{2} |V_{dsp}|^2 \right]$

• Saturation region $(|V_{gsp}| - |V_{tp}| > 0 and |V_{dsp}| > |V_{gsp}| - |V_{tp}|)$

$$- I_{sdp} = \frac{1}{2}\beta_p (|V_{gsp}| - |V_{tp}|)^2$$

$$\beta_p = \mu_p c_{OX} \frac{W_p}{L_p} = \mu_p \frac{\varepsilon_{OX}}{t_{OX}} \cdot \frac{W_p}{L_p}$$

• Function $\mathsf{F} = \overline{A \cdot B}$ V_{DD}-В**-**• A-0 А 0 1 - F 0 1 1 В Swing [0, V_{DD}] 1 1 0 В-A -

111

• Function

• Function

$$\mathsf{F} = A \cdot B = \overline{A \cdot B}$$

B 1 0 1

How to Design CMOS Gates

• The function of the PUN is to provide a connection between the output and V_{DD} anytime the output of the logic gate is meant to be 1

• Similarly the role of the PDN is to connect the output to GND when the output is meant to be 0

Pull-up network (PUN) and Pull-down network (PDN) are dual logic networks.

Dual Logic

- Dual of $f(X_1, X_2, ..., X_n, 0, 1, AND, OR)$ = $f(X_1, X_2, ..., X_n, 1, 0, OR, AND)$
- $(A \cdot B)^D = A + B$
- $(A+B)^{D} = A \cdot B$
- $(1 \cdot A)^{D} = 0 + A = A$
- $(1+A)^{D} = 0 \cdot A = 0$
- $(0 \cdot A)^{D} = 1 + A = 1$
- $(0+A)^{D} = 1 \cdot A = A$

Example Gate: NAND

PDN: G = A B \Rightarrow Conduction to GND PUN: F = $\overline{A} + \overline{B}$ = $\overline{AB} \Rightarrow$ Conduction to V_{DD} $\overline{G(In_1, In_2, In_3, ...)} \equiv F(\overline{In_1}, \overline{In_2}, \overline{In_3}, ...)$

Example Gate: NOR

Complex CMOS Gate

Constructing a Complex Gate

(a) pull-down network

(b) Deriving the pull-up network hierarchically by identifying sub-nets

(c) complete gate

Conversion From a Boolean Equation to a Schematic

• For given F

1.
$$F$$

2. $F = \overline{\overline{F}} = \overline{F}$

- $F = \overline{A \cdot B}$
- $F = A \cdot B$
- $F = A \cdot \overline{B}$

Example

- $F = \overline{A \cdot B \cdot C}$ (NAND3)
- F = A + B + C (OR3)
- $F = \overline{A \cdot B + C}$ (AOI21)
- $F = A \oplus B$ (XOR2)
- $F = \overline{A \oplus B}$ (XNOR2)
- $S = A \oplus B \oplus C$ (Sum)
- $CO = (A \oplus B) \cdot C + (A \cdot B)$ (Carry-out)

DC Characteristics of CMOS Gates

- Need to consider
 - ON resistance
 - Parasitic capacitance

Dynamic Behavior of MOS Transistor

The Gate Capacitance

MOS Capacitance

- The source and drain regions and the substrate form pn junctions that give rise to two additional capacitances
- The capacitances Csb and Cdb are n+p source/drain junction capacitance for NMOS devices

MOS Capacitance

MOS Resistance

- Average V/I at two voltages:
 - maximum output voltage
 - middle of linear region
- Voltage is V_{ds} , current is given I_d at that drain voltage. Step input means that $V_{gs} = V_{DD}$ always.

Saturation: conductance = $g_m = \beta (V_{gs} - V_t)$ Linear: conductance = $g_m = \beta V_{ds}$

MOS Resistance Approximation

Example

• $F = \overline{A1 \cdot A2 \cdot A3 \cdot A4 \cdot A5 \cdot A6 \cdot A7 \cdot A8}$ (NAND8)