Homework Assignment 4

(Due Feb. 22nd at the beginning of the class)

(1) [Static CMOS Gates, 5 points] Draw a transistor-level schematic for the following function. Use (6 NMOS and 6 PMOS transistors) or (5 NMOS and 5 PMOS transistors).

$$
F=A \cdot B+C \cdot D
$$

(or $F=\overline{\overline{A \cdot B}}+\overline{\overline{C \cdot D}}=\overline{\overline{A \cdot B} \cdot \overline{C \cdot D}}$, so you can use three two-input NAND gates (6 NMOS + 6 PMOS transistors))
(2) [Static CMOS Gates, $\mathbf{5}$ points] A pull-down network of a Boolean function is shown below. Draw its pull-up network to complete the function.

(3) [Static CMOS Gates, 5 points] A pull-up network of a Boolean function is shown below. Draw its pull-down network to complete the function.

(4) [Static CMOS Gates, 5 points] Draw a transistor-level schematic for the following function. Try to minimize \# transistors. Inverted inputs are not provided.

$$
\begin{gathered}
\boldsymbol{F}=\overline{\overline{\boldsymbol{A}}+\overline{\boldsymbol{B}}+\overline{\boldsymbol{C}}} \\
\boldsymbol{F}=\boldsymbol{A} \cdot \boldsymbol{B} \cdot \boldsymbol{C}
\end{gathered}
$$

