Homework Assignment 5

(Due Feb. 26th at the beginning of the class)

* Submission policy: Please zip your source code and waveform screenshots into a single file and send it to daehyun@eecs.wsu.edu. The file name should be firstname_lastname.zip (or .tar.gz or .tar ...)
(1) [Switching Characteristics of a CMOS Inverter, $\mathbf{1 0}$ points] First, go to "Labs" and see "tut-hspice.pdf". It shows how to use HSPICE. Once you are done with it, download the following file into your working directory.
- http://eecs.wsu.edu/~ee434/Homework/hw05.zip
- Unzipit.
o > unzip hw05.zip
- You will see the following files.
o 45nm_PTM_HP_v2.1.pm (HSPICE transistor models)
o inv-ac.sp (an HSPICE netlist for the simulation of switching characteristics of an inverter)
o inv-dc.sp (an HSPICE netlist for the simulation of DC characteristics of an inverter)
- The size of the 1 X inverter is $(\mathrm{Wn}, \mathrm{Wp})=(45 \mathrm{~nm}, 70 \mathrm{~nm})$. The rise/fall time of the 1 X inverter is 216 ps as shown in the tutorial.
- Upsize the inverter to $2 X$, i.e., $(W n, W p)=(45 n m * 2,70 n m * 2)=(90 n m$, $140 \mathrm{~nm})$. Measure the rise and fall times again.
- [Submit] Fill the following table.

Inverter size	Rise time (ps)	Fall time (ps)
1 X	216 ps	216 ps
2 X	101 ps	101 ps
3 X	66.6 ps	67.4 ps
4 X	50.1 ps	49.2 ps
8 X	25.7 ps	25.5 ps
16 X	14.2 ps	14.6 ps
32 X	8.54 ps	8.80 ps

(2) [DC Characteristics of a CMOS Inverter, 20 points] Open "inv-dc.sp" in a text editor and see the contents of the file. We use ".DC" for DC simulation.

- Run HSPICE for the DC simulation.
o > hspice inv-dc.sp
- Open the DC simulation result.
o wv inv-dc.sw0
- Double-click v(vin) and v(vout) to visualize the DC characteristics of the inverter.
- Drag and drop one of the graphs into the other one as follows:

- Measure $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$ (use "Difference" in the measurement tool).
- In my window, $V_{I L}=375 \mathrm{mV}, V_{I H}=580 \mathrm{mV}, V_{O L}=45 \mathrm{mV}$, and $V_{O H}=$ 950 mV .
- $N M_{L}=375 \mathrm{mV}-45 \mathrm{mV}=330 \mathrm{mV}, N M_{H}=950 \mathrm{mV}-580 \mathrm{mV}=370 \mathrm{mV}$.
- [Submit] Use ($\left.W_{n}=90 \mathrm{~nm}, W_{p}=70 \mathrm{~nm}\right)$ and run DC sweep analysis again. Compute and submit $N M_{L}$ and $N M_{H}$.

$$
\begin{aligned}
& \text { o } V_{I L}=336 \mathrm{mV}, V_{I H}=540 \mathrm{mV}, V_{O L}=48 \mathrm{mV} \text {, and } V_{O H}= \\
& 950 \mathrm{mV}, N M_{L}=288 \mathrm{mV}, N M_{H}=410 \mathrm{mV}
\end{aligned}
$$

- [Submit] Use ($\left.W_{n}=45 \mathrm{~nm}, W_{p}=140 \mathrm{~nm}\right)$ and run DC sweep analysis again. Compute and submit $N M_{L}$ and $N M_{H}$.

$$
\begin{aligned}
& \text { o } V_{I L}=409 \mathrm{mV}, V_{I H}=620 \mathrm{mV}, V_{O L}=48 \mathrm{mV} \text {, and } V_{O H}= \\
& 952 \mathrm{mV}, N M_{L}=361 \mathrm{mV}, N M_{H}=332 \mathrm{mV}
\end{aligned}
$$

- [Submit] Use ($W_{n}=90 \mathrm{~nm}, W_{p}=140 \mathrm{~nm}$) and run DC sweep analysis again. Compute and submit $N M_{L}$ and $N M_{H}$.
o $V_{I L}=370 \mathrm{mV}, V_{I H}=578 \mathrm{mV}, V_{O L}=52 \mathrm{mV}$, and $V_{O H}=$ $953 \mathrm{mV}, N M_{L}=318 \mathrm{mV}, N M_{H}=375 \mathrm{mV}$

