Homework Assignment 7

(Due Apr. $1^{\text {st }}$ at the beginning of the class)

1. [Timing Analysis, $\mathbf{1 0}$ points] The following shows the delay of each net and cell. Compute arrival time at each node ($\mathrm{n} 1 \sim \mathrm{n} 12$, Out $0 \sim$ Out 3) shown below. Arrival time at each input pin is zero.

	Arrival time		Arrival time
n 1	105 ps	n 9	484 ps
n 2	102 ps	n 10	512 ps
n 3	118 ps	n 11	384 ps
n 4	88 ps	n 12	396 ps
n 5	298 ps	Out 0	523 ps
n 6	289 ps	Out 1	537 ps
n 7	378 ps	Out 2	416 ps
n 8	273 ps	Out 3	444 ps

2. [Timing Analysis, $\mathbf{1 0}$ points] The following shows the delay of each net and cell and the required time at each output. Compute required time at each node (n1 ~n12, In $0 \sim$ In 3).

	Required time		Required time
n 1	720 ps	n 9	1161 ps
n 2	686 ps	n 10	1125 ps
n 3	654 ps	n 11	968 ps
n 4	656 ps	n 12	932 ps
n 5	911 ps	In 0	568 ps
n 6	825 ps	In 1	538 ps
n 7	991 ps	In 2	536 ps
n 8	857 ps	In 3	544 ps

