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Abstract—Freedom from deadlock is a key issue in Cut-Through, Wormhole, and Store and Forward networks, and such freedom is

usually obtained through careful design of the routing algorithm. Most existing deadlock-free routing methods for irregular topologies

do, however, impose severe limitations on the available routing paths. We present a method called Layered Routing, which gives rise

to a series of routing algorithms, some of which perform considerably better than previous ones. Our method groups virtual channels

into network layers and to each layer it assigns a limited set of source/destination address pairs. This separation of traffic yields a

significant increase in routing efficiency. We show how the method can be used to improve the performance of irregular networks, both

through load balancing and by guaranteeing shortest-path routing. The method is simple to implement, and its application does not

require any features in the switches other than the existence of a modest number of virtual channels. The performance of the approach

is evaluated through extensive experiments within three classes of technologies. These experiments reveal a need for virtual channels

as well as an improvement in throughput for each technology class.

Index Terms—Routing functions, interprocessor communication, deadlock avoidance, irregular topologies.
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1 INTRODUCTION

FOLLOWING the introduction of networks of workstations
to the multiprocessor market, interest in irregular

topologies for computer interconnects has increased. Such
networks have the advantage that they offer greater wiring
flexibility than regular structures such as meshes, tori, and
multistage networks. Flexibility in wiring is particularly
important for fault tolerance, since networks that were at
first regular become irregular when some components fail.
For these reasons, a series of commercial technologies that
do not place constraints on network topology has emerged
[2], [3], [11], [12], [16].

However, routing of irregular networks is more complex,
because the routing method needs to be topology agnostic.
A well-known method for generating routing algorithms in
irregular networks is the UpDown strategy that was first
presented in connection with Autonet [16] and later used in
Myrinet [3]. It relies on a technique for generating a
spanning tree of the network, where the key issue is to
assign up directions to all links, such that the root of the
spanning tree can be reached from any node following links
in the up direction only. Routing is restricted so that no
packet can traverse a link in the up direction after having
traversed a link in the down direction. Sancho et al.
proposed an improvement of the UpDown routing scheme
in [19]. Instead of using the usual breadth-first traversal in
the generation of the spanning tree, they apply a depth-first
search that optimizes the spanning tree. This gives greater
flexibility during the generation of the routing tables and,
therefore, leads to improved performance. Qiao and Ni take
a different approach to the routing of irregular networks
[18]. Their method is based on an underlying Eulerian

graph, and it routes adaptively between two acyclic
unidirectional trails (paths) that contain all the channels
(edges) of the network. In order to have more optimized
routing paths, different types of short-cut channels are
added following heuristic criteria. Another body of work
has focused on improving the performance of irregular
networks through methods such as virtual channel multi-
plexing, adaptivity, and shortest-path routing combined
with escape paths [20], [22], [23], [24].

The issue of efficient routing in irregular networks was
addressed by Flich et al. in [9], [10], where they propose a
source routing method where the messages always use
shortest paths. The basic idea is to eliminate the restrictions
imposed by UpDown routing by letting intermediate nodes
eject messages completely and later reinject them, breaking
the dependencies of illegal turns. In [21], the same idea was
used in an InfiniBand setting, but here illegal turns were
broken by letting the packets that use these turns ascend to
a higher layer of virtual channels.

This paper presents a concept that we call layered routing.
The network resources are divided into layers and network
deadlocks are avoided by preventing portions of traffic
from using specific layers. This contrasts with previous
approaches that handle deadlock by preventing data
packets from using specific paths and thereby severely
restrict routing freedom in irregular networks. Our method
increases the performance of deterministic and source
adaptive routing, meaning that the area of application of
our approach is different from the body of work that aims at
maximizing the adaptivity in the switches. In addition, our
method needs only a very limited number of virtual
channels, even for large network sizes, which makes it
directly applicable to present-day technologies such as
InfiniBand2 [12] and Advanced Switching [2].

Previous solutions related to ours include the approach
taken in the Avici Terabit Switch/Router [4], where
separate virtual networks (layers) are used for each
destination port in a torus topology. This approach will,
however, require a very high number of virtual channels for
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large networks. It is therefore not suited to present-day
technologies such as InfiniBand [12] and Advanced Switch-
ing [2]. Another body of related work aims at increasing the
adaptivity in the switches. In [13], Linder and Harden
achieved deadlock-free, minimal, and adaptive layered
routing using virtual channels for regular networks, in
particular, for k-ary n-cubes. This method does not,
however, generalize easily to arbitrary topologies, and the
need for virtual channels grows exponentially with n. Yet
another idea is to order the layers. Packets escape from
possible deadlocks in a higher layer by making a transition
down to a lower level. If the lowest layer is deadlock-free,
the entire system will also be [1], [6], [7], [8], [14].

There are problems connected with all of the above
approaches. Some of them require extra functionality in the
switches or the hosts that not all technologies provide.
Others aim at maximizing adaptivity, which results in the
delivery of packets being out of order. The extra protocol
overhead involved in sorting the packets at the destination
is, in some cases, unacceptable, and this is the main reason
why many technologies only use deterministic routing.

Our layered routing methodology is very flexible and
can be used in a variety of ways. First, we use it to obtain
load balancing in the network, then we consider shortest-
path routing in irregular networks and various forms of
routing adaptivity. Our concept assumes the presence of
virtual channels, but otherwise requires no special func-
tionality within the switches.

The paper is organized as follows: In Section 2, we give
some basic definitions and notations before we define the
concept of layered routing in Section 3. In Section 4, we
show how layered routing can be used to obtain load
balancing in an UpDown routed network. In Section 5, we
present an algorithm that generates deadlock-free and
deterministic routing functions with shortest paths using
layered routing and, in Sections 6 and 7, we extend the
concept of shortest-path layered routing to multiple paths
and adaptive routing. Simulation experiments, in which a
series of randomly generated topologies were tested for
network performance, are described in Section 8. Section 9
concludes.

2 PRELIMINARIES

The definitions in this section mostly adhere to the standard
notation and definitions of cut-through switching and
graph theory.

Definition 1. A network I is represented by a strongly
connected directed graph, I ¼ GðN;CÞ. The vertices of I are
the set of nodes (switches) N , whereas the edges are the set of
communication channels (possibly virtual), C. Each channel is
unidirectional and transmits data from a source node to a
destination node. A network channel ci interconnects the two
nodes srcðciÞ, dstðciÞ 2 N , which are the source and
destination of the channel, respectively.

A link is a set of channels cl1 ; cl2 ; . . . ; cln such that either

srcðcliÞ¼srcðcljÞ and dstðcliÞ¼dstðcljÞ, or srcðcliÞ ¼ dstðcljÞ
and dstðcliÞ ¼ srcðcljÞ for all i and j.

Each channel c 2 C is part of exactly one link. A subset of

the nodes N in the network are called compute nodes. These

are the nodes that generate and consume data traffic.

We assign a set of virtual addresses to each compute node

in the network. The set of available virtual addresses is

denoted A.

Definition 2. An address assignment function A : A�!N
for network I is a function that takes an address a as input and

returns a compute node n 2 N .

The notion of virtual addresses allows us to have a set of

addresses assigned to each destination. This is a feature that

is implemented, e.g., in InfiniBand, and it opens up the

possibility for multiple paths to exist between each source

and destination, even if each switch only implements

deterministic routing.

Definition 3. For network I ¼ GðN;CÞ and an address assign-

ment functionA, a routing functionR : N � C �A�!PðCÞ,
where PðCÞ is the power set of C, takes a node n, an input

channel c, and a destination addressa as parameters, and returns

a set of output channels that can be taken from node n for packets

entering its channel c and whose destination isAðaÞ. A routing

function R is deterministic if for all ðn; c; aÞ combinations

Rðn; c; aÞ is always singleton; otherwise, it is adaptive.

Notice that this definition of a routing function allows a

node to select different output channels depending on what

input channel a packet arrives on. This is not possible in all

technologies; indeed, InfiniBand is an example of a

technology that will not take input channels into account.

However, methods we present in this paper are applicable

to any case.

Definition 4. For a network I, address assignment functionA, and

routing functionR, there exists a dependency from channel ci
to cj iff cj ¼ RðdstðciÞ; ci; aÞ for some address a. That is, packets

destined for AðaÞ may use cj immediately after ci.

Definition 5. The channel dependency graph of a network I

with respect to a routing function R is a directed graph in

which the channels of I constitute the vertices and the

dependencies constitute the arcs.

The following theorem is a straightforward adaptation of

a theorem due to Dally and Seitz [5].

Theorem 1. A network is free from deadlocks if the channel

dependency graph of its routing function is acyclic.

The original formulation of Theorem 1 supplied a

necessary and sufficient condition for freedom from dead-

lock, but for deterministic routing only. However, it is well-

known that the premise in the theorem is a sufficient (but

not necessary) condition for deadlock free adaptive routing

as well. Sufficient and necessary conditions for deadlock-

free adaptive routing functions were later provided by

Duato [6], [7].

3 LAYERED ROUTING

Our basic mechanism is to divide the physical network into

a set of layers, each layer representing a virtual network

with the same connectivity as the original physical one.
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Definition 6. A network layer Li of network I is a subset of the
virtual channels in I such that each link has exactly two
channels in Li, one in each direction.

Definition 7. A set L of network layers fL1; . . . ; Lng is a
layering of a network I iff for 1 � i � n and 1 � j � n

. Li is a layer of I for all i,

. Li and Lj are disjoint for all distinct i and j, and

. for each channel c in I, there exists an Li such that c is
in Li.

The above two definitions allow us to view any layer of a
network as a bidirectional virtual network that is iso-
morphic to the original physical network.

Definition 8. For a layering L of network I and a routing
function R, we say that R is layered with respect to L if
Rðn; ci; aÞ ¼ cj implies that ci and cj are in the same layer
Lj 2 L for all n, ci, a and cj. By Rk, we denote the subrouting
function of R that is restricted to Lk 2 L.

This means that a layered routing function will let all
packets remain in the layer into which it was first injected.
Furthermore, Ri contains all necessary information on the
forwarding that can take place in Li.

Most of the routing functions we develop in this paper
are layered and, therefore, we develop below a theory for
freedom from deadlock for layered routing functions. This
concept will be extended in a later section, where we
discuss adaptivity between the layers.

In order to assign names to data streams, we need to
define source/destination pairs and source/address pairs.

Definition 9. A source/destination pair is an ordered pair of
compute nodes, where the first element is called the source and
the second element is called the destination. A source/address
pair is an ordered pair where the first element is a compute
node and the second element is an address. If hs; ai is a source/
address pair and A is the relevant address assignment
function, then hs; AðaÞi is said to be the corresponding
source/destination pair.

Notice that, if more than one address is associated with a
compute node, we are able to distinguish between data
streams using the different addresses by referring to
source/address pairs, rather than source/destination pairs.

Definition 10. For a layering L of network I, a traffic
assignment function T of L takes a source/address pair as
input and returns a (not necessarily strict) subset of L.

Intuitively, we assume that T ðhs; aiÞ is the set of layers
that can be used to transmit the traffic from node s to
node AðaÞ, using virtual address a as the address in the
packet header. This may be a singleton layer, meaning that
there is only one allowed layer for this traffic. It can be a
strict subset of L or it can be all layers of L, meaning that
traffic from s using a as its address can use any layer.

Definition 11. For a layering L of network I, a layered routing
function R, and a traffic assignment function T of this
layering, there exists a layered dependency from channel ci
to cj iff there exists a layer Lk 2 L, a source s, and a virtual
address a such that cj ¼ RðdstðciÞ; ci; aÞ, both ci and cj are
members of Lk, and Lk 2 T ðhs; aiÞ.

The above definition states that there exists a layered
dependency from one channel in I to another channel in I if
there are packets that, according to L, R, and T , will use the
second channel immediately after the first. This is a natural
extension into layered routing of the notion of dependency
described in the previous section. The notion of dependency
graphs and its connection to freedom from deadlock are
extended in the same way.

Definition 12. For a layering L of network I, a layered routing
function R, and a traffic assignment function T of this
layering, the layered dependency graph of I with respect to
R, L, and T is a directed graph in which the channels of I
constitute the vertices and the layered dependencies constitute
the arcs.

Theorem 2. For a layering L, a layered routing function R, and a
traffic assignment function T , network I is free from
deadlocks if its layered channel dependency graph with
respect to L, R, and T is acyclic.

The proof of this theorem is a simple rewrite of the proof
that was presented by Dally and Seitz [5], in which all
references to channel dependencies are replaced with
layered (channel) dependencies. The proof is therefore
omitted.

4 LOAD-BALANCING OF UP-DOWN ROUTING

(MROOTS)

The predominant routing paradigm for irregular networks
is the UpDown scheme. A well-known weakness of this
routing scheme is that it has a strong tendency to generate
hot spots around the root of the UpDown structure. In this
section, we show how to alleviate this tendency for hot
spots by using layered routing.

4.1 UpDown Routing

A distributed algorithm for generating deadlock-free rout-
ing functions in irregular networks is described in connec-
tion with Autonet [16]. It is based on an algorithm for
generating a breadth-first spanning tree of a network that
was first presented by Perlman [17].

The basic requirement for the algorithm is that each node
be able to communicate with its immediate neighbours. The
task of the algorithm is first to choose one node to be the
root of the UpDown structure, and second to assign a
direction to all the links in the network. The directions must
be chosen such that

. there are no cycles that follow links only in the up
direction,

. there are no cycles that follow links only in the down
direction,

. from any node one will reach the root if one follows
links only in the up direction, and

. from the root one may reach any node by following
links only in the down direction.

In particular, one may choose to let the root be the node
with the lowest ID. Thereafter, the directions of the links are
chosen so that, for each link, the up-end is the one closer to
the root. If the direction of the link is not well-defined from
this rule, the up-end is chosen to be at the node with the
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lower ID. Fig. 1 shows an example of an irregular topology,
with the direction of the links assigned by the algorithm
indicated by arrows.

In the next phase of the algorithm, the topology of the
entire spanning tree is distributed to all nodes, which use
this information to fill their routing tables. Freedom from
deadlock is guaranteed by a restriction such that no node
must allow a packet to use an up-link after it has used a
down-link. This does not jeopardize connectedness, as there
will always be a path between any pair of nodes that first
follows a (possibly empty) sequence of links in the up
direction, followed by a (possibly empty) sequence of links
in the down direction. For a complete description of the
original algorithm, see [16] and, for a more recent
improvement, see [19].

4.2 Multiple Roots

The UpDown algorithm is able to find a deadlock-free
routing function for any arbitrary network topology. Its
drawback is that all network traffic is initially directed
toward the root, which renders the area around the root a
bottleneck in the system. This reduces the overall perfor-
mance of the network.

Our approach is to use layered routing to distribute the
load of the hot-spots generated by the UpDown routing
algorithm to various places in the network. We assume a
network I and a layering L ¼ fL1; . . . ; Lmg of I. Further-
more, we assume an address assignment function A that
assigns a single address from A to each compute node. The
method works as follows:

Step 1: For each layer Li 2 L, choose a node nri—the root
node of layer i—in such a way that the shortest distance

between nri and the root node nrj chosen for some

previously treated layer j is maximized. If this is

ambiguous, choose the node with the lowest node ID.

Step 2: For each layer Li 2 L, generate the routing function

Ri by using UpDown routing with nri as the root of the

UpDown structure. Let R ¼ [mi¼1Ri.

Step 3: Generate the traffic assignment function T according
to the requirements for packet ordering: If the packets

are required to be delivered in order, ensure that T

returns with a singleton layer for every source/address

pair, otherwise let T return all layers in L for every

source/address pair.

The above guarantees that a separate UpDown structure
will be built for each root, which will result in a separate
routing function for each layer. The distance between the
roots of these layers is maximized, thus the potential hot-
spots near the roots are distributed. Freedom from deadlock
is guaranteed by layered routing, since each routing
function Ri will work on its own separate set of virtual
channels. The nodes injecting packets into the network can
decide which layer a packet should be injected into based
on T .

Fig. 2 illustrates a network with two layers, each with a
different UpDown structure. In this figure, we see that, in
the layer depicted by black virtual channels, switch 1 is a
potential hot spot. In the layer with white channels,
however, the potential hot-spot created by the UpDown
routing algorithm will be centred around switches 2, 6, and
5. In sum, the potential hot-spots generated by the UpDown
routing algorithm are distributed fairly evenly around the
network.

4.3 A Distributed Algorithm to Compute the
MROOTS Routing Tables

A feature of the UpDown algorithm is that it is completely
distributed. The choice of root, the distribution of the
topology information, and the setup of routing tables is
done by the switches themselves communicating only with
their immediate neighbors. Even if this requires a certain
amount of additional functionality in the switches that not
all technologies provide, its advantages in resilience are so
significant that we should provide a distributed algorithm
for our approach to load balancing as well. Fortunately, this
is fairly straightforward.

Note that, at a given point in the standard UpDown
algorithm, all nodes get information about the entire
topology. If, from this point, they use a deterministic
algorithm to calculate the roots and the structure of each
layer, they will all conclude with the same result. This
means that all nodes can calculate the structure of the
UpDown trees of the new layers independently. From this
structure they can, in turn, calculate their routing tables.
Regarding the traffic assignment function, the easiest
solution is to require all sources to distribute their traffic
as evenly between the layers as possible.
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direction of the links.
Fig. 2. This figure illustrates a network with layers (black and white). The
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as the root. The arrows indicate the up-direction for each channel.



5 LAYERED SHORTEST PATH ROUTING (LASH)

One general problem that arises in irregular network
structures is that it is difficult to achieve deadlock-free
routing where every packet takes the shortest physical path.
As a result, most existing methods for shortest-path routing
in irregular networks provide shortest paths only relative to
some constraint. UpDown routing as defined above is an
example of this, in that it supports shortest paths only
relative to the constraint that no up channel can be used
after a down channel.

In this section, we describe how one can use layered
routing to allow for true shortest-path routing in irregular
topologies. This is done by first identifying a routing function
R that finds one shortest physical path between every source
and destination. Thereafter, we generate a traffic assignment
function T that assigns the source/destination pairs to
different layers in such a way that freedom from deadlock
in each individual layer is guaranteed.

5.1 Generation of R and T

Below, we give an algorithm for mapping source/destina-
tion pairs onto virtual layers. We assume that a network I
and a layering L of that network is given. Furthermore, we
assume that L has n layers and that we have an address
assignment function A that assigns exactly one address to
each traffic node in I.

Step 1: Let T ðhs; aiÞ ¼ undefined for all source/address

pairs, let Ri be empty for all i such that 1 � i � n, and

let AðaÞ be undefined for all addresses a.

Step 2: Take one pair of source and destination hs; di that

has not yet been processed. For an arbitrary shortest

path between this pair, do the following:

Step 2.1: Find a new unused address a and let

AðaÞ ¼ d. (For some technologies, this amounts to
generating a source routing header that contains all

routing information; for others, such as

InfiniBand, it amounts to assigning a new address

to the destination.)

Step 2.2: Find an existing layer Li such that letting Ri be

enriched to support the path and letting

T ðhs; aiÞ ¼ fLig will not close a cycle of

dependencies in the layered dependency graph of
I. If one exists, let T ðhs; aiÞ ¼ fLig, otherwise, leave

T ðhs; aiÞ unchanged.

Step 3: If there are more pairs of source and destination that

have not yet been processed, go to Step 2.

Step 4: (Optional balancing step) Find two existing layers Lj
and Lk and a source/address pair hs; ai such that the

following is true:

. there are more source/address pairs assigned to Lj
than to Lk,

. T ðhs; aiÞ ¼ Lj, and

. letting T ðhs; aiÞ ¼ Lk instead and updatingRj andRk

accordingly will not create a cycle of dependencies.

Let T ðhs; aiÞ ¼ Lk instead and update Rj and Rk

accordingly. Repeat this step until no combination of Lj
and Lk and a source/address pair hs; ai with the given

properties exists.

Lemma 1. If the above algorithm results in a traffic assignment
function in which T ðhs; aiÞ 6¼ undefined for all source/address
pairs hs; ai, the layered network I is free from deadlock with
respect to R and T . Furthermore, all packets are routed along
shortest paths.

Proof. Shortest-path routing follows immediately from
Step 2.

Assume that the lemma is not true. Then, the
algorithm must in some case terminate with a dead-
locked system. According to Theorem 2, this means that
a cycle in the layered dependency graph must either
have been there from the start of the algorithm or have
been introduced at some point. From Step 1, we can
deduce that the layered dependency graph contains no
dependencies and, therefore, no cycles, when the
algorithm starts and, hence, that the cycle must have
been introduced later on.

The layered dependency graph is only altered by
Step 2.2, which builds up the traffic assignment function,
and Step 4, which alters it. The cycle in the layered
dependency graph must, therefore, have appeared
through the assignment or reassignment of a layer to a
source/address pair. By inspection of Steps 2.2 and 4, we
see that no such assignment will take place if it closes a
cycle in the layered dependency graph. Thus, we have a
contradiction, and the lemma follows. tu
If the network contains fewer layers than are needed to

provide shortest-path routing, the algorithm fails by leaving
the traffic assignment function undefined for some source/
address pairs. The method can, however, easily be adapted
in such a way that these pairs are assigned to a layer, but are
not routed according to their shortest paths. This can be
done either by identifying nonshortest paths that fit into
some layer, or by assigning all of these paths to a separate
layer that is routed according to an UpDown structure.

The complexity of the algorithm is given by the number
of source/destination pairs (N2) times the number of layers
(n) times the complexity of checking for cycles (N). Our
tests show that this does not become a problem for modern
machines until the networks are quite large (256 switches or
more). Even for networks of bigger sizes, one can
circumvent the problem by considering more than one
source/address pair at a time. In [25], it is demonstrated
that such an approach has only a minor effect on the
number of virtual channels needed for shortest-path
routing.

5.2 Evaluation of the Required Number of Layers

An important issue in the evaluation of layered routing is
the number of layers that are needed to grant shortest-path
routing to every source/destination pair. The required
number of layers depends on both network size and
connectivity. In this section, we treat the relation between
these two network parameters and the need for virtual
layers when using our method.

Some answers are easily derived. If we have minimal
connectivity so that the network has the shape of a tree, one
virtual layer suffices, because no cycle of dependencies can
be closed as long as all routing follows a shortest path.
Furthermore, networks with maximal connectivity will also
need only one layer, because no packet will traverse more
than one link and, so, no channel dependencies will exist.

However, most of the network topologies that are used
in practice will fall somewhere in between these two
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extremes, and in order to evaluate the relation between
network connectivity and the need for virtual layers, we
conducted a series of experiments. We considered four
network sizes of 16 nodes, 32 nodes, 64 nodes, and
128 nodes, respectively. For each of these sizes, we
considered a range of connectivities from minimal con-
nectivity and upward toward maximal connectivity, adding
one or two links at a time. For each network size and
connectivity, we generated 100 random topologies and
subjected them to a modified version of the algorithm
above, which is always able to provide another virtual layer
on a per need basis. Fig. 3 shows the average, the
maximum, and the minimum number of virtual lanes
needed in each case.

The most striking result from these plots is that the
number of virtual layers required is very small. Even for
networks as big as 128 switches, we never encountered a
single topology that required more than six virtual layers.
This is well below the number of layers that may be
provided, e.g., in InfiniBand, and in the case of InfiniBand,
it leaves more than half of the virtual layers to be used for
purposes such as traffic separation and Quality of Service.
For networks with 32 switches, even as few as three layers
sufficed for all tested topologies. Another surprising out-
come is that the variance in the required number of layers is
very small. Even with 100 random topologies tested for
each point of measurement, the difference between the most
demanding and the least demanding topology was hardly
ever more than one layer.

In order to obtain a more detailed picture of the relation
between the number of switches and the required number
of layers, we set up an experiment where we increased the
number of nodes in the network, but kept connectivity
fixed. It is apparent from our previous plots that, for any of
the three considered network sizes, the maximum number
of virtual layers is needed when the number of links in the

topology is about twice the number of switches. Since this
connectivity is a very likely choice for many application
areas, we used this connectivity throughout this experi-
ment. The results are plotted in Fig. 4.

Our previous results regarding variance and a very
modest need for virtual layers are confirmed in this
experiment, but what is new is that the number of required
layers appears to follow a logarithmic curve.

6 MULTIPLE SHORTEST PATHS—SOURCE

ADAPTIVITY (MP-LASH)

In most networks, there will be more than one shortest path
between any source and destination. In the approach
described above, we simply assumed a priori that only
one such path was chosen. Some network technologies do,
however, allow for several paths to be chosen between any
pair of nodes. This choice can be made by the source node,
either by inserting sufficient information into the header to
determine the entire path (source routing) or by defining
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multiple addresses for each destination. The routing tables
can be set up such that each address follows different paths
to the same destination.

This added freedom can also be exploited within the
framework of layered routing. There are basically two
dimensions of source adaptivity that may be exploited here:

. One can allow all shortest paths between any source
and destination, assign a distinct destination address
or appropriate source routing header to each of
them, and let the source node decide which path to
use for each packet it sends out.

. For each distinct shortest path in the network, there
may be several layers into which this path can fit
without creating a deadlock. Which layer to use can
be chosen by the source node for each packet.

Let us now modify the algorithm we described above to
cater for these added degrees of freedom:

Step 1: Let T ðhs; aiÞ ¼ undefined for all source/address

pairs, let Ri be empty for all i such that 1 � i � n, and

let AðaÞ be undefined for all addresses a.

Step 2: Take one pair of source and destination hs; di that

has not yet been processed. For all shortest paths

between this pair do the following:

Step 2.1: Find a new unused address a and let
AðaÞ ¼ d. (For some technologies, this amounts to

generating a source routing header that contains all

routing information; for others, such as

InfiniBand, it amounts to assigning a new address

to the destination.)

Step 2.2: Find an existing layer Li such that letting Ri be

enriched to support the path and letting

T ðhs; aiÞ ¼ fLig will not close a cycle of
dependencies in the layered dependency graph of

I. If one exists, let T ðhs; aiÞ ¼ fLig, otherwise, leave

T ðhs; aiÞ unchanged.

Step 3: If there are more source/destination pairs that have

not yet been processed, go to Step 2.

Step 4: (Optional) For all layers Li 2 L, go through all

source/address pairs hs; ai and do the following:

Step 4.1: If letting Ri be enriched to support the path of
hs; ai and letting the set of layers returned by

T ðhs; aiÞ be enriched with Li does not close a cycle

of dependencies in the layered dependency graph

of I, perform these enrichments. Otherwise, leave

Ri and T unchanged.

This algorithm has somewhat higher computational com-
plexity than the one in Section 4.3 in that it considers all
possible shortest paths. If we assume that p is the average
number of shortest paths between any source/destination
pair, n is the number of layers, and N is the number of
nodes the complexity is p� n�N3 when the optional steps
are disregarded.

Apart from the computational complexity, the properties
of this algorithm are similar to those of the previous one. If the
original layered network has sufficiently many layers, it will
succeed in finding a routing function R and a traffic
assignment function T that supports all physical shortest
paths in the network. The proof of this is also straightforward.

All possible shortest paths are treated in Step 2 and freedom
from deadlock is guaranteed in that no alterations to T andR
are made without ensuring that no cycles are closed in the
layered dependency graph (Step 2.2).

The cases where the algorithm fails may also be treated
easily:

. If the network is only able to support some of the
shortest paths for a source/destination pair, observe
that all but one arbitrarily chosen of them can be
discarded.

. If T ðhs; aiÞ ¼ undefined for some source/address
pair hs; ai after the algorithm has terminated, one
should solve this by using a nonshortest path.

Step 4 of the algorithm is not strictly necessary, as it does
not improve its ability to support all possible shortest paths.
It does, however, provide load balancing between the
different layers and, for technologies that support choice
between different paths at the source, it is a very natural
extension.

The task of the source node during the operation is first
to select, from the set of shortest paths available, the
physical path of the packet (or packet stream) to be sent.
This provides the destination address (or source routing
header) to be used. Thereafter, the traffic assignment
function T identifies the layer into which the packet (or
stream) is to be injected. If Step 4.1 of the algorithm has been
run, the source must, at this point, choose from a set of
possible layers provided by T .

The number of layers needed to make all shortest paths
available for different network sizes is plotted in Fig. 5.
Again, we varied the network connectivity and, for each
connectivity, generated 100 topologies. Here, also, the
number of layers necessary to allow all shortest paths is
quite modest. For example, for 64 node networks, we never
saw the need for more than six virtual layers to accom-
modate all shortest paths. The variance is still low, and the
maximum number of layers needed occurred when there
were about twice as many links as nodes in the network.

7 LAYERED ROUTING WITH SWITCH ADAPTIVITY

(A-LASH)

Another aspect of choosing between different paths is that
of adaptivity in the switches. Basically, we view the
introduction of adaptivity as a method that provides all
possible shortest paths in a network, but where the choice
between different paths is made by the switches.

The problem in this case is that we cannot know in
advance which path a packet will follow. Therefore, the
algorithm for generating the routing strategy must, in this
case, cater for a nondeterministic choice of path. This has
the implication that we cannot treat one path at a time; we
must consider all possible paths a packet may take and
assign all of these paths to a layer at once.

However, it is possible to improve the above scheme. In
order to find a finer granularity than considering all
possible paths a packet may take in one go, consider the
following: The dependencies that are introduced by the first
switch after the source of a packet stream will never
contribute to a cyclic dependency. The reason for this is that
this dependency starts from an injection link. There can
never be a dependency going to an injection link, since this
is the first link that any packet will traverse. Therefore, we
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can group the shortest paths between every source and

destination according to the link they acquire from the first

switch. The above observation results in the following

algorithm:

Step 1: Let T ðhs; aiÞ ¼ undefined for all source/address

pairs hs; ai, and let Ri be empty for all i such that

1 � i � n.

Step 2: Take one source/destination pair hs; di that has not

yet been treated.

Step 2.1: For each link l, exiting the switch to which the
source is connected and that is used by at least one

shortest path between hs; di, do the following:

Step 2.1.1 Assign a new unique address to the

destination. Let hs; ai denote the source/

address pair associated with the new

destination address.

Step 2.1.2: Associate to hs; ai all the shortest paths

between the source/destination pair hs; di and
that uses l.

Step 2.1.3: Find an existing layer i such that letting

Ri be enriched to support all paths associated

to hs; ai and letting T ðhs; aiÞ ¼ fLig does not

close a cycle of dependencies in the layered

dependency graph of I. If one exists, let

T ðhs; aiÞ ¼ fLig and enrich Ri, otherwise leave

both unchanged.
Step 3: If there are more source/destination pairs that have

not yet been treated, go to Step 2.

Step 4: (Optional) For all layers Li 2 L, go through all

source/address pairs hs; ai.

Step 4.1: If letting Ri be enriched to support the paths

associated to hs; ai and letting the set of layers

returned by T ðhs; aiÞ be enriched with Li does not
close a cycle of dependencies in the layered

dependency graph of I, perform these

enrichments. Otherwise, leave Ri and T

unchanged.

Again, the properties of this algorithm are similar to
those of the previous ones. The complexity is the same,
since every shortest path is considered exactly once in each
layer (disregarding the optional steps). If the original
layered network has sufficiently many layers, it will
succeed in finding an adaptive routing function R and a
traffic assignment function T that supports all physical
shortest paths in the network. The proof of this is also
straightforward.

When the adaptivity in routing choices is moved into the
switches, it is natural to ask whether we can allow
adaptivity between the layers as well. The answer is that
it is indeed possible for cut-through and store and forward
networks. However, it requires that we lift the restriction on
layered routing that all packets remain in the layer into
which they are injected.

Theorem 3. In Cut Through and Store and Forward networks,
the routing function R resulting from the above algorithm can
be extended so that, for any hs; ai, all packets associated with
hs; ai can move freely between all layers in T ðhs; aiÞ without
creating deadlocks.

Before we present the proof, we introduce some
necessary definitions and a theorem from José Duato [7]
on which the proof is built.
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Definition 13. The routing function R0 is a routing subfunc-
tion of R if R0ðc1; c2; aÞ � Rðc1; c2; aÞ for all c1, c2, and a.

The above means that it is possible to find a routing
subfunction from any routing function simply by removing
some routing choices.

Definition 14. Assume the routing function R and its routing
subfunction R0. There is a cross dependency from channel c
to channel c0 if there are packets that

1. will not reach c according to R0 only,
2. may reach c according to R, and
3. will use c0 after c according to R0.

Definition 15. An extended channel dependency graph of a
routing subfunction R0 of R is the channel dependency graph of
R0 enriched with the cross dependencies of R0 with respect to R.

Theorem 4. A connected routing function R for an interconnec-
tion network I is deadlock-free iff there exists a routing
subfunction R0 that is connected and has no cycles in its
extended channel dependency graph.

The proof of this theorem is lengthy, and it is therefore
not repeated here. The proof of Theorem 3 is as follows:

Proof. Let R0 be the routing function that results from the
algorithm and R be the routing function that, in addition,
lets all packets associated with hs; ai move freely
between all layers in T ðhs; aiÞ. Clearly, R0 is a routing
subfunction of R. There are no cross dependencies
between R0 and R in the extended channel dependency
graph, because R0 does not restrict any buffer with
respect to what packets can end up there. Furthermore, it

is clear from the algorithm that the (layered) channel
dependency graph of R0 is free from cycles. Our theorem
thus follows from Theorem 4. tu

The effect on the number of layers needed in order to
support all possible shortest paths is, of course, also of
interest. We ran experiments equivalent to those reported
for deterministic and source adaptive LASH, and the results
are plotted in Fig. 6.

8 EVALUATION OF PERFORMANCE GAINS

We conducted a series of network simulations in order to
evaluate the performance characteristics of layered routing
in different variants. The experiments were divided into
three categories based on the functionality of the underlying
technology.

The first category covers routing methods that can be
utilized by technologies that use deterministic routing. In
this category, we have layered routing with multiple roots
in which each pair of source and destination is assigned to
only one layer (D-MROOTS), and layered shortest-path
routing with only one path between each source and
destination (LASH). For LASH, whenever the number of
shortest paths to choose from was greater than 1, we chose
one at random. These two methods have been compared
with a deterministic version of UpDown routing using a
depth-first spanning tree [19].

In the second category, we place methods that work on
deterministically routed networks, but where the source
node can choose adaptively between several different paths
for each destination. The members of this category are
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layered routing with multiple shortest paths (MP-LASH)
and layered routing with multiple roots, where each source
can choose between all layers for all destinations
(MROOTS). For reference, we include the results for
deterministic LASH in the plots, so that the effect of source
adaptivity can be evaluated.

In the third category, we place those routing methods
that require adaptive routing facilities in the switches. In
these plots, we put results for adaptive layered shortest
path routing (A-LASH), and we compare it with adaptive
UpDown routing, as well as adaptive routing with escape
paths, as described in [23].

We considered network sizes of 16, 32, and 64 switches.
For each network size, we generated 16 different topologies
randomly, each of which had twice as many links as
switches. Thereafter, one traffic node was attached to each
switch, acting as a packet source and packet drain. All
displayed results in Figs. 7, 8, 9, 10, 11, 12, 13, 14, and 15
represent averages over the 16 random topologies.

The speed of each link is one transfer unit, called flit, per
“time unit,” and the experiments were conducted with both
a uniform address distribution and pairwise traffic. For
pairwise traffic, a new set of pairs was drawn for each

topology and load. Throughout the experiments, we used
Virtual Cut Through flow control and a uniform packet size
of 32 flits. Packet generation was governed by a normal
approximation of the Poisson distribution. For each topol-
ogy and load, we let the simulation run until the average
latency had stabilized, before the measurements were
started. Thereafter, the simulation was run for another
50,000 time units. In D-MROOTS, each layer has its own
root and, consequently, its own routing function. The roots
in the different layers of D-MROOTS were chosen so that
the minimal distance between two roots was maximized in
order to balance traffic [15].

8.1 Routing Methods for Deterministic
Technologies

In order to compare the deterministic routing methods under

equal conditions, we had to let LASH, D-MROOTS, and

UpDown have the same number of virtual channels available

per physical channel. Therefore, for each generated topology,

we ran the algorithm in Section 5 in order to generate the

LASH-routing algorithm with the minimal number of layers

that guaranteed shortest-path routing. Thereafter, UpDown
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and D-MROOTS were allowed to use the same number of

virtual lanes as LASH needed for that topology. The two latter

routing methods were, however, only allowed to use one

given layer for any source/destination pair. This guarantees

that packets will be delivered in the correct order, which is a

distinguishing factor of true deterministic routing. The choice

of layer was made by distributing the source/destination

pairs as evenly between the layers as possible. The results are

LYSNE ET AL.: LAYERED ROUTING IN IRREGULAR NETWORKS 61

Fig. 9. Deterministic routing, 64 nodes. (a) Uniform and (b) pairwise.
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displayed in Figs. 7, 8, and 9 for networks of sizes 16, 32, and

64 nodes, respectively.
The most apparent result here is that the layered routing

techniques LASH and D-MROOTS perform consistently

better than UpDown for uniform traffic. Furthermore,

LASH performs consistently better than D-MROOTS,
although the difference here is smaller. This is to be
expected, because the hot-spot that UpDown creates around
the root is, in D-MROOTS, replaced by a set of more lightly
loaded roots. Furthermore, LASH should be expected to
perform better than the two others since it has no concept of
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roots and does not inherently generate hot-spots in the
network.

The tendency for LASH and DMRoots to perform better
than UpDown is there for pairwise traffic as well, although
the differences between the different methods are far smaller
there. In order to explain this, we must first observe that the
important contribution of LASH and D-MROOTS is that they
alleviate the tendency for congestion that will appear around
the root of the UpDown tree. In a uniform traffic pattern, it is
likely that the limiting factor of the throughput lies in this
congested area. In pairwise traffic, however, each node sends
packets to one other node exclusively. This means that, in
generating random pairs, there may easily be other areas in
the network that are as limiting performance-wise as the root
is. This benefit of LASH and D-MROOTS will, therefore, be of
less significance.

8.2 Source Adaptive Routing Methods

Source-adaptive routing methods allow the source to
choose adaptively one of several paths to each destination.
The layered routing functions that open for this are
MROOTS and MP-LASH. In the experiments, we chose to
test two versions of MP-LASH: one where the source could
choose between different layers for each path (i.e., Step 4 of
the algorithm in Section 6 was executed), and one where
each path was assigned to exactly one layer. For MP-LASH,
the source/address pairs were distributed among the layers
as evenly as possible. Whenever a source can choose
between several paths, this choice is made at random.

Again, we let the number of virtual channels available
for each method be identical by letting the algorithm for
MP-LASH (Section 6) first decide the number of layers that
MP-LASH needed to guarantee shortest-path routing.
Thereafter, MROOTS and LASH were allowed to use the
same number of virtual layers as MP-LASH needed for that
topology. The results are displayed in Figs. 10, 11, and 12
for networks of sizes 16, 32, and 64 nodes, respectively.

The plots show that, for uniform traffic, MROOTS per-
forms consistently poorer than the other three methods,
although the difference is not very significant for small
networks. In fact, there is no improvement from D-MROOTS
to MROOTS. This means that the extra load-balancing that
source adaptivity provides does not improve MROOTS, as it
is already fairly well-balanced. In fact, using all possible
layers for all source destination pairs in MROOTS negatively

affects throughput for large networks. This is because one
congested layer will influence all source destination pairs. A
less intuitive result is that the three other routing methods
perform almost identically. In particular, one would expect
that the source adaptivity exploited in MP-LASH should
enable it to outperform LASH. However, it turns out that
choosing the packet paths arbitrarily on the fly, as the two
versions of MP-LASH do, does not yield any benefit in load
balancing under uniform traffic, compared to choosing the
paths arbitrarily in advance, as LASH does. If our versions of
MP-LASH were able to choose packet paths based on
knowledge of where there was congestion in the network,
the picture might be different. We do, however, not see this as
a viable option for source adaptive routing, so we choose to
disregard this possibility. Another nonintuitive result is that
MP-LASH gains nothing from being supplied with multiple
virtual lanes under uniform traffic conditions. In fact, we see
that this even results in a slight drop in throughput for large
networks. There are two reasons for this result. First, the effect
of one single congested layer is more severe with multiple
virtual lanes, since more source-destination pairs will be
affected. Second, when more source-destination pairs use one
single layer, the layered dependency graph in this layer will
contain more dependencies. Therefore, the congestion three
generated by one hot-spot in one layer will spread to more
links, which will result in poorer overall throughput.

For pairwise traffic, however, the picture changes. Here,
MP-LASH performs consistently best, and LASH performs
relatively poorly for small networks, although it improves as
the networks grow larger. Furthermore, MROOTS performs
relatively well compared to its performance for uniform
traffic. The differences between the methods are, however,
relatively small. In pairwise traffic where the pairs are
generated randomly, there is a tendency for the network to
be loaded very unevenly compared to uniform traffic. The
ability of MROOTS to spread traffic in the network by not
using shortest paths is, therefore, beneficial, because a root
placed in an area through which few pairs communicate will
lead to exploitation of more of the network resources. The
reason that LASH performs relatively poorly here is that, for
pairwise traffic, each link accommodates relatively few
source destination pairs because there are fewer source/
destination pairs that are active. Therefore, for LASH, a
heavily loaded link has to accommodate all traffic generated
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by a small number of sources. MP-LASH will even this out
over more links, and uniform traffic improves the situation by
giving the link smaller fractions of traffic from each source.

8.3 Switch Adaptive Routing Methods

The adaptive layered routing function that is of relevance for
networks with real adaptivity is described in Section 7. We
call this algorithm A-LASH. The most relevant routing
methods of comparison are, of course, real adaptive routing
with escape paths, as in [23], and adaptive UpDown routing.
For fair comparison, we let the algorithm for A-LASH decide
how many layers it is needed in order to guarantee shortest-
path routing and, thereafter, we let UpDown and Escape
routing benefit from the same number of layers. In particular,
we let UpDown routing have adaptivity between both paths
and layers. For Escape, we let all layers but one be open for
fully adaptive routing. The last layer was used as an escape
layer that was routed according to UpDown. The results are
displayed in Figs. 13, 14, and 15, for networks of sizes 16, 32,
and 64 nodes, respectively. For reference, we add the results
for deterministic LASH.

The most striking result is that A-LASH and Escape
perform almost identically for all topology sizes and both
traffic patterns. The probable reason for this is that they are
very similar. They both allow any packet to use any shortest
path. The apparent drawback of Escape routing that the
packets in the escape layers use nonshortest paths is
balanced by the drawback of A-LASH that there are fewer
virtual choices available for each packet. Further, adaptive
UpDown routing scales poorly with network size, even
compared to deterministic LASH. Whereas UpDown rout-
ing performs relatively well for networks with 16 nodes, it
degrades to be poorer than deterministic LASH in 32-switch
networks for uniform traffic.

Here, also, we see a tendency for the differences between
the routing methods to diminish for pairwise traffic. Again,
this is due to the fact that the many hot-spots generated by
random pairs can, to a more limited extent, be ameliorated
by routing strategies than can the fewer hot-spots generated
by uniform traffic and shortest-path routing.

8.4 Limiting the Number of Layers

All the comparisons of routing strategies we have presented
above are based on allowing the same number of virtual
channels to each strategy. Furthermore, the number of
virtual channels used in each comparison has been imposed
by the strategy that requires the largest number of layers.
This is a reasonable strategy for comparison, because new
technologies tend to have far more virtual channels
available than are ever needed by our methods (e.g.,
InfiniBand2 and AS have up to 16 virtual channels each).
There will, however, be cases where the number of layers
available are truly limited, either because the virtual
channels are needed for something other than effective
routing (e.g., Quality of Service), or because only a limited
number of the specified virtual channels have been
implemented.

Let us assume that, in the cases where the number of
layers available for LASH is too small, we allow one of the
available layers to be routed according to the UpDown
scheme. Clearly, if there were only one layer available,
LASH would degenerate to being identical to UpDown. By
adding one layer at a time, the improvement toward the full
value of LASH as demonstrated in the simulations would
be stepwise. For networks of 32 nodes, the full value of

LASH would have been reached already at two layers in
many cases, and three layers in all cases, as can be seen in
Fig. 3. For networks with 64 switches, the full value of
LASH is realized with three layers in most cases and four
layers in almost all cases.

A similar argument can be developed for MP-LASH.
Assume that, when exposed to a limited number of layers,
the algorithm first uses only one path per source/destina-
tion pair. Thereafter, it uses one layer for UpDown routing
when there are not enough layers for single shortest paths.
In that case, the method will first degenerate to ordinary
LASH (and, thereby, improve if the network is large,
according to our results), and then to UpDown.

For A-LASH we could make a similar analysis, but it
would not be as relevant. The reason is that A-LASH’s main
competitor is Escape routing. While A-LASH would clearly
lose much of its adaptivity when the number of layers are
reduced, Escape routing remains fully adaptive down to
two virtual layers. A-LASH will, therefore, be able to
compete with Escape routing only under the assumption
that a sufficient number of layers are present.

9 CONCLUSION

We have presented a method for generating routing functions
for irregular network topologies. The method is based on
using virtual channels to divide the physical network into
different logical layers. Instead of restricting the paths that a
packet can take through a network, we avoid deadlock by
restricting the layers that each packet can use.

The method can be used to obtain load balancing as well
as shortest-path routing. It can be applied to a wide range of
technologies ranging from true deterministic ones, via
source adaptive ones, to technologies where the switches
can choose adaptively between multiple output ports for
each packet. The required functionality in the switches is
very limited. Extensive experiments have determined that
the number of virtual channels that are needed for our
method is very modest, even for quite large networks. None
of the many thousands of topologies that we have tested
have required more than six virtual channels for LASH,
which is easily accommodated in most new and emerging
network technologies. Our method can be used even if the
technology has limited (as in e.g., InfiniBand) or even no (as
in AS) means for letting packets migrate between layers.

Our simulation results show that the added routing
efficiency of our method yields huge performance gains
compared to standard UpDown routing in deterministic
network technologies. For source adaptive technologies, our
method yields even greater improvement for small and
medium sized networks, in particular, for pairwise traffic.
For larger networks, source adaptivity does not pay off in
network performance compared to our method used with
deterministic routing.

For switch adaptive technologies, however, there seems
to be no gain in our method compared to fully adaptive
routing with escape paths as it is described in [23]. The
reason for this is that the routing flexibility provided by
fully adaptive routing is comparable to the routing
flexibility provided with our method. There are, however,
many technologies that do not provide switch adaptivity,
either because they require packets to be delivered in order,
or because they could not afford the added complexity in
the switch. The main contribution of our method is,
therefore, that it provides significantly higher performance
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than competing methods to technologies that do not have

switch adaptivity. This comes with no other requirement on

the technology than that it should support a limited number

of virtual channels per physical channel.
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