EE582
Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim
School of Electrical Engineering and Computer Science
Washington State University

Placement
Metrics for Placement

- Wirelength
- Timing
- Power
- Routing congestion
Wirelength Estimation

- Half-perimeter wirelength (HPWL)

\[HPWL = W + H \]
Wirelength Estimation
Placement Algorithms

• Constructive
 – Min-cut based placement
 – Force-directed

• Analytical
 – Gordian
 – Kraftwerk

• Iterative improvement
 – Simulated annealing (Timberwolf)
 – Pairwise exchange
Min-Cut-Based Placement

• Idea
 – Cutsize minimization ≈ Reduction of global wires
Min-Cut-Based Placement

- Partitioning
Min-Cut-Based Placement

- Algorithm
 - Min_Cut_Placement (N, n, C)
 /* N: layout
 n: # cells to be placed
 n_0: # cells in a slot
 C: connectivity matrix (netlist) */
 begin
 if (n ≤ n_0) then
 place_cells (N, n, C);
 else
 (N_1, N_2) = cut_surface (N);
 (n_1, C_1), (n_2, C_2) = partition (n, C);
 Min_Cut_Placement (N_1, n_1, C_1);
 Min_Cut_Placement (N_2, n_2, C_2);
 end
Min-Cut-Based Placement

- Example (Quadrature placement)
 - KL partitioning + Quadrature placement
Min-Cut-Based Placement

• Terminal propagation
 – Dunlop and Kernighan, TCAD’85

• Original min-cut placement algorithm
 – Does not consider the locations of terminal pins.
Min-Cut-Based Placement

• What if we swap \{1,3,6,9\} and \{2,4,5,7\}?
Min-Cut-Based Placement

- Terminal propagation
Min-Cut-Based Placement

- Terminal propagation

P will stay in $R1$ for the rest of partitioning!
Min-Cut-Based Placement

- Terminal propagation

Don’t use p to bias the solution in either direction!

Use p!
Min-Cut-Based Placement

- Terminal propagation

![Diagram showing terminal propagation](attachment:image.png)
Min-Cut-Based Placement

• Example

\[n_1 = \{e, f\} \]
\[n_2 = \{a, e, i\} \]
\[n_3 = \{b, f, g\} \]
\[n_4 = \{c, g, l\} \]
\[n_5 = \{d, l, h\} \]
\[n_6 = \{e, i, j\} \]
\[n_7 = \{f, j\} \]
\[n_8 = \{g, j, k\} \]
\[n_9 = \{l, o, p\} \]
\[n_{10} = \{h, p\} \]
\[n_{11} = \{i, m\} \]
\[n_{12} = \{j, m, n\} \]
\[n_{13} = \{k, n, o\} \]

undirected graph model w/ k-clique weighting
thin edges = weight 0.5, thick edges = weight 1
Min-Cut-Based Placement

• Example

(a) cut 1
(b) cut 2
Min-Cut-Based Placement

• Example

[Diagram showing a graph with nodes labeled m, n, i, j, k, l, o, p, g, h, c, d, e, f, a, b and connections between them. Two windows are marked with p1 and p2.]
Min-Cut-Based Placement

• Example
Min-Cut-Based Placement

• Example
Min-Cut-Based Placement

• Example

```
  m  n  o  p  
  i  j  k  h  
  e  f  c  g  
  a  b  d  l  

<p>| | | |
|   |   |   |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
  \  \  \  
  |  |  |  |
  \  \  \  
  p1

  n  o  p
  j  k  h
```

window
Min-Cut-Based Placement

• Example
Min-Cut-Based Placement

• Example
This page is intentionally left blank.
Analytical Placement

• Kraftwerk2
• Net model
 – Two-pin nets

• Connectivity matrix
 \[
 \begin{pmatrix}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 \end{pmatrix}
 \]

• Ideal wirelength cost function
 – \(\Gamma = |x_1 - x_2| + |y_1 - y_2| \)

• Quadratic placement
 – Cost function \(\Gamma \) is quadratic.
• Quadratic cost function
 \[\Gamma = (x_1 - x_2)^2 + (y_1 - y_2)^2 = \Gamma_x + \Gamma_y \]

• \(\Gamma_x \): x-component
• \(\Gamma_y \): y-component

• How can we optimize the cost function?
 \[\frac{\partial \Gamma_x}{\partial x_1} = 0, \frac{\partial \Gamma_x}{\partial x_2} = 0 \]
 \[\frac{\partial \Gamma_y}{\partial y_1} = 0, \frac{\partial \Gamma_y}{\partial y_2} = 0 \]
• Example

\[\Gamma_x = (x - p_1)^2 + (x - p_2)^2 \]
\[\frac{\partial \Gamma_x}{\partial x} = 0 = 2(x - p_1) + 2(x - p_2) \]
\[x = \frac{p_1 + p_2}{2} \]
Kraftwerk2

• Example

\[\Gamma_x = (x_1 - p_1)^2 + (x_1 - x_2)^2 + (x_2 - p_2)^2 \]
\[\frac{\partial \Gamma_x}{\partial x_1} = 0 = 2(x_1 - p_1) + 2(x_1 - x_2) \]
\[\frac{\partial \Gamma_x}{\partial x_2} = 0 = -2(x_1 - x_2) + 2(x_2 - p_2) \]
\[x_1 = \frac{2p_1 + p_2}{3} \]
\[x_2 = \frac{p_1 + 2p_2}{3} \]
Kraftwerk2

• The location of each cell is represented by
 – \((x, y)\)

• The x-locations of M movable cells
 – \(x = (x_1, x_2, \ldots, x_M)^T\)
 – \(C_x\): cell-to-cell connectivity matrix
 – \(d_x\): cell-to-pin connectivity matrix (constant)

\[
\Gamma_x = 0.5 \ x^T C_x x + x^T d_x + \text{const.}
\]
Kraftwerk2

• Wirelength minimization

\[\frac{\partial \Gamma_x}{\partial x_1} = 0, \frac{\partial \Gamma_x}{\partial x_2} = 0, \ldots, \frac{\partial \Gamma_x}{\partial x_M} = 0 \]

– i.e., \(\nabla_x \Gamma_x = C_x x + d_x = 0 \)

• where \(\nabla_x = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_M})^T \)

– Net force: \(F_{x}^{\text{net}} = \nabla_x \Gamma_x = C_x x + d_x \)

\[\Gamma_x = 0.5 x^T C_x x + x^T d_x + \text{const.} \]
• Applying only the net force makes a lot of overlaps.
Kraftwerk2

• Move force
 – Removes overlaps = spread cells out.

• \(x \): current location (to be computed)
• \(x' \): last location
• Change in the cell location
 – \(\Delta x = x - x' \)
Kraftwerk2

• Density function
 – $D_{\text{cell}}(x, y)$
 • Cell density at each location

• Move force
 – $F_{x,i}^{\text{move}} = w_i \cdot (x_i - x_i^o)$
 • x_i: current location (to be computed)
 • x_i^o: target location

\[
\dot{x}_i = x_i' - \frac{\partial}{\partial x} \Phi(x, y) \bigg|_{(x_i', y_i')} \quad \text{Density}
\]
Kraftwerk2

- Net force

\[F_{x}^{\text{net}} = C_{x}x + d_{x} \]

- Move force

\[F_{x}^{\text{move}} = C_{x}^{o}(x - x^{o}) = C_{x}^{o}(x - x' + \Phi_{x}) \]
Kraftwerk2

- Net force is used for wirelength minimization
- Do not collapse the cells back to their initial locations.

- Hold force

\[F_x^{\text{hold}} = -(C_x x' + d_x) \]
• Final equation

\[F_x^{\text{net}} + F_x^{\text{move}} + F_x^{\text{hold}} = 0 \]

\[[C_x x + d_x] + [C_x^o (x - x' + \Phi_x)] + [-(C_x x' + d_x)] = 0 \]

\[(C_x + C_x^o) \cdot (x - x') = -C_x^o \cdot \Phi_x \]

\[(C_x + C_x^o) \cdot \Delta x = -C_x^o \cdot \Phi_x \]

\[x = x' + \Delta x \]
Kraftwerk2

(a) 1
(b) 5a
(c)
TABLE II
RESULTS IN THE ISPD 2005 CONTEST BENCHMARK SUITE

| Circuit | Kraftwerk2 HPWL | Kraftwerk2 CPU | FastPlace3 HPWL | FastPlace3 CPU | RQL HPWL | RQL CPU | NTUPlace3 HPWL | NTUPlace3 CPU | APlace2 HPWL | APlace2 CPU | mFAR HPWL | mFAR CPU | Dragon HPWL | Dragon CPU | mPL5 HPWL | mPL5 CPU | Capo HPWL | Capo CPU | FengShui HPWL | FengShui CPU |
|-----------|-----------------|----------------|-----------------|----------------|----------|---------|----------------|---------------|-------------|------------|----------|----------|----------|----------|-----------|----------|----------|--------|----------|-----------|----------|
| adaptec | 82.43 | 262 | 79.38 | 353 | 77.82 | 751 | 80.93 | 883 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| adaptec2 | 92.85 | 349 | 93.08 | 559 | 88.51 | 1247 | 89.85 | 906 | 87.31 | 91.53 | 94.72 | 97.11 | 99.71 | 122.99 | |
| adaptec3 | 227.22 | 713 | 217.80 | 2275 | 210.96 | 2405 | 214.20 | 1944 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
| adaptec4 | 199.43 | 709 | 201.36 | 1411 | 188.86 | 2096 | 193.74 | 2325 | 187.65 | 190.84 | 200.88 | 200.94 | 211.25 | 337.22 | |
| bigblue1 | 97.67 | 407 | 95.68 | 604 | 94.98 | 1160 | 97.28 | 1675 | 94.64 | 97.70 | 102.39 | 98.31 | 108.21 | 114.57 | |
| bigblue2 | 154.74 | 559 | 155.10 | 1380 | 150.03 | 2261 | 152.20 | 3352 | 143.82 | 168.70 | 159.71 | 173.22 | 172.30 | 285.43 | |
| bigblue3 | 343.32 | 2070 | 379.88 | 4642 | 323.09 | 4864 | 348.48 | 6256 | 357.89 | 379.95 | 380.45 | 369.66 | 382.63 | 471.15 | |
| bigblue4 | 852.40 | 4147 | 832.88 | 6862 | 797.66 | 12410 | 829.16 | 11308 | 833.21 | 876.28 | 903.96 | 904.19 | 1098.76 | 1040.05 | |
| Average | 1.000 | 1.000 | 1.000 | 2.00 | 0.959 | 3.12 | 0.979 | 3.48 | 0.967 | 1.028 | 1.046 | 1.053 | 1.126 | 1.438 | |
TABLE III

RESULTS IN THE ISPD 2006 CONTEST BENCHMARK SUITE. (a) **Kraftwerk’s Results.** As required in this benchmark suite, the CPU factor is limited to ±10%. The “raw” CPU factors are −13.50% and −10.98%, respectively. (b) Results of Other Placers

<table>
<thead>
<tr>
<th>Circuit</th>
<th>HPWL</th>
<th>Overflow factor</th>
<th>CPU</th>
<th>CPU factor</th>
<th>HPWL</th>
<th>HPWL+ Overflow</th>
<th>HPWL+ Overflow+ CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>adaptec5</td>
<td>433.84</td>
<td>3.606%</td>
<td>1618</td>
<td>−9.35%</td>
<td>1.071</td>
<td>1.032</td>
<td>0.939</td>
</tr>
<tr>
<td>newblue1</td>
<td>65.92</td>
<td>0.415%</td>
<td>603</td>
<td>−8.38%</td>
<td>1.057</td>
<td>1.043</td>
<td>0.956</td>
</tr>
<tr>
<td>newblue2</td>
<td>203.91</td>
<td>1.286%</td>
<td>508</td>
<td>−10.00%*</td>
<td>1.033</td>
<td>1.082</td>
<td>0.975</td>
</tr>
<tr>
<td>newblue3</td>
<td>278.51</td>
<td>0.382%</td>
<td>526</td>
<td>−10.00%+</td>
<td>1.018</td>
<td>1.067</td>
<td>0.961</td>
</tr>
<tr>
<td>newblue4</td>
<td>304.24</td>
<td>1.709%</td>
<td>1553</td>
<td>−8.63%</td>
<td>1.068</td>
<td>1.033</td>
<td>0.945</td>
</tr>
<tr>
<td>newblue5</td>
<td>548.38</td>
<td>2.694%</td>
<td>2622</td>
<td>−9.50%</td>
<td>1.109</td>
<td>1.054</td>
<td>0.957</td>
</tr>
<tr>
<td>newblue6</td>
<td>528.59</td>
<td>1.702%</td>
<td>2579</td>
<td>−9.89%</td>
<td>1.048</td>
<td>1.036</td>
<td>0.936</td>
</tr>
<tr>
<td>newblue7</td>
<td>1126.58</td>
<td>3.155%</td>
<td>4828</td>
<td>−9.06%</td>
<td>1.053</td>
<td>1.051</td>
<td>0.958</td>
</tr>
<tr>
<td>Average</td>
<td>1.869%</td>
<td>−9.35%</td>
<td>1.057</td>
<td>1.050</td>
<td>0.953</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Placer</th>
<th>Overflow factor</th>
<th>CPU factor</th>
<th>HPWL</th>
<th>HPWL+ Overflow</th>
<th>HPWL+ Overflow+ CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraftwerk2</td>
<td>1.87 %</td>
<td>−9.35 %</td>
<td>1.057</td>
<td>1.050</td>
<td>0.953</td>
</tr>
<tr>
<td>NTUplace3</td>
<td>6.26 %</td>
<td>−2.61 %</td>
<td>0.976</td>
<td>1.007</td>
<td>0.990</td>
</tr>
<tr>
<td>RQL</td>
<td>6.80 %</td>
<td>n.a. %</td>
<td>0.981</td>
<td>1.018</td>
<td>n.a.</td>
</tr>
<tr>
<td>Fastplace3</td>
<td>n.a.</td>
<td>−8.17 %</td>
<td>n.a.</td>
<td>n.a.</td>
<td>1.040</td>
</tr>
<tr>
<td>mPL6</td>
<td>1.36 %</td>
<td>1.58 %</td>
<td>1.035</td>
<td>1.020</td>
<td>1.040</td>
</tr>
<tr>
<td>mFAR</td>
<td>2.71 %</td>
<td>−0.12 %</td>
<td>1.108</td>
<td>1.107</td>
<td>1.108</td>
</tr>
<tr>
<td>APlace3</td>
<td>3.83 %</td>
<td>5.31 %</td>
<td>1.097</td>
<td>1.107</td>
<td>1.165</td>
</tr>
<tr>
<td>Dragon</td>
<td>0.12 %</td>
<td>−5.90 %</td>
<td>1.331</td>
<td>1.300</td>
<td>1.232</td>
</tr>
<tr>
<td>DPlace</td>
<td>9.32 %</td>
<td>−4.54 %</td>
<td>1.343</td>
<td>1.414</td>
<td>1.364</td>
</tr>
<tr>
<td>Capo</td>
<td>0.32 %</td>
<td>2.69 %</td>
<td>1.375</td>
<td>1.344</td>
<td>1.385</td>
</tr>
</tbody>
</table>

(a)
TABLE IV

Results in Mixed-Size and Floorplacement Benchmark Suites.

(a) ICCAD 2004 Mixed-Sized Benchmark Suite. (b) IBM-HB+ Floorplacement Benchmark Suite.

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Kraftwerk2</th>
<th>FDP</th>
<th>NTUPlace3</th>
<th>APlace2</th>
<th>mPL5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPWL</td>
<td>CPU</td>
<td>HPWL</td>
<td>CPU</td>
<td>HPWL</td>
</tr>
<tr>
<td>ibm01</td>
<td>2.24</td>
<td>11</td>
<td>2.42</td>
<td>145</td>
<td>2.17</td>
</tr>
<tr>
<td>ibm02</td>
<td>4.90</td>
<td>27</td>
<td>5.11</td>
<td>284</td>
<td>4.63</td>
</tr>
<tr>
<td>ibm03</td>
<td>6.61</td>
<td>24</td>
<td>7.08</td>
<td>337</td>
<td>6.65</td>
</tr>
<tr>
<td>ibm04</td>
<td>7.63</td>
<td>29</td>
<td>7.69</td>
<td>317</td>
<td>7.21</td>
</tr>
<tr>
<td>ibm05</td>
<td>9.79</td>
<td>33</td>
<td>n.a.</td>
<td>n.a.</td>
<td>9.66</td>
</tr>
<tr>
<td>ibm06</td>
<td>6.11</td>
<td>40</td>
<td>6.20</td>
<td>389</td>
<td>5.94</td>
</tr>
<tr>
<td>ibm07</td>
<td>10.42</td>
<td>52</td>
<td>10.57</td>
<td>607</td>
<td>9.90</td>
</tr>
<tr>
<td>ibm08</td>
<td>12.97</td>
<td>85</td>
<td>13.30</td>
<td>719</td>
<td>12.29</td>
</tr>
<tr>
<td>ibm09</td>
<td>11.98</td>
<td>71</td>
<td>13.30</td>
<td>713</td>
<td>12.00</td>
</tr>
<tr>
<td>ibm10</td>
<td>30.15</td>
<td>232</td>
<td>30.70</td>
<td>924</td>
<td>28.49</td>
</tr>
<tr>
<td>ibm11</td>
<td>17.59</td>
<td>107</td>
<td>18.41</td>
<td>950</td>
<td>17.54</td>
</tr>
<tr>
<td>ibm12</td>
<td>31.42</td>
<td>124</td>
<td>36.46</td>
<td>1472</td>
<td>32.07</td>
</tr>
<tr>
<td>ibm13</td>
<td>22.48</td>
<td>147</td>
<td>23.60</td>
<td>1175</td>
<td>22.16</td>
</tr>
<tr>
<td>ibm14</td>
<td>35.13</td>
<td>308</td>
<td>37.84</td>
<td>2185</td>
<td>35.36</td>
</tr>
<tr>
<td>ibm15</td>
<td>47.58</td>
<td>468</td>
<td>47.69</td>
<td>2468</td>
<td>45.38</td>
</tr>
<tr>
<td>ibm16</td>
<td>54.17</td>
<td>527</td>
<td>61.27</td>
<td>2792</td>
<td>57.59</td>
</tr>
<tr>
<td>ibm17</td>
<td>66.63</td>
<td>474</td>
<td>69.45</td>
<td>3577</td>
<td>66.73</td>
</tr>
<tr>
<td>ibm18</td>
<td>42.36</td>
<td>609</td>
<td>44.88</td>
<td>4369</td>
<td>41.58</td>
</tr>
<tr>
<td>Average</td>
<td>1.000</td>
<td>1.00</td>
<td>1.056</td>
<td>9.02</td>
<td>0.982</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Circuit</th>
<th>Kraftwerk2</th>
<th>SCAMPI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPWL</td>
<td>CPU</td>
</tr>
<tr>
<td>ibm-HB+01</td>
<td>2.82</td>
<td>10</td>
</tr>
<tr>
<td>ibm-HB+02</td>
<td>5.87</td>
<td>26</td>
</tr>
<tr>
<td>ibm-HB+03</td>
<td>9.23</td>
<td>16</td>
</tr>
<tr>
<td>ibm-HB+04</td>
<td>9.98</td>
<td>21</td>
</tr>
<tr>
<td>ibm-HB+06</td>
<td>8.79</td>
<td>12</td>
</tr>
<tr>
<td>ibm-HB+07</td>
<td>14.80</td>
<td>16</td>
</tr>
<tr>
<td>ibm-HB+08</td>
<td>21.27</td>
<td>19</td>
</tr>
<tr>
<td>ibm-HB+09</td>
<td>17.44</td>
<td>18</td>
</tr>
<tr>
<td>ibm-HB+10</td>
<td>47.51</td>
<td>47</td>
</tr>
<tr>
<td>ibm-HB+11</td>
<td>25.92</td>
<td>23</td>
</tr>
<tr>
<td>ibm-HB+12</td>
<td>51.38</td>
<td>43</td>
</tr>
<tr>
<td>ibm-HB+13</td>
<td>34.90</td>
<td>23</td>
</tr>
<tr>
<td>ibm-HB+14</td>
<td>63.11</td>
<td>42</td>
</tr>
<tr>
<td>ibm-HB+15</td>
<td>92.88</td>
<td>46</td>
</tr>
<tr>
<td>ibm-HB+16</td>
<td>95.60</td>
<td>54</td>
</tr>
<tr>
<td>ibm-HB+17</td>
<td>148.16</td>
<td>96</td>
</tr>
<tr>
<td>ibm-HB+18</td>
<td>73.95</td>
<td>52</td>
</tr>
<tr>
<td>Average</td>
<td>1.000</td>
<td>1.00</td>
</tr>
</tbody>
</table>