Physical Structure of CMOS Integrated Circuits

Dae Hyun Kim

EECS
Washington State University
References

 – Chapter 3
Goal

• Understand the physical structure of CMOS integrated circuits (ICs)
Logical vs. Physical

- Logical structure

- Physical structure

Integrated Circuit Layers

• Semiconductor
 – Transistors (active elements)

• Conductor
 – Metal (interconnect)
 • Wire
 • Via

• Insulator
 – Separators
Integrated Circuit Layers

- Silicon substrate, insulator, and two wires (3D view)

- Side view
 - Metal 1 layer
 - Insulator

- Top view
Integrated Circuit Layers

- Two metal layers separated by insulator (side view)

- Top view
Integrated Circuit Layers

Interconnects

22 nm Process

14 nm Process

80 nm minimum pitch

52 nm (0.65x) minimum pitch

52 nm Interconnect Pitch Provides Better-than-normal Interconnect Scaling

Embargo until 8-11-14, 9 am PDT
Integrated Circuit Layers

• Signal transfer speed is affected by the interconnect resistance and capacitance.
 – Resistance ↑ => Signal delay ↑
 – Capacitance ↑ => Signal delay ↑
Integrated Circuit Layers

• Resistance

\[R = \rho \frac{l}{A} = \frac{\rho \cdot l}{t \cdot w} = R_s \cdot \frac{l}{w} \]

- \(R_s \): sheet resistance (constant)
- \(\rho \): resistivity \((\frac{1}{\sigma}, \sigma \): conductivity\)
 - Material property (constant)
 - Unit: \(\Omega \cdot m \)
- \(t \): thickness (constant)
- \(w \): width (variable)
- \(l \): length (variable)

• Example

\[\rho: 17.1n\Omega \cdot m, \ t: 0.13\mu m, \ w: 65nm, \ l: 1000\mu m \]

\[R = (17.1 \cdot 10^{-9} \Omega \cdot m) \cdot \frac{1000 \cdot 10^{-6}m}{(0.13 \cdot 10^{-6}m)(65 \cdot 10^{-9}m)} = 2023\Omega \]
Integrated Circuit Layers

- Capacitance
 \[C = \varepsilon \frac{t \cdot l}{s} \]
 - \(\varepsilon \): permittivity
 - Material property (constant)
 - Unit: F/m
 - \(s \): distance between two conductors

- Example
 - \(\varepsilon \): 1.8 \(\times \) 10\(^{-11} \) F/m, \(t \): 0.13 \(\mu \)m, \(s \): 65 nm, \(l \): 1000 \(\mu \)m
 \[C = (1.8 \cdot 10^{-11} F/m) \cdot \frac{(0.13 \cdot 10^{-6} m) \cdot (1000 \cdot 10^{-6} m)}{65 \cdot 10^{-9} m} = 3.6 \cdot 10^{-14} F = 36 fF \]
MOSFETs – Physical Shape

• What a MOSFET looks like at the physical level
 – L: Channel length
 – W: Channel width
 – $\frac{W}{L}$: Aspect ratio
MOSFETs – Device Physics

• Atomic density of a silicon crystal
 – $N_{Si} \approx 5 \times 10^{22}$

• Intrinsic carrier density
 – # free electrons (due to thermal excitations)
 – $n_i \approx 1.45 \times 10^{10}/cm^3$ (at room temperature)

• Mass action law when no current flows in pure silicon
 – $n = p = n_i$
 – $np = n_i^2$
 • n: # free electrons
 • p: # free holes
MOSFETs – Device Physics

• Doping
 – Add impurity atoms (dopants) to enhance # electrons or # holes.
 – n-type material: if more electrons are added (donors).
 • N_d: # donors ($10^{16} \sim 10^{19} / cm^3$)
 • # free electrons (majority carriers): $n_n \approx N_d / cm^3$
 • # holes (minority carriers): $p_n \approx \frac{n_i^2}{N_d} / cm^3$
 • $n_n \gg p_n$
 – p-type material: if more holes are added (acceptors).
 • N_a: # acceptors ($10^{14} \sim 10^{19} / cm^3$)
 • # holes (majority carriers): $p_p \approx N_a / cm^3$
 • # free electrons (minority carriers): $n_p \approx \frac{n_i^2}{N_a} / cm^3$
 • $p_p \gg n_p$
MOSFETs – Device Physics

- **Conductivity**
 \[\sigma = q(\mu_n \cdot n + \mu_p \cdot p) \]
 - \(q \): The charge of an electron \((-1.602 \cdot 10^{-19})\)
 - \(\mu_n \): Electron mobility \((1360cm^2/V \cdot s)\)
 - \(\mu_p \): Hole mobility \((480cm^2/V \cdot s)\)

- **Intrinsic silicon**
 - \(\sigma \approx 4.27 \cdot 10^{-6} \)
 - \(\rho \approx 2.34 \cdot 10^5 \)

- **Quartz glass (insulator)**
 - \(\rho \approx 10^{12} \)

- **Mobility**
 - \(\mu_n > \mu_p \)

- **Impurity scattering**
 - Adding a large number of impurity atoms reduces the mobility.
PN Junction

- **pn junction**
- **Forward current** $I > 0$
- **Reverse blocking** $I = 0$
MOSFETs

nFET

n+: heavily doped with donors

pFET

p+: heavily doped with acceptors

* Contacts are used to connect source/drain/gate to metal 1.
MOSFETs – Device Physics

- t_{ox}: oxide thickness
 - Typically a few nm
- Gate material
 - Polysilicon (called poly)
 - Metal
- Oxide capacitance (Gate(M) – Insulator(O) – Semiconductor(S))
 - $C_G = c_{ox} \cdot A_G$
 - $c_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$: unit gate capacitance
 - $\varepsilon_{ox} \approx 3.9\varepsilon_0 = 3.9 \cdot 8.854 \cdot 10^{-12} F/m$
 - A_G: gate area ($= L \cdot W$)
 - Example
 - $t_{ox} = 8nm, L = 45nm, W = 70nm$
 - $C_G \approx 0.013 fF$
MOSFETs – Device Physics (nFET)

- **Current**
 - **Channel charge:** \(Q_c = -C_G \left(V_G - V_{Tn} \right) \)
 - No charge forms until \(V_G \) reaches \(V_{Tn} \).
 - **Current flowing the channel:** \(I = \frac{|Q_c|}{\tau_t} \)
 - \(\tau_t = \frac{L}{v} \): channel transit time (the average time needed for an electron to move from S to D).
 - \(v = \mu_n \cdot E = \mu_n \cdot \frac{V_{DS}}{L} \)
 - \[I \approx \mu_n \cdot c_{ox} \cdot \left(\frac{W}{L} \right) \cdot \left(V_G - V_{Tn} \right) \cdot V_{DS} \]
MOSFETs – Device Physics (nFET)

• Current through the channel

\[I \approx \mu_n \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \cdot (V_G - V_{Tn}) \cdot V_{DS} = \beta_n \cdot (V_G - V_{Tn}) \cdot V_{DS} \]

- \(\beta_n = \mu_n \cdot c_{ox} \cdot \left(\frac{W}{L}\right) \): device transconductance
- \(\mu_n, c_{ox}, V_{Tn} \): constants
- \(L, W \): variables (designers can decide)
- \(V_G, V_{DS} \): variables (but either 0 or \(V_{DD} \))

• Channel resistance

\[R_n = \frac{V_{DS}}{I} = \frac{1}{\beta_n \cdot (V_G - V_{Tn})} \]
MOSFETs – Device Physics (pFET)

• Current
 – Channel charge: \(Q_c = C_G (V_G - |V_{Tp}|) \)
 • No charge forms until \(V_G \) reaches \(V_{DD} - |V_{Tp}| \).
 – Current flowing the channel: \(I = \frac{|Q_c|}{\tau_t} \)
 • \(\tau_t = \frac{L}{v} \): channel transit time (the average time needed for an electron to move from D to S).
 • \(v = \mu_p \cdot E = \mu_p \cdot \frac{V_{SD}}{L} \)

\[I \approx \mu_p \cdot c_{ox} \cdot \left(\frac{W}{L} \right) \cdot (V_G - |V_{Tp}|) \cdot V_{SD} \]
MOSFETs – Device Physics

- Current through the channel
 \[I \approx \mu_p \cdot c_{ox} \cdot \left(\frac{W}{L} \right) \cdot \left(V_G - |V_{Tp}| \right) \cdot V_{SD} = \beta_p \cdot \left(V_G - |V_{Tp}| \right) \cdot V_{SD} \]

 - \(\beta_p = \mu_p \cdot c_{ox} \cdot \left(\frac{W}{L} \right) \): device transconductance

 - \(\mu_p, c_{ox}, V_{Tp} \): constants

 - \(L, W \): variables (designers can decide)

 - \(V_G, V_{SD} \): variables (but either 0 or \(V_{DD} \))

- Channel resistance
 \[R_p = \frac{V_{SD}}{I} = \frac{1}{\beta_p \cdot (V_G - |V_{Tp}|)} \]

 - \(V_G < V_{DD} - |V_{Tp}| \)

 Channel resistance
MOSFETs – Device Physics

• Charging the gate requires current flows.
 - \(i = C_G \frac{dV_G}{dt} \)
 - The transistor itself has a signal delay.
 - If \(C_G \) is large, the delay goes up.

• Energy
 - \(E = \int P \, dt = \int (V \cdot I) \, dt = \int (V \cdot C \frac{dV}{dt}) \, dt = \frac{1}{2} CV^2 \)
 - \(E = \frac{1}{2} C_G V_{DD}^2 \)
 - Driving a transistor consumes energy (power dissipation).