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Sequential Statements 

• Sequential statements are executed sequentially. 
 

• Format 
ARCHITECTURE  architecture_name  OF  entity_name  IS 

BEGIN 

    PROCESS  ( signal names ) 

    BEGIN 

        -- Sequential statements 

    END  PROCESS; 

END  architecture_name; 

Sensitivity list 

(should include all input signals 

used inside the process) 
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Example 

• 2:1 MUX 

ARCHITECTURE  vmux2_arch  OF  vmux2  IS 

BEGIN 

    PROCESS  (a, b, s) 

    BEGIN 

        IF s = ‘0’  THEN 

            z <= a; 

        ELSE 

            z <= b; 

        END  IF; 

    END PROCESS; 

END  vmux2_arch; 
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Example 

• 2:1 MUX 

ARCHITECTURE  vmux2_arch  OF  vmux2  IS 

BEGIN 

    PROCESS  (a, b, s) 

    BEGIN 

        IF s = ‘0’  THEN 

            z <= a; 

        ELSIF  s = ‘1’  THEN 

            z <= b; 

        ELSE 

            z <= ‘X’; 

        END  IF; 

    END PROCESS; 

END  vmux2_arch; 
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Example 

• If multiple assignment statements are executed for a 
signal, only the last one will be active. 

• Actual assignments happen at the end of the process. 

ARCHITECTURE  vmux2_arch  OF  vmux2  IS 

BEGIN 

    PROCESS  (a, b, s) 

    BEGIN 

        z <= a; 

 

        IF s = ‘1’  THEN 

            z <= b; 

        END  IF; 

    END PROCESS; 

END  vmux2_arch; 
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Sequential Statements 

• IF 
 

• CASE 
 

• LOOP 
– FOR 
– WHILE 

 
• EXIT 

 
• WAIT 
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IF 

• Format 

IF  condition  THEN 

    sequential_statements; 

ELSIF  condition  THEN 

    sequential_statements; 

ELSIF  condition  THEN 

    sequential_statements; 

ELSE 

    sequential_statements; 

END  IF; 
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Example 

• Example 
– 2:1 MUX 

ARCHITECTURE  vmux2_arch  OF  vmux2  IS 

BEGIN 

    PROCESS  (a, b, s) 

    BEGIN 

        IF s = ‘0’  THEN 

            z <= a; 

        ELSIF  s = ‘1’  THEN 

            z <= b; 

        ELSE 

            z <= ‘X’; 

        END  IF; 

    END PROCESS; 

END  vmux2_arch; 
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IF 

• Example (sequential + concurrent) 
– FA ARCHITECTURE  vFA_arch  OF  vFA  IS 

BEGIN 

    PROCESS  (a, b, ci) 

    BEGIN 

        IF (a = ‘1’) AND (b = ‘1’)  THEN 

            co <= ‘1’; 

        ELSIF  (b = ‘1’) AND (ci = ‘1’)  THEN 

            co <= ‘1’; 

        ELSIF  (a= ‘1’) AND (ci = ‘1’)  THEN 

            co <= ‘1’; 

        ELSE 

            co <= ‘0’; 

        END  IF; 

    END PROCESS; 

 

    s <= a XOR b XOR ci; 

END  vFA_arch; 



10 

CASE 

• Format 

CASE  expression  IS 

    WHEN  choices  => 

        sequential_statements; 

    WHEN  choices  => 

        sequential_statements; 

    ... 

    WHEN  OTHERS  => 

        sequential_statements; 

END  CASE; 
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CASE 

• Example 
– 2:1 MUX 

ARCHITECTURE  vmux2_arch  OF  vmux2  IS 

BEGIN 

    PROCESS  (a, b, s) 

    BEGIN 

        CASE  s  IS 

            WHEN  ‘0’  => 

                z <= a; 

            WHEN  OTHERS  => 

                z <= b; 

        END  CASE; 

    END PROCESS; 

END  vmux2_arch; 
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CASE 

• Example 
– 2:1 MUX 

ARCHITECTURE  vmux2_arch  OF  vmux2  IS 

BEGIN 

    PROCESS  (a, b, s) 

    BEGIN 

        CASE  s  IS 

            WHEN  ‘0’  => 

                z <= a; 

            WHEN  ‘1’  => 

                z <= b; 

            WHEN  OTHERS  => 

                z <= ‘X’; 

        END  CASE; 

    END PROCESS; 

END  vmux2_arch; 
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CASE 

• Example 
– 4:1 MUX (s : std_logic_vector (1 downto 0)) 

ARCHITECTURE  vmux4_arch  OF  vmux4  IS 

BEGIN 

    PROCESS  (a, b, c, d, s) 

    BEGIN 

        CASE  s  IS 

            WHEN  “00”  => 

                z <= a; 

            WHEN  “01”  => 

                z <= b; 

            WHEN  “10”  => 

                z <= c; 

            WHEN  “11”  => 

                z <= d; 

            WHEN  OTHERS  => 

                z <= ‘X’; 

        END  CASE; 

    END PROCESS; 

END  vmux4_arch; 
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FOR Loop 

• Format 
 
 

• Example 
 
 
 
 

• Note: Loop variables (i in the above example) do not need 
to be explicitly declared outside the loop. 

FOR  range  LOOP 

    sequential_statements; 

END  LOOP; 

FOR  i  IN  1  TO  10  LOOP 

    a := i + 3; 

    b := i * 2; 

    d := a + b; 

END  LOOP; 

FOR  i  IN  10  DOWNTO  1  LOOP 

    a := i + 3; 

    b := i * 2; 

    d := a + b; 

END  LOOP; 
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FOR Loop 

• Example 
– count # ‘1’s 

• input: x std_logic_vector (2 DOWNTO 0) 
• output : z std_logic_vector (1 DOWNTO 0) 
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FOR Loop 
ARCHITECTURE  vc_arch  OF  vc  IS 

BEGIN 

    PROCESS  (x) 

        VARIABLE  sum : INTEGER; 

    BEGIN 

        sum := 0;  -- initialization 

        FOR  i  IN  2  DOWNTO  0  LOOP 

            IF x(i) = ‘1’  THEN 

                sum := sum + 1; 

            END  IF; 

        END  LOOP; 

        IF ( sum = 0 )  THEN 

            z <= “00”; 

        ELSIF  ( sum = 1 )  THEN 

            z <= “01”; 

        ELSIF  ( sum = 2 )  THEN 

            z <= “10”; 

        ELSE 

            z <= “11”; 

        END  IF; 

    END PROCESS; 

END  vc_arch; 
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WHILE Loop 

• Format 
 
 
 
 

• Example 

WHILE  condition  LOOP 

    sequential_statements; 

END  LOOP; 

WHILE  ( a <= b )  LOOP 

    a := a + 3; 

    b := b – 2; 

    c := a + b; 

END  LOOP; 
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WHILE Loop ARCHITECTURE  vc_arch  OF  vc  IS 

BEGIN 

    PROCESS  (x) 

        VARIABLE  tmp, sum : INTEGER; 

    BEGIN 

        tmp := 0;  -- initialization 

        sum := 0; 

        WHILE  ( tmp < 3 )  LOOP 

            IF x(tmp) = ‘1’  THEN 

                sum := sum + 1; 

            END  IF; 

            tmp := tmp + 1; 

        END  LOOP; 

        IF ( sum = 0 )  THEN 

            z <= “00”; 

        ELSIF  ( sum = 1 )  THEN 

            z <= “01”; 

        ELSIF  ( sum = 2 )  THEN 

            z <= “10”; 

        ELSE 

            z <= “11”; 

        END  IF; 

    END PROCESS; 

END  vc_arch; 

• Count # ‘1’s 
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Loop (How to Skip) 

• If “Next;” is used, all the statements below the “next” 
statement will be skipped and the for loop go back to the 
first line of the loop. 
 

• Example 
FOR  i  IN  1  TO  10  LOOP 

    IF  ( i = 8 )  THEN 

        NEXT; 

    END  IF; 

 

    a := i + 3; 

    b := i * 2; 

    d := a + b; 

END  LOOP; 

FOR  i  IN  1  TO  10  LOOP 

    IF  ( i /= 8 )  THEN 

        a := i + 3; 

        b := i * 2; 

        d := a + b; 

    END  IF; 

END  LOOP; 
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Loop (How to Exit) 

• If “Exit;” is used, we immediately exit from the loop. 
 

• Example 

FOR  i  IN  1  TO  10  LOOP 

    IF  ( i = 8 )  THEN 

        NEXT; 

    ELSIF  ( ( i + a ) = 9 )  THEN 

        EXIT; 

    END  IF; 

 

    a := i + 3; 

    b := i * 2; 

    d := a + b; 

END  LOOP; 



21 

PROCESS 

• If a process has a sensitivity list, the process is held at the 
beginning of the process until any of the signals in the 
sensitivity list changes. 
 

• If a process does not have a sensitivity list, the process is 
executed infinitely. 

    PROCESS  (a, b, s) 

    BEGIN 

        IF s = ‘0’  THEN 

            z <= a; 

        ELSIF  s = ‘1’  THEN 

            z <= b; 

        ELSE 

            z <= ‘X’; 

        END  IF; 

    END PROCESS; 
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WAIT 

• WAIT  FOR  time_expression 
– The process is held at the WAIT statement for the time 

specified by the expression. 
 

• Example 

PROCESS 

BEGIN 

    ... 

    WAIT  FOR  time_expression; 

    ... 

END  PROCESS; 

PROCESS 

BEGIN 

    ... 

    WAIT  FOR  10 NS; 

    ... 

    WAIT  FOR  ( a + b ); 

    ... 

END  PROCESS; 
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WAIT 

• WAIT  UNTIL  condition 
– The process is held at the WAIT statement until the condition 

is satisfied. 
 

• Example 

PROCESS 

BEGIN 

    ... 

    WAIT  UNTIL  condition; 

    ... 

END  PROCESS; 

PROCESS 

BEGIN 

    ... 

    WAIT  UNTIL  rising_edge (clock); 

    ... 

END  PROCESS; 
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WAIT 

• WAIT  ON  signals 
– The process is held at the WAIT statement until one of the 

signals changes. 
 

• Example 

PROCESS 

BEGIN 

    ... 

    WAIT  ON  clk, reset; 

    ... 

END  PROCESS; 

PROCESS 

BEGIN 

    IF  reset = ‘1’  THEN 

        Q <= ‘0’; 

    ELSIF  clk = ‘1’  THEN 

        Q <= D; 

    END  IF; 

    WAIT  ON  clk, reset; 

END  PROCESS; 
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Sensitivity List vs. WAIT 

 
 
 
 
 

• Why should we put the “WAIT ON” statement at the end of 
the process? 
– All processes are executed at least once. 
– To guarantee that the process having a wait statement is 

exactly the same as the sensitivity-list-based process, we 
need a wait statement at the end of the process. 

PROCESS  ( clock ) 

BEGIN 

  … 

END  PROCESS; 

PROCESS 

BEGIN 

  … 

  WAIT  ON  clock; 

END  PROCESS; 
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Signals vs. Variables 

• Signal assignment 
 
– Scheduled as an event for signal t1. 

 
 

• Variable assignment 
 
– Happens immediately (no delay). 
– Variables can be used only in a PROCEESS or a 

SUBPROGRAM. 

t1  <=  a  AND  b; 

v1  :=  a  AND  b; 
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Example 

ARCHITECTURE  and2beh  OF  and2  IS 

  SIGNAL  t1 : BIT; 

BEGIN 

  PROCESS  ( a , b ) 

  BEGIN 

    t1  <=  a  AND  b; 

    IF  (t1 = ‘1’)  THEN 

      z  <=  t1  AFTER  5 NS; 

    ELSIF  (t1 = ‘0’)  THEN 

      z  <=  t1  AFTER  4 NS; 

    ELSE 

      z  <=  t1  AFTER  6 NS; 

    END  IF; 

  END  PROCESS; 

END and2beh; 

ARCHITECTURE  and2beh  OF  and2  IS 

BEGIN 

  PROCESS  ( a , b ) 

    VARIABLE  t1 : BIT; 

  BEGIN 

    t1  :=  a  AND  b; 

    IF  (t1 = ‘1’)  THEN 

      z  <=  t1  AFTER  5 NS; 

    ELSIF  (t1 = ‘0’)  THEN 

      z  <=  t1  AFTER  4 NS; 

    ELSE 

      z  <=  t1  AFTER  6 NS; 

    END  IF; 

  END  PROCESS; 

END and2beh; 

This is wrong. This is correct. 
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