
1

EE434
ASIC & Digital Systems

VHDL
Sequential Processing

Spring 2016
Dae Hyun Kim

daehyun@eecs.wsu.edu

2

Sequential Statements

• Sequential statements are executed sequentially.

• Format
ARCHITECTURE architecture_name OF entity_name IS

BEGIN

 PROCESS (signal names)

 BEGIN

 -- Sequential statements

 END PROCESS;

END architecture_name;

Sensitivity list

(should include all input signals

used inside the process)

3

Example

• 2:1 MUX

ARCHITECTURE vmux2_arch OF vmux2 IS

BEGIN

 PROCESS (a, b, s)

 BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSE

 z <= b;

 END IF;

 END PROCESS;

END vmux2_arch;

4

Example

• 2:1 MUX

ARCHITECTURE vmux2_arch OF vmux2 IS

BEGIN

 PROCESS (a, b, s)

 BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSIF s = ‘1’ THEN

 z <= b;

 ELSE

 z <= ‘X’;

 END IF;

 END PROCESS;

END vmux2_arch;

5

Example

• If multiple assignment statements are executed for a
signal, only the last one will be active.

• Actual assignments happen at the end of the process.

ARCHITECTURE vmux2_arch OF vmux2 IS

BEGIN

 PROCESS (a, b, s)

 BEGIN

 z <= a;

 IF s = ‘1’ THEN

 z <= b;

 END IF;

 END PROCESS;

END vmux2_arch;

6

Sequential Statements

• IF

• CASE

• LOOP
– FOR
– WHILE

• EXIT

• WAIT

7

IF

• Format

IF condition THEN

 sequential_statements;

ELSIF condition THEN

 sequential_statements;

ELSIF condition THEN

 sequential_statements;

ELSE

 sequential_statements;

END IF;

8

Example

• Example
– 2:1 MUX

ARCHITECTURE vmux2_arch OF vmux2 IS

BEGIN

 PROCESS (a, b, s)

 BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSIF s = ‘1’ THEN

 z <= b;

 ELSE

 z <= ‘X’;

 END IF;

 END PROCESS;

END vmux2_arch;

9

IF

• Example (sequential + concurrent)
– FA ARCHITECTURE vFA_arch OF vFA IS

BEGIN

 PROCESS (a, b, ci)

 BEGIN

 IF (a = ‘1’) AND (b = ‘1’) THEN

 co <= ‘1’;

 ELSIF (b = ‘1’) AND (ci = ‘1’) THEN

 co <= ‘1’;

 ELSIF (a= ‘1’) AND (ci = ‘1’) THEN

 co <= ‘1’;

 ELSE

 co <= ‘0’;

 END IF;

 END PROCESS;

 s <= a XOR b XOR ci;

END vFA_arch;

10

CASE

• Format

CASE expression IS

 WHEN choices =>

 sequential_statements;

 WHEN choices =>

 sequential_statements;

 ...

 WHEN OTHERS =>

 sequential_statements;

END CASE;

11

CASE

• Example
– 2:1 MUX

ARCHITECTURE vmux2_arch OF vmux2 IS

BEGIN

 PROCESS (a, b, s)

 BEGIN

 CASE s IS

 WHEN ‘0’ =>

 z <= a;

 WHEN OTHERS =>

 z <= b;

 END CASE;

 END PROCESS;

END vmux2_arch;

12

CASE

• Example
– 2:1 MUX

ARCHITECTURE vmux2_arch OF vmux2 IS

BEGIN

 PROCESS (a, b, s)

 BEGIN

 CASE s IS

 WHEN ‘0’ =>

 z <= a;

 WHEN ‘1’ =>

 z <= b;

 WHEN OTHERS =>

 z <= ‘X’;

 END CASE;

 END PROCESS;

END vmux2_arch;

13

CASE

• Example
– 4:1 MUX (s : std_logic_vector (1 downto 0))

ARCHITECTURE vmux4_arch OF vmux4 IS

BEGIN

 PROCESS (a, b, c, d, s)

 BEGIN

 CASE s IS

 WHEN “00” =>

 z <= a;

 WHEN “01” =>

 z <= b;

 WHEN “10” =>

 z <= c;

 WHEN “11” =>

 z <= d;

 WHEN OTHERS =>

 z <= ‘X’;

 END CASE;

 END PROCESS;

END vmux4_arch;

14

FOR Loop

• Format

• Example

• Note: Loop variables (i in the above example) do not need
to be explicitly declared outside the loop.

FOR range LOOP

 sequential_statements;

END LOOP;

FOR i IN 1 TO 10 LOOP

 a := i + 3;

 b := i * 2;

 d := a + b;

END LOOP;

FOR i IN 10 DOWNTO 1 LOOP

 a := i + 3;

 b := i * 2;

 d := a + b;

END LOOP;

15

FOR Loop

• Example
– count # ‘1’s

• input: x std_logic_vector (2 DOWNTO 0)
• output : z std_logic_vector (1 DOWNTO 0)

16

FOR Loop
ARCHITECTURE vc_arch OF vc IS

BEGIN

 PROCESS (x)

 VARIABLE sum : INTEGER;

 BEGIN

 sum := 0; -- initialization

 FOR i IN 2 DOWNTO 0 LOOP

 IF x(i) = ‘1’ THEN

 sum := sum + 1;

 END IF;

 END LOOP;

 IF (sum = 0) THEN

 z <= “00”;

 ELSIF (sum = 1) THEN

 z <= “01”;

 ELSIF (sum = 2) THEN

 z <= “10”;

 ELSE

 z <= “11”;

 END IF;

 END PROCESS;

END vc_arch;

17

WHILE Loop

• Format

• Example

WHILE condition LOOP

 sequential_statements;

END LOOP;

WHILE (a <= b) LOOP

 a := a + 3;

 b := b – 2;

 c := a + b;

END LOOP;

18

WHILE Loop ARCHITECTURE vc_arch OF vc IS

BEGIN

 PROCESS (x)

 VARIABLE tmp, sum : INTEGER;

 BEGIN

 tmp := 0; -- initialization

 sum := 0;

 WHILE (tmp < 3) LOOP

 IF x(tmp) = ‘1’ THEN

 sum := sum + 1;

 END IF;

 tmp := tmp + 1;

 END LOOP;

 IF (sum = 0) THEN

 z <= “00”;

 ELSIF (sum = 1) THEN

 z <= “01”;

 ELSIF (sum = 2) THEN

 z <= “10”;

 ELSE

 z <= “11”;

 END IF;

 END PROCESS;

END vc_arch;

• Count # ‘1’s

19

Loop (How to Skip)

• If “Next;” is used, all the statements below the “next”
statement will be skipped and the for loop go back to the
first line of the loop.

• Example
FOR i IN 1 TO 10 LOOP

 IF (i = 8) THEN

 NEXT;

 END IF;

 a := i + 3;

 b := i * 2;

 d := a + b;

END LOOP;

FOR i IN 1 TO 10 LOOP

 IF (i /= 8) THEN

 a := i + 3;

 b := i * 2;

 d := a + b;

 END IF;

END LOOP;

20

Loop (How to Exit)

• If “Exit;” is used, we immediately exit from the loop.

• Example

FOR i IN 1 TO 10 LOOP

 IF (i = 8) THEN

 NEXT;

 ELSIF ((i + a) = 9) THEN

 EXIT;

 END IF;

 a := i + 3;

 b := i * 2;

 d := a + b;

END LOOP;

21

PROCESS

• If a process has a sensitivity list, the process is held at the
beginning of the process until any of the signals in the
sensitivity list changes.

• If a process does not have a sensitivity list, the process is
executed infinitely.

 PROCESS (a, b, s)

 BEGIN

 IF s = ‘0’ THEN

 z <= a;

 ELSIF s = ‘1’ THEN

 z <= b;

 ELSE

 z <= ‘X’;

 END IF;

 END PROCESS;

22

WAIT

• WAIT FOR time_expression
– The process is held at the WAIT statement for the time

specified by the expression.

• Example

PROCESS

BEGIN

 ...

 WAIT FOR time_expression;

 ...

END PROCESS;

PROCESS

BEGIN

 ...

 WAIT FOR 10 NS;

 ...

 WAIT FOR (a + b);

 ...

END PROCESS;

23

WAIT

• WAIT UNTIL condition
– The process is held at the WAIT statement until the condition

is satisfied.

• Example

PROCESS

BEGIN

 ...

 WAIT UNTIL condition;

 ...

END PROCESS;

PROCESS

BEGIN

 ...

 WAIT UNTIL rising_edge (clock);

 ...

END PROCESS;

24

WAIT

• WAIT ON signals
– The process is held at the WAIT statement until one of the

signals changes.

• Example

PROCESS

BEGIN

 ...

 WAIT ON clk, reset;

 ...

END PROCESS;

PROCESS

BEGIN

 IF reset = ‘1’ THEN

 Q <= ‘0’;

 ELSIF clk = ‘1’ THEN

 Q <= D;

 END IF;

 WAIT ON clk, reset;

END PROCESS;

25

Sensitivity List vs. WAIT

• Why should we put the “WAIT ON” statement at the end of
the process?
– All processes are executed at least once.
– To guarantee that the process having a wait statement is

exactly the same as the sensitivity-list-based process, we
need a wait statement at the end of the process.

PROCESS (clock)

BEGIN

 …

END PROCESS;

PROCESS

BEGIN

 …

 WAIT ON clock;

END PROCESS;

26

Signals vs. Variables

• Signal assignment

– Scheduled as an event for signal t1.

• Variable assignment

– Happens immediately (no delay).
– Variables can be used only in a PROCEESS or a

SUBPROGRAM.

t1 <= a AND b;

v1 := a AND b;

27

Example

ARCHITECTURE and2beh OF and2 IS

 SIGNAL t1 : BIT;

BEGIN

 PROCESS (a , b)

 BEGIN

 t1 <= a AND b;

 IF (t1 = ‘1’) THEN

 z <= t1 AFTER 5 NS;

 ELSIF (t1 = ‘0’) THEN

 z <= t1 AFTER 4 NS;

 ELSE

 z <= t1 AFTER 6 NS;

 END IF;

 END PROCESS;

END and2beh;

ARCHITECTURE and2beh OF and2 IS

BEGIN

 PROCESS (a , b)

 VARIABLE t1 : BIT;

 BEGIN

 t1 := a AND b;

 IF (t1 = ‘1’) THEN

 z <= t1 AFTER 5 NS;

 ELSIF (t1 = ‘0’) THEN

 z <= t1 AFTER 4 NS;

 ELSE

 z <= t1 AFTER 6 NS;

 END IF;

 END PROCESS;

END and2beh;

This is wrong. This is correct.

	EE434�ASIC & Digital Systems
	Sequential Statements
	Example
	Example
	Example
	Sequential Statements
	IF
	Example
	IF
	CASE
	CASE
	CASE
	CASE
	FOR Loop
	FOR Loop
	FOR Loop
	WHILE Loop
	WHILE Loop
	Loop (How to Skip)
	Loop (How to Exit)
	PROCESS
	WAIT
	WAIT
	WAIT
	Sensitivity List vs. WAIT
	Signals vs. Variables
	Example

