
Homework Assignment 3 (Due Feb. 10th at the beginning of the class)

* Submission policy: Please zip all your result files into a single file and send it to daehyun@eecs.wsu.edu. The file name should be lastname_firststname.zip (or .tar.gz or .tar ...)

Go to the course website, click "Labs", and open "tutorial-design_compiler.pdf" and complete it (but you don't need to submit anything for the tutorial).

- (1) [Library Analysis, 10 points] Open ng45.lib in a text editor. This is the Nangate 45nm standard cell timing/power library.
 - Find cell INV_X1. It has all the information about the smallest inverter cell (X1 is the size). Most of the lines in the file are self-explanatory.
 - [Submit] The area of the INV_X1 cell. (the area unit is um²).
 - \circ 0.532 um²
 - [Submit] Find the output pin (ZN) of INV_X1. What is the function of the output pin?
 - o !A (NOT A)
 - Find cell FA X1. This is a full-adder cell.
 - [Submit] The area of the FA_X1 cell.
 - o 4.256 um²
 - [Submit] Find the carry-out pin (CO) of FA_X1. What is the function of the output pin? (Express the function as a function of the input pins A, B, CI and the Boolean operations, (AND) and + (OR).)
 - \circ ((A & B) | (CI & (A | B))) = A•B+CI•(A+B)
 - Find cell DFF_X1. This is a D F/F cell.
 - [Submit] The area of the DFF_X1 cell.
 - o 4.522 um²
 - [Submit] The "cell_leakage_power" of the DFF_X1 cell. The unit is nW.
 - o 79.112308 nW
- (2) [Synthesis, 20 points] Download the following file into your working directory.

- http://eecs.wsu.edu/~ee434/Homework/hw03.zip
- Unzip it.
- Synthesize hw03_and6.v using the default compile command (compile exact_map). It implements a six-input AND gate.
- [Submit] A gate-level schematic of the synthesized netlist.

- [Submit] Total area (run "report_area" to get the total area).
 - o 2.926 um²
- Copy hw03_and6.v into hw03_and20.v.
 - o cp hw03_and6.v hw03_and20.v
- We are going to make a 20-input AND gate. Modify hw03_and20.v in a text editor.
 - o Change the module name from Vand6 to Vand20.
 - o Change the input pin from [5:0] a to [19:0] a.
 - o Change the assign statement to implement a 20-input AND gate.
- Synthesize it (compile –exact_map).
- [Submit] Total area.
 - \circ 10.906 um²
- [Submit] Total dynamic power consumption (use "report_power").
 - o 1.8571 uW

(3) [Synthesis, 10 points] Timing optimization

- Create a 40-input AND gate.
- Synthesize it (compile –exact_map).
- [Submit] Total area and total dynamic power consumption.
 - o 21.812 um²

o 3.8561 uW

- Run the following command to set up a timing constraint (160ps from any input to the output).
 - o set_max_delay –from $\{a^*\}$ –to $\{z\}$ 0.16
- Synthesize the design again, but add the following options.
 - o compile -exact_map -map_effort high
- [Submit] Total area and total dynamic power consumption.
 - o 24.738 um²
 - o 4.3845 uW
- Run "report_timing" to get timing info.
- [Submit] Slack (the last line in the timing report).
 - o 0.01 ns