## Homework Assignment 4 (Due Feb. 17th at the beginning of the class)

- $R_n$  is the resistance of a 1X nFET.
- $\mu_n = 2\mu_p$ .
- $C_L$  is the load capacitance connected to the output.
- Target time constant:  $R_n C_L$
- (1) [FET Sizing, 10 points] Size the transistors in the following gate to satisfy the time constant. <u>Try to minimize</u> the total width of the transistors.



Total width = 7 + 21 = 28X

The best solution is as follows:

• For the nFET network, B=bX, C=D=cX. Then,  $\frac{R_n}{b} + \frac{R_n}{c} = R_n$ , which is  $\frac{1}{b} + \frac{1}{c} = 1$ . Minimize b + 2c.  $c = \frac{b}{b-1}$ .  $f(b,c) = b + 2c = f(b) = b + \frac{2b}{b-1}$ .  $f'(b) = 1 + \frac{2(b-1)-2b}{(b-1)^2} = 1 - \frac{2}{(b-1)^2} = 0 => b = 1 + \sqrt{2}, c = 1 + \frac{1}{\sqrt{2}}$ 

• For the pFET network, B=bX, C=D=2bX, A=cX. Then,  $\frac{2R_n}{b} + \frac{2R_n}{c} = R_n$ , which is  $\frac{1}{b} + \frac{1}{c} = \frac{1}{2}$ . Minimize 5b + c.  $c = \frac{2b}{b-2}$ .  $f(b,c) = 5b + c = f(b) = 5b + \frac{2b}{b-2}$ .  $f'(b) = 5 + \frac{2(b-2)-2b}{(b-2)^2} = 5 - \frac{4}{(b-2)^2} = 0 => b = 2 + \frac{2}{\sqrt{5}}$ ,  $c = 2 + 2\sqrt{5}$  Total width =  $(1 + \sqrt{2}) + 2\left(1 + \frac{1}{\sqrt{2}}\right) + 5\left(2 + \frac{2}{\sqrt{5}}\right) + \left(2 + 2\sqrt{5}\right) = 15 + 2\sqrt{2} + 4\sqrt{5} \approx 26.77X$ 

(2) [FET Sizing, 10 points] Size the transistors in the following pFET network to satisfy the time constant. <u>Try to minimize</u> the total width of the transistors.



Total width =  $(50 + \frac{8}{3})X \approx 52.67X$ .

(If you minimize the path "g-b", first, g=h=b=4X. Then, c=d=e=f=12X. In this case, the total width = 2X + 3\*4X + 4\*12X = 62X.)

(3) [FET Sizing, 10 points] We are going to design the following logic:

$$F = (a+b) \cdot (c+d)$$

We can design this logic as follows:



The schematic shown above can be modeled as follows to compute the delay from the inputs to the output:



To simplify the problem, we assume that the delay from an input to the output is computed by  $\tau_1 + \tau_2$  where  $\tau_1$  and  $\tau_2$  are the time constants for charging or discharging the first and the second NOR gates, respectively. The target time constant is still  $R_n C_L$ . Size all the transistors in the three NOR gates to satisfy the target time constant. Minimize the total width of the transistors.

1) Assuming  $\tau_1 = \tau_2 = \frac{R_n C_L}{2}$ , we get the following solution:



In this case, the total width is 60X.

2) However, we intuitively know that the first-stage NOR gates are the bottleneck for the area minimization. Suppose the first-stage NOR gates are *a*X NOR gates and the second-stage NOR gate is a *b*X NOR gate. Then, the delay of the first-stage NOR gate is  $\frac{R_n C_L}{a}$  and that of the second-stage NOR gate is  $\frac{R_n C_L}{b}$ . Satisfying the total delay leads to  $\frac{R_n C_L}{a} + \frac{R_n C_L}{b} = R_n C_L$ , so  $\frac{1}{a} + \frac{1}{b} = 1$ . The total area is  $(2a + b)^*$ (area of a 1X NOR gate). Minimize 2a + b when  $b = \frac{a}{a-1}$ .  $f(a) = 2a + \frac{a}{a-1}$ .  $f'(a) = 2 + \frac{(a-1)-a}{(a-1)^2} = 2 - \frac{1}{(a-1)^2} = 0 => a = 1 + \frac{1}{\sqrt{2}}, b = 1 + \sqrt{2}$ . Thus, the first-stage NOR gates should be  $(1 + \frac{1}{\sqrt{2}})X$  and the second-stage NOR gate should be  $(1 + \sqrt{2})X$ . In this case, the total width =  $10^*\{(1 + \frac{1}{\sqrt{2}}) * 2 + (1 + \sqrt{2})\} = 30 + 20\sqrt{2} \approx 58X$ .

3) In addition, we can consider different charging/discharging delays. Suppose the sizes of the nFETs and pFETs in the first-stage NORs are aX and bX, respectively, and those in the second-stage NOR are cX and dX, respectively. If the outputs of the first-stage NORs are 0 (the nFETs are turned on), the output of the second-stage NOR is 1 (the pFETs are turned on). Then,  $\tau_1 = \frac{R_n C_L}{a}$  and  $\tau_2 = \frac{4R_n C_L}{d}$ , so we obtain  $\frac{1}{a} + \frac{4}{a} \le 1$ . Similarly, if the output of only one of the first-stage NORs is 1 (the pFETs are turned on), the output of the second-stage NOR is 0 (one of its nFETs is turned on). Then,  $\tau_1 = \frac{4R_n C_L}{b}$  and  $\tau_2 = \frac{R_n C_L}{c}$ , so we obtain  $\frac{4}{b} + \frac{1}{c} \le 1$ . The total width = 4a + 4b + 2c + 2d. Since the two terms are independent of each other, we minimize 4a + 2d and 4b + 2c separately. For 4a + 2d, we obtain  $a = (1 + \sqrt{2})X$  and  $d = (4 + 2\sqrt{2})X$ . For 4b + 2c, we obtain  $b = (4 + \sqrt{2})X$  and  $c = (1 + 2\sqrt{2})X$ . The total width =  $(30 + 16\sqrt{2})X \approx 52.63X$ .

4) Furthermore, we might not need to size the two first-stage NOR gates equally. If you derive timing constraint inequalities for that, however, equal sizing of them gives us the best solution.