## Homework Assignment 4

(Due Feb. 17th at the beginning of the class)

- $\quad R_{n}$ is the resistance of a 1 X nFET .
- $\mu_{n}=2 \mu_{p}$.
- $C_{L}$ is the load capacitance connected to the output.
- Target time constant: $R_{n} C_{L}$
(1) [FET Sizing, 10 points] Size the transistors in the following gate to satisfy the time constant. Try to minimize the total width of the transistors.


Total width $=7+21=28 \mathrm{X}$
The best solution is as follows:

- For the nFET network, $\mathrm{B}=\mathrm{bX}, \mathrm{C}=\mathrm{D}=\mathrm{c} \mathrm{X}$. Then, $\frac{R_{n}}{b}+\frac{R_{n}}{c}=R_{n}$, which is

$$
\begin{aligned}
& \frac{1}{b}+\frac{1}{c}=1 . \text { Minimize } b+2 c \cdot c=\frac{b}{b-1} \cdot f(b, c)=b+2 c=f(b)=b+ \\
& \frac{2 b}{b-1} \cdot f^{\prime}(b)=1+\frac{2(b-1)-2 b}{(b-1)^{2}}=1-\frac{2}{(b-1)^{2}}=0=>b=1+\sqrt{2}, c=1+\frac{1}{\sqrt{2}}
\end{aligned}
$$

- For the pFET network, $\mathrm{B}=\mathrm{bX}, \mathrm{C}=\mathrm{D}=2 \mathrm{bX}, \mathrm{A}=\mathrm{cX}$. Then, $\frac{2 R_{n}}{b}+\frac{2 R_{n}}{c}=R_{n}$, which is $\frac{1}{b}+\frac{1}{c}=\frac{1}{2}$. Minimize $5 b+c . c=\frac{2 b}{b-2} . f(b, c)=5 b+c=$ $f(b)=5 b+\frac{2 b}{b-2} \cdot f^{\prime}(b)=5+\frac{2(b-2)-2 b}{(b-2)^{2}}=5-\frac{4}{(b-2)^{2}}=0=>b=2+$ $\frac{2}{\sqrt{5}}, c=2+2 \sqrt{5}$

Total width $=(1+\sqrt{2})+2\left(1+\frac{1}{\sqrt{2}}\right)+5\left(2+\frac{2}{\sqrt{5}}\right)+(2+2 \sqrt{5})=15+2 \sqrt{2}+$ $4 \sqrt{5} \approx 26.77 X$
(2) [FET Sizing, 10 points] Size the transistors in the following pFET network to satisfy the time constant. Try to minimize the total width of the transistors.


Total width $=\left(50+\frac{8}{3}\right) \mathrm{X} \approx 52.67 \mathrm{X}$.
(If you minimize the path " $\mathrm{g}-\mathrm{b}$ ", first, $\mathrm{g}=\mathrm{h}=\mathrm{b}=4 \mathrm{X}$. Then, $\mathrm{c}=\mathrm{d}=\mathrm{e}=\mathrm{f}=12 \mathrm{X}$. In this case, the total width $=2 \mathrm{X}+3^{*} 4 \mathrm{X}+4^{*} 12 \mathrm{X}=62 \mathrm{X}$.)
(3) [FET Sizing, 10 points] We are going to design the following logic:

$$
F=(a+b) \cdot(c+d)
$$

We can design this logic as follows:


The schematic shown above can be modeled as follows to compute the delay from the inputs to the output:


To simplify the problem, we assume that the delay from an input to the output is computed by $\tau_{1}+\tau_{2}$ where $\tau_{1}$ and $\tau_{2}$ are the time constants for charging or discharging the first and the second NOR gates, respectively. The target time constant is still $R_{n} C_{L}$. Size all the transistors in the three NOR gates to satisfy the target time constant. Minimize the total width of the transistors.

1) Assuming $\tau_{1}=\tau_{2}=\frac{R_{n} C_{L}}{2}$, we get the following solution:


In this case, the total width is 60X.
2) However, we intuitively know that the first-stage NOR gates are the bottleneck for the area minimization. Suppose the first-stage NOR gates are $a \mathrm{X}$ NOR gates and the second-stage NOR gate is a $b \mathrm{X}$ NOR gate. Then, the delay of the first-stage NOR gate is $\frac{R_{n} C_{L}}{a}$ and that of the second-stage NOR gate is $\frac{R_{n} C_{L}}{b}$. Satisfying the total delay leads to $\frac{R_{n} C_{L}}{a}+\frac{R_{n} C_{L}}{b}=R_{n} C_{L}$, so $\frac{1}{a}+\frac{1}{b}=1$. The total area is $(2 a+b)^{*}$ (area of a 1 X NOR gate). Minimize $2 a+b$ when $b=\frac{a}{a-1} . f(a)=2 a+\frac{a}{a-1} . \quad f^{\prime}(a)=2+$ $\frac{(a-1)-a}{(a-1)^{2}}=2-\frac{1}{(a-1)^{2}}=0=>a=1+\frac{1}{\sqrt{2}}, b=1+\sqrt{2}$. Thus, the first-stage NOR gates should be $\left(1+\frac{1}{\sqrt{2}}\right) \mathrm{X}$ and the second-stage NOR gate should be $(1+\sqrt{2}) \mathrm{X}$. In this case, the total width $=10 *\left\{\left(1+\frac{1}{\sqrt{2}}\right) * 2+(1+\sqrt{2})\right\}=30+20 \sqrt{2} \approx 58 \mathrm{X}$.
3) In addition, we can consider different charging/discharging delays. Suppose the sizes of the nFETs and pFETs in the first-stage NORs are aX and bX , respectively, and those in the second-stage NOR are $c X$ and $d X$, respectively. If the outputs of the first-stage NORs are 0 (the nFETs are turned on), the output of the second-stage NOR is 1 (the pFETs are turned on). Then, $\tau_{1}=\frac{R_{n} C_{L}}{a}$ and $\tau_{2}=\frac{4 R_{n} C_{L}}{d}$, so we obtain $\frac{1}{a}+\frac{4}{d} \leq 1$. Similarly, if the output of only one of the first-stage NORs is 1 (the pFETs are turned on), the output of the second-stage NOR is 0 (one of its nFETs is turned on). Then, $\tau_{1}=\frac{4 R_{n} C_{L}}{b}$ and $\tau_{2}=\frac{R_{n} C_{L}}{c}$, so we obtain $\frac{4}{b}+\frac{1}{c} \leq 1$. The total width $=$ $4 a+4 b+2 c+2 d$. Since the two terms are independent of each other, we minimize $4 a+2 d$ and $4 b+2 c$ separately. For $4 a+2 d$, we obtain $a=(1+\sqrt{2}) X$ and $d=(4+2 \sqrt{2}) X$. For $4 b+2 c$, we obtain $b=(4+\sqrt{2}) X$ and $c=(1+2 \sqrt{2}) X$. The total width $=(30+16 \sqrt{2}) X \approx 52.63 X$.
4) Furthermore, we might not need to size the two first-stage NOR gates equally. If you derive timing constraint inequalities for that, however, equal sizing of them gives us the best solution.

