
Homework Assignment 6 (Due Mar. 20th at the beginning of the class)

* Submission policy: Please zip your source code and waveform screenshots into a single file and send it to daehyun@eecs.wsu.edu. The file name should be firstname_lastname.zip (or .tar.gz or .tar ...)

(1) [DC Characteristics, 30 points] Download

http://eecs.wsu.edu/~ee434/Homework/hw06.zip and unzip it. Open "inv-dc.sp" in a text editor and see the contents of the file. We use ".DC" for DC simulation.

- Run HSPICE for the DC simulation.
 - o > hspice inv-dc.sp
- Open the DC simulation result.
 - o wv inv-dc.sw0
- Double-click v(vin) and v(vout) to visualize the DC characteristics of the inverter.
- Drag and drop one of the graphs into the other one as follows:

- Measure V_{IL}, V_{IH}, V_{OL}, V_{OH} (use "Difference" in the measurement tool).
- In my window, $V_{IL} = 375mV$, $V_{IH} = 580mV$, $V_{OL} = 45mV$, and $V_{OH} = 950mV$.
- $NM_L = 375mV 45mV = 330mV$, $NM_H = 950mV 580mV = 370mV$.
- Now, make a three-input NAND gate netlist (pFETs: W=140nm, nFETs: W=270nm).

- The three input signals are named (A, B, C). A is the one whose drain is connected to the output node and C is the one whose source is connected to the ground. B is the one in between A and C.
- [Submit] Run DC sweep analysis for (ABC = $011 \rightarrow 111$). Compute and submit NM_L and NM_H .
- [Submit] Run DC sweep analysis for (ABC = $101 \rightarrow 111$). Compute and submit NM_L and NM_H .
- [Submit] Run DC sweep analysis for (ABC = 110 \rightarrow 111). Compute and submit NM_L and NM_H .
- Note: I don't need screenshots. I just need numbers.
- [How to run DC simulations for multi-input circuits] If you simulate ABC = $011\rightarrow111$, use the following statements:
 - o VA nA 0 PWL 0p 0 200p 0 210p Vsup 1n Vsup 1.01n 0 2n 0
 - o VB nB 0 Vsup
 - o VC nC 0 Vsup
 - o .tr 1p 2.2n
 - o .DC VA 0 Vsup 0.01