Homework Assignment 6 (Due Mar. 20th at the beginning of the class)

* Submission policy: Please zip your source code and waveform screenshots into a single file and send it to daehyun@eecs.wsu.edu. The file name should be firstname_lastname.zip (or .tar.gz or .tar ...)
(1) [DC Characteristics, $\mathbf{3 0}$ points] Download
http://eecs.wsu.edu/~ee434/Homework/hw06.zip and unzip it. Open "inv-dc.sp" in a text editor and see the contents of the file. We use ".DC" for DC simulation.
- Run HSPICE for the DC simulation.
o > hspice inv-dc.sp
- Open the DC simulation result.
o wv inv-dc.sw0
- Double-click $\mathrm{v}(\mathrm{vin})$ and $\mathrm{v}($ vout $)$ to visualize the DC characteristics of the inverter.
- Drag and drop one of the graphs into the other one as follows:

- Measure $\mathrm{V}_{\mathrm{IL}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\text {OL }}, \mathrm{V}_{\mathrm{OH}}$ (use "Difference" in the measurement tool).
- In my window, $V_{I L}=375 \mathrm{mV}, V_{I H}=580 \mathrm{mV}, V_{O L}=45 \mathrm{mV}$, and $V_{O H}=$ 950 mV .
- $N M_{L}=375 \mathrm{mV}-45 \mathrm{mV}=330 \mathrm{mV}, N M_{H}=950 \mathrm{mV}-580 \mathrm{mV}=370 \mathrm{mV}$.
- Now, make a three-input NAND gate netlist (pFETs: W=140nm, nFETs: $\mathrm{W}=270 \mathrm{~nm}$).
- The three input signals are named (A, B, C). A is the one whose drain is connected to the output node and C is the one whose source is connected to the ground. B is the one in between A and C.
- [Submit] Run DC sweep analysis for $(\mathrm{ABC}=011 \rightarrow 111)$. Compute and submit $N M_{L}$ and $N M_{H}$.
o $V_{I L}=333 \mathrm{mV}, V_{O H}=947 \mathrm{mV}, V_{I H}=547 \mathrm{mV}, V_{O L}=52 \mathrm{mV}$
o $N M_{H}=947 \mathrm{mV}-547 \mathrm{mV}=400 \mathrm{mV}$
o $N M_{L}=333 m V-52 m V=281 m V$
- [Submit] Run DC sweep analysis for $(\mathrm{ABC}=101 \rightarrow 111)$. Compute and submit $N M_{L}$ and $N M_{H}$.
o $V_{I L}=361 \mathrm{mV}, V_{O H}=960 \mathrm{mV}, V_{I H}=540 \mathrm{mV}, V_{O L}=55 \mathrm{mV}$
o $N M_{H}=960 \mathrm{mV}-540 \mathrm{mV}=420 \mathrm{mV}$
o $N M_{L}=361 \mathrm{mV}-55 \mathrm{mV}=306 \mathrm{mV}$
- [Submit] Run DC sweep analysis for $(\mathrm{ABC}=110 \rightarrow 111)$. Compute and submit $N M_{L}$ and $N M_{H}$.
o $V_{I L}=360 \mathrm{mV}, V_{O H}=960 \mathrm{mV}, V_{I H}=530 \mathrm{mV}, V_{O L}=61 \mathrm{mV}$
o $N M_{H}=960 \mathrm{mV}-530 \mathrm{mV}=430 \mathrm{mV}$
o $N M_{L}=360 \mathrm{mV}-61 \mathrm{mV}=299 \mathrm{mV}$
- Note: I don't need screenshots. I just need numbers.
- [How to run DC simulations for multi-input circuits] If you simulate $\mathrm{ABC}=$ $011 \rightarrow 111$, use the following statements:
o VA nA 0 PWL 0p 0 200p 0 210p Vsup 1n Vsup 1.01n 0 2n 0
o VB nB 0 Vsup
o VC nC 0 Vsup
o.tr 1p 2.2n
o .DC VA 0 Vsup 0.01

