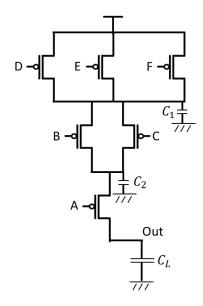

Homework Assignment 7 (Due Mar. 29th at the beginning of the class)

(1) [Elmore Delay, 10 points] Compute Elmore delay at L1 in the following figure.


Delay = 5k*22f + 1k*24f + 3k*26f + 2k*28f + 4k*30f = 110ps + 24ps + 78ps + 56ps + 120ps = 388ps

(2) [Elmore Delay, 10 points] Compute Elmore delays at L1 and L2 in the following figure.

Delay at L1 = 5k*22f + 1k*24f + 3k*44f + 2k*46f + 4k*48f = 110ps + 24ps + 132ps + 92ps + 192ps = 550psDelay at L2 = 3k*14f + 1k*18f + 3k*44f + 2k*46f + 4k*48f = 42ps + 18ps + 132ps + 92ps + 192ps = 476ps

(3) [Switching Characteristics, 10 points] Compute the rise time at the output node in the following figure. C_1 and C_2 are parasitic capacitances at the internal nodes (and they are fully discharged at time 0). The input switches from (A, B, C, D, E, F) = (1, 1, 1, 1, 1) to (0, 0, 1, 1, 0, 1). Use R_X (where X=A, B, C, D, E, F) for the resistance of transistor X.

 $\tau = R_A \cdot C_L + R_B \cdot (C_2 + C_L) + R_E \cdot (C_1 + C_2 + C_L)$