Homework Assignment 9

(Due Apr. $\mathbf{2 6}^{\text {th }}$ at the beginning of the class)

1. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell. Compute arrival time at each node ($\mathrm{n} 1 \sim \mathrm{n} 12$, Out $0 \sim$ Out 3) shown below. Arrival time at each input pin is zero.

	Arrival time		Arrival time
n1		n9	
n2		n10	
n3		n11	
n4		n12	
n5		Out 0	
n6		Out 1	
n7		Out 2	
n8		Out 3	

2. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell and the required time at each output. Compute required time at each node ($\mathrm{n} 1 \sim \mathrm{n} 12$, In $0 \sim \operatorname{In} 3$).

	Required time		Required time
n 1		n 9	
n 2		n 10	
n 3		n 11	
n 4		n 12	
n 5		In 0	
n 6		In 1	
n 7		In 2	
n 8		In 3	

