## Homework Assignment 9

## (Due Apr. $\mathbf{2 6}^{\text {th }}$ at the beginning of the class)

1. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell. Compute arrival time at each node ( $\mathrm{n} 1 \sim \mathrm{n} 12$, Out $0 \sim$ Out 3 ) shown below. Arrival time at each input pin is zero.


|  | Arrival time |  | Arrival time |
| :---: | :---: | :---: | :---: |
| n 1 | 70ps | n 9 | 565ps |
| n 2 | 93ps | n 10 | 568 ps |
| n 3 | $\mathbf{1 0 0 p s}$ | n 11 | 425 ps |
| n 4 | 77 ps | n 12 | 438ps |
| n 5 | 271ps | Out 0 | $\mathbf{6 2 4 p s}$ |
| n 6 | 271ps | Out 1 | $\mathbf{6 1 5 p s}$ |
| n 7 | 421ps | Out 2 | 461ps |
| n 8 | 276ps | Out 3 | 489ps |

2. [Timing Analysis, $\mathbf{1 5}$ points] The following shows the delay of each net and cell and the required time at each output. Compute required time at each node ( $\mathrm{n} 1 \sim \mathrm{n} 12$, In $0 \sim$ In 3 ).


|  | Required time |  | Required time |
| :---: | :---: | :---: | :---: |
| n 1 | 761ps | n 9 | $\mathbf{1 2 4 1 p s}$ |
| n 2 | 758ps | n 10 | $\mathbf{1 2 3 3 p s}$ |
| n 3 | 811ps | n 11 | 1114ps |
| n 4 | 805ps | n 12 | $\mathbf{1 1 4 9} \mathrm{ps}$ |
| n 5 | 936ps | In 0 | $\mathbf{6 7 7 p s}$ |
| n 6 | 982ps | In 1 | $\mathbf{6 7 3 p s}$ |
| n 7 | 1086ps | In 2 | 665ps |
| n 8 | 965ps | In 3 | 722ps |

