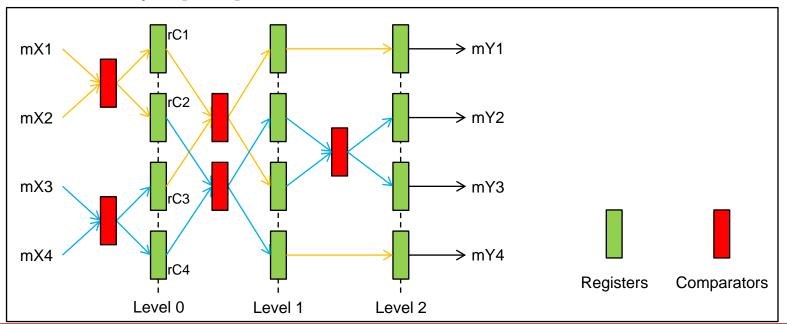
EE434 ASIC & Digital Systems

Automatic Layout Generation (Encounter)

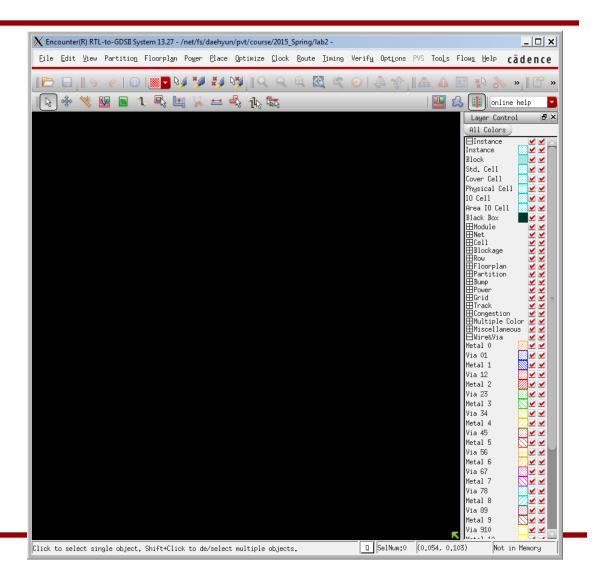
Spring 2017
Dae Hyun Kim
daehyun@eecs.wsu.edu

Preparation for Lab3

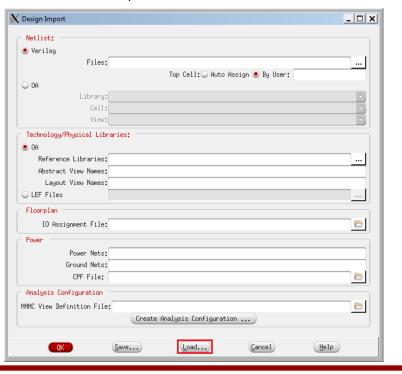

- Download the following file into your working directory.
 - wget http://eecs.wsu.edu/~ee434/Labs/lab3.tar.gz
- Unzip it.
 - tar xvfz lab3.tar.gz

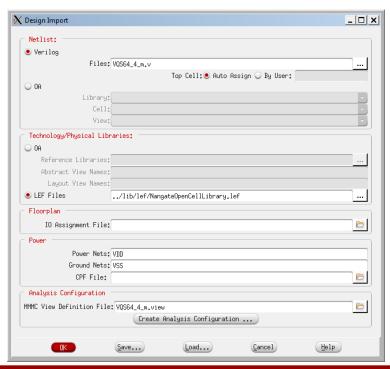
What We Are Going To Do

- 1. Chip outlining
- 2. P/G network design
- Placement
- 4. Pre-CTS optimization
- 5. CTS
- 6. Post-CTS optimization
- 7. Routing
- 8. Post-routing optimization
- 9. Fill insertion

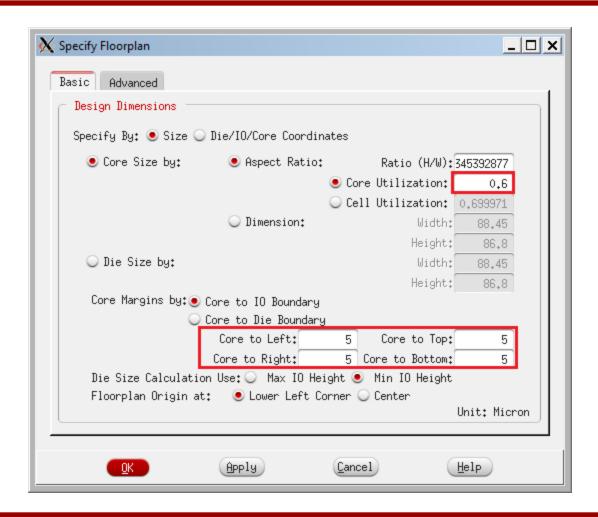

Benchmark

- VQS64_4 (four-input 64-bit pipelined quick sort)
 - input [63:0] mX1, mX2, mX3, mX4
 - input mCLK
 - output [63:0] mY1, mY2, mY3, mY4

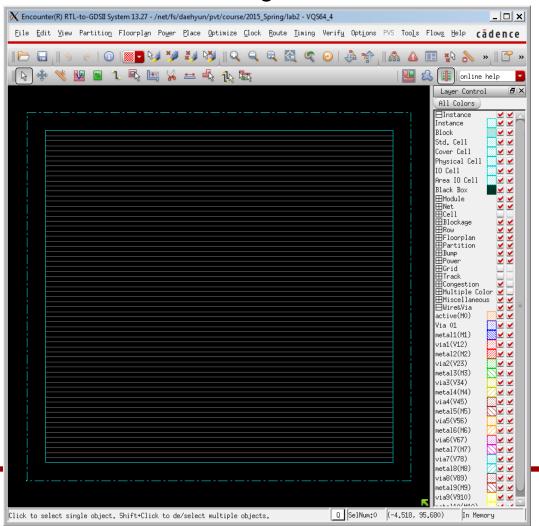



- VQS64_4_fm.globals
 - init_pwr_net: Power nets.
 - init_gnd_net: Ground nets.
 - init_lef_file: Physical library files.
 - init_mmmc_file: Analysis view files.
 - mmmc: Multi-mode multi-corner
 - init_verilog: Verilog netlists.
- VQS64_4_fm.view
 - create_rc_corner: Capacitance table + RC analysis corner
 - create_library_set: Library files
 - create_constraint_mode: Constraint files
 - create_delay_corner: Library + RC corner
 - create_analysis_view: Analysis view
 - set_analysis_view: Setup and hold analysis view

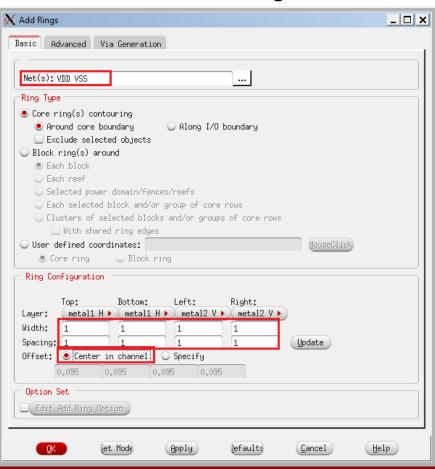
- Source "edi.sh".
 - % source edi.sh
- Run Encounter.
 - % encounter



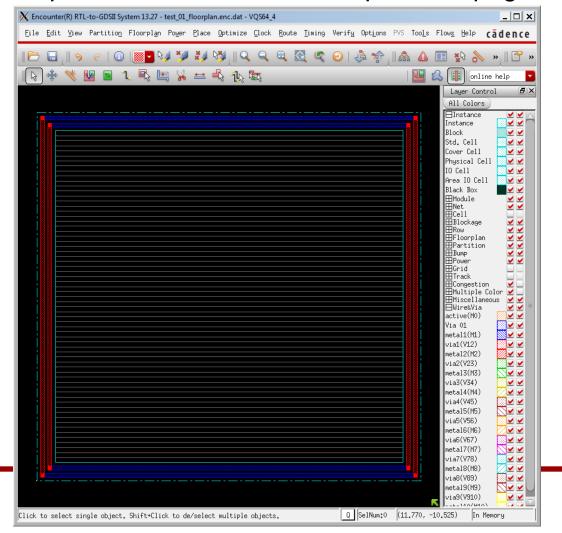
- Click "File" → "Import Design…".
- In the "Design Import" window, click "Load..." and choose "VQS64_4_m.globals". This will automatically fill up the settings. Then, click "OK".



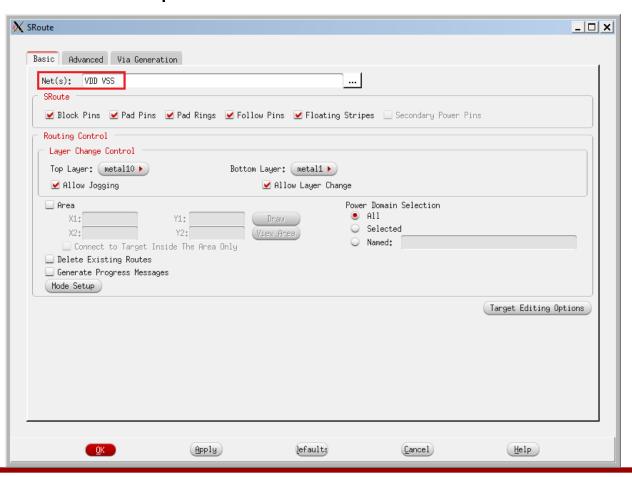
- See the terminal for Encounter messages. There might be some Error or Warning messages.
- In the Encounter main window, press "f" to see the outline of the layout.
- Encounter automatically computes and prepares the layout area.
- In the main window, click "Floorplan" → "Specify Floorplan...".
- Set the core utilization to 0.6.
- Set the core-to-left, core-to-top, core-to-right, and core-to-bottom to 5.0.
- Then, click OK.


Now, you will see the following window.

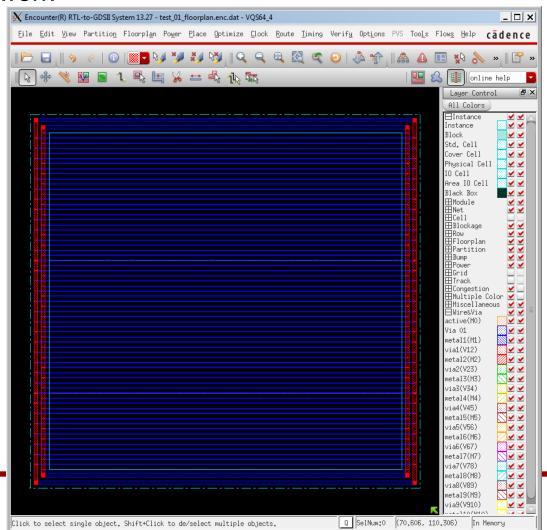
Save


- Let's save the current design.
- In the terminal, run the following command to save the current design into "test_01_floorplan.enc".
 - encounter #> saveDesign test_01_floorplan.enc
- Later on, you can load the design as follows.
 - When you launch Encounter, add the following option to load the specified design.
 - encounter –init test_01_floorplan.enc
 - or, after you launch Encounter, run the following command.
 - source test_01_floorplan.enc

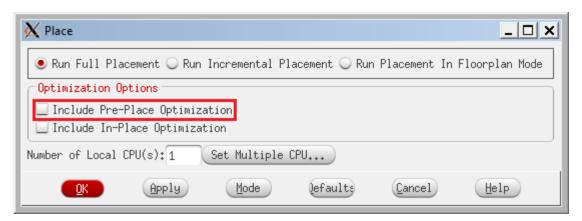
Click "Power" → "Power Planning" → "Add Rings…".



Fill in the input boxes as shown in the previous page and click


OK.

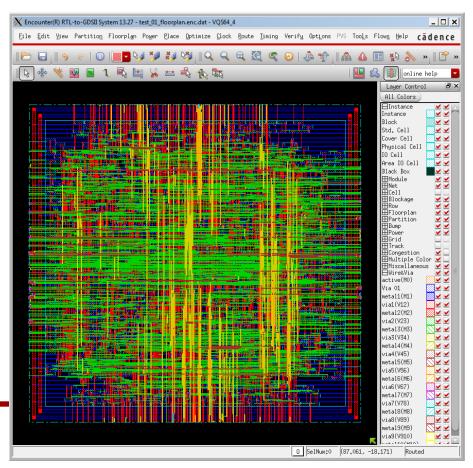
Click "Route" → "Special Route…".


P/G network

saveDesign test_02_pg.enc

3. Placement

- Let's place the instances (cells).
- In the main window, click "Place" → "Place Standard Cell".
- In the following window, turn off "Include Pre-Place Optimization".

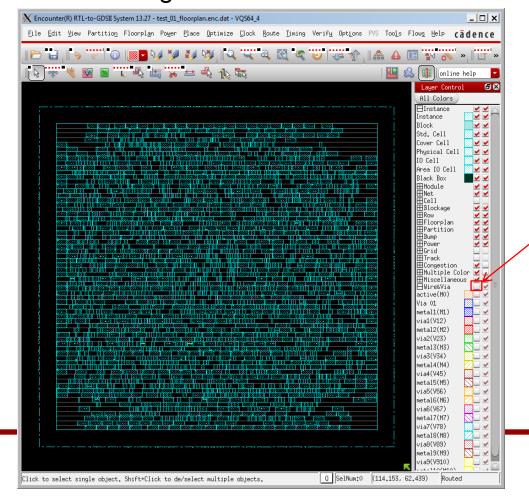


Then, click "OK" to run Placement.

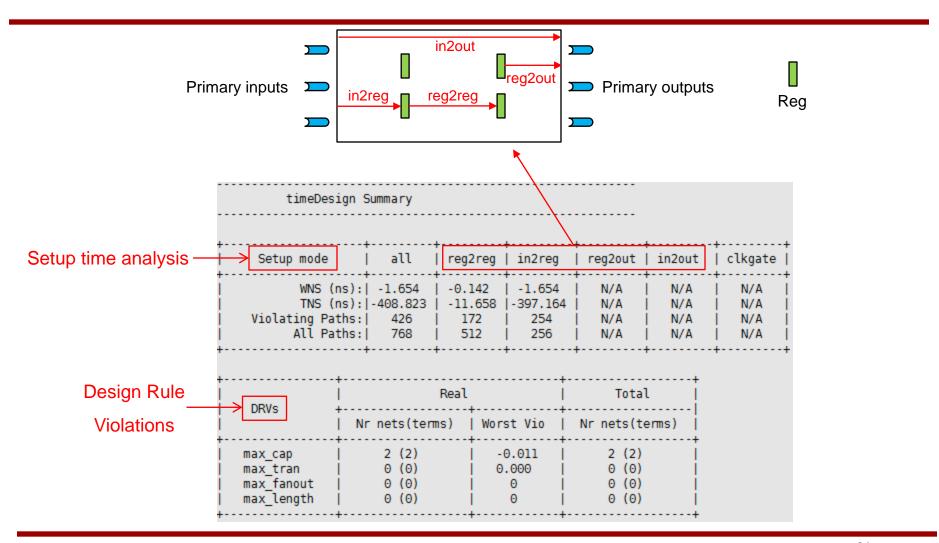
3. Placement

- It shows placement and trialRoute results.
- See the terminal. It shows some more information.
 - Total wire length: 46,920um
- Save it.
 - saveDesign test_03_pl.enc

```
Total length: 4.692e+04um, number of vias: 17032 M1(H) length: 1.187e+03um, number of vias: 9371 M2(V) length: 2.059e+04um, number of vias: 6881 M3(H) length: 1.976e+04um, number of vias: 506 M4(V) length: 3.390e+03um, number of vias: 167 M5(H) length: 1.261e+03um, number of vias: 68 M6(V) length: 7.066e+02um, number of vias: 25 M7(H) length: 9.350e+00um, number of vias: 8 M8(V) length: 6.480e+00um, number of vias: 6 M9(H) length: 4.140e+00um, number of vias: 0 M10(V) length: 0.000e+00um
```



Visibility


Let's see the placement result only.

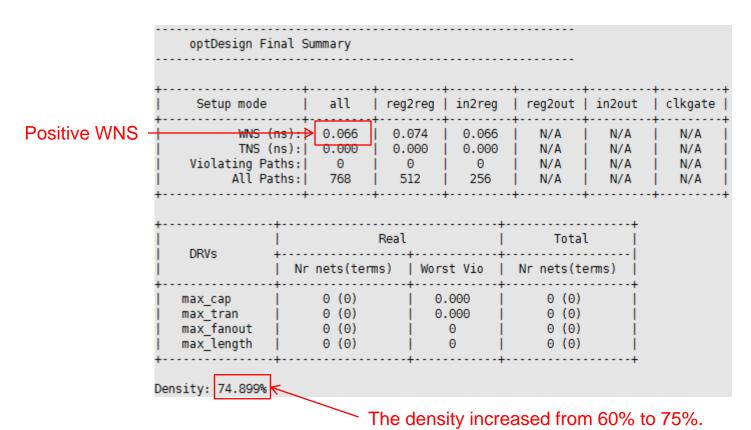
Turn off the following check-box to turn off the visibility of the

wires.

- Run the following command to turn off SI-awareness.
 - encounter #> setDelayCalMode -siAware false
- Then, run the following command to analyze setup time.
 - encounter #> timeDesign –preCTS
- It will show the following summary:

- Run the following command to check the longest path.
 - encounter #> report_timing

Path 1: VIOLATED So Endpoint: rCl_red Beginpoint: mX2[1] Analysis View: NG_Y Other End Arrival - Setup + Phase Shift = Required Time - Arrival Time = Slack Time Clock Rise Edu + Input Delay = Beginpoint	g[52]/D (v) check (^) trigoview_typ Time 0.00.00.00.00.00.00.00.00.00.00.00.00.0	ked with le gered by le 000 047 000 953 606	ading ed ading ed 0 0		.K'	
Instance	Arc	Cell	Delay	Arrival Time	Required Time	
U4103 U3853 U3852 U3861 U3860 U3859 U3858 U3869 U3866 U3867 U3866 U3877 U3876 U3875 U3874 U3885 U3884 U3884 U3883	mX2[1] ^ A ^ -> ZN v C2 v -> ZN ^ A ^ -> ZN v A V -> ZN ^ -> ZN ^ -> ZN ^ -> ZN v A V -> ZN ^ -> Z	INV_X1 OAI211_X1 OAI221_X1 OAI221_X1	0.026 0.041 0.028 0.040 0.027 0.040 0.029 0.041 0.028 0.041 0.028 0.041 0.028	0.105 0.146 0.174 0.214 0.241 0.281 0.311 0.352 0.380 0.421	-1.643 -1.609 -1.575 -1.549 -1.508 -1.480 -1.440	_


	U3946	A ^ -> ZN v	OAI221_X1	0.039	1.707	0.053
	U3957	A v -> ZN ^	0AI221_X1	0.027	1.734	0.080
	U3956	A ^ -> ZN v	0AI221_X1	0.040	1.774	0.120
	U3955	A v -> ZN ^	OAI221_X1	0.029	1.803	0.149
	U3954	A ^ -> ZN v	OAI221_X1	0.041	1.843	0.190
	U3965	A v -> ZN ^	OAI221_X1	0.028	1.872	0.218
	U3964	A ^ -> ZN v	OAI221_X1	0.042	1.914	0.260
	U3963	A v -> ZN ^	OAI221_X1	0.029	1.943	0.289
	U3962	A ^ -> ZN v	OAI221_X1	0.042	1.985	0.331
	U3973	A v -> ZN ^	OAI221_X1	0.027	2.011	0.358
	U3972	A ^ -> ZN v	OAI221_X1	0.040	2.051	0.397
	U3971	A v -> ZN ^	OAI221_X1	0.026	2.077	0.424
	U3970	A ^ -> ZN v	0AI21_X1	0.024	2.102	0.448
	U4233	A v -> ZN ^	0AI21_X1	0.021	2.123	0.469
	U4232	A ^ -> ZN v	0AI221_X1	0.034	2.157	0.503
	U4231	A v -> ZN ^	0AI21_X1	0.113	2.270	0.616
	U3648	A ^ -> ZN v	INV_X1	0.025	2.295	0.642
	U3330	A v -> Z v	BUF_X1	0.050	2.346	0.692
	U3273	A v -> Z v	BUF_X1	0.055	2.401	0.747
	U3255	A v -> ZN ^	INV_X1	0.157	2.557	0.903
	U3513	B2 ^ -> ZN v	0AI22_X1	0.049	2.606	0.953
	rCl_reg[52]	D v	DFF_X1	0.000	2.606	0.953
-	+					+

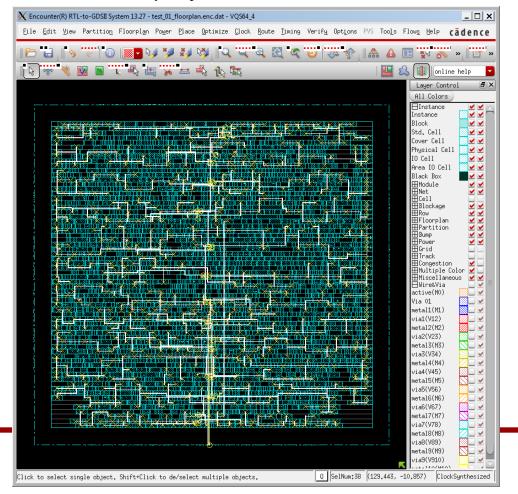
4. Pre-CTS Optimization

- Run the following command to optimize the design before CTS.
 - encounter #> optDesign –preCTS
- (This will take some time, up to 20~30 minutes depending on the machine you are working in).
- After Pre-CTS optimization is done, you will see the following result:

4. Pre-CTS Optimization

Pre-CTS optimization

4. Pre-CTS Optimization


saveDesign test_04_prectsopt.enc

- Open "VQS64_4_fm.ctstch" in a text editor and see the spec.
- Run the following command to run CTS.
 - encounter #> clockDesign –specFile VQS64_4_fm.ctstch outDir clk_report

CTS

```
# Analysis View: NG view typ
******* Clock mCLK Post-CTS Timing Analysis ********
Nr. of Subtrees
                            Nr. of Sinks
                           : 37←
                                         # buffers inserted
Nr. of Buffer
Nr. of Level (including gates) : 2 ←
                                         # levels
Root Rise Input Tran
                           : 100(ps)
Root Fall Input Tran
                            : 100(ps)
No Driving Cell Specified!
Max trig. edge delay at sink(R): rC2 reg[53]/CK 163.3(ps)
Min trig. edge delay at sink(R): mY2 reg[34]/CK 155.5(ps)
                              (Actual)
                                                   (Required)
Rise Phase Delav
                            : 155.5~163.3(ps)
                                                   0~1000(ps)
Fall Phase Delay
                            : 168.2~175.6(ps)
                                                   0~1000(ps)
Trig. Edge Skew
                            : 7.8(ps)
                                                   20(ps)
                            : 7.8(ps)
Rise Skew
                                                Clock skew
Fall Skew
                            : 7.4(ps)
Max. Rise Buffer Tran.
                            : 49.7(ps)
                                                   100(ps)
Max. Fall Buffer Tran.
                           : 44.8(ps)
                                                   100(ps)
Max. Rise Sink Tran.
                           : 29.4(ps)
                                                   50(ps)
Max. Fall Sink Tran.
                           : 29.2(ps)
                                                   50(ps)
Min. Rise Buffer Tran.
                           : 49.7(ps)
                                                   0(ps)
Min. Fall Buffer Tran.
                           : 44.8(ps)
                                                   0(ps)
Min. Rise Sink Tran.
                           : 23.6(ps)
                                                   0(ps)
Min. Fall Sink Tran.
                            : 23.5(ps)
                                                   0(ps)
view NG view typ : skew = 7.8ps (required = 20ps)
```

- You can see the clock tree by the following command:
 - encounter #> displayClockTree -clk mCLK -level 1

saveDesign test_05_cts.enc

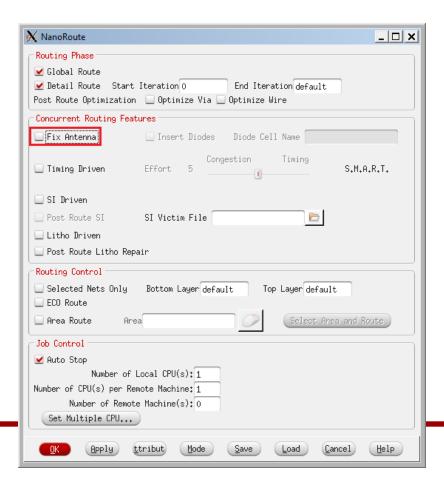
- Run the following command to check timing.
 - timeDesign –postCTS

timeDesi	ign S	Gummary					-		
Setup mode		all	+ reg2	reg	in2reg	reg2ou	+ t in2out	clkg	+ ate
WNS (r TNS (r Violating Pat All Pat	s): :hs:	0.000 0	0.6 0.6	971 900 9	0.207 0.000 0 256	N/A N/A N/A N/A	N/A N/A N/A N/A	N/ N/ N/	A İ A İ
DRVs +			Real		 	To	+ tal		
	Nr	nets(ten	ns)	Wors	st Vio	Nr nets	(terms)		
max_cap max_tran max_fanout max_length		0 (0) 0 (0) 0 (0) 0 (0)			.000 .000 0 0	0 (1 0 (1 0 (1	9) j		
Density: 75.449%									

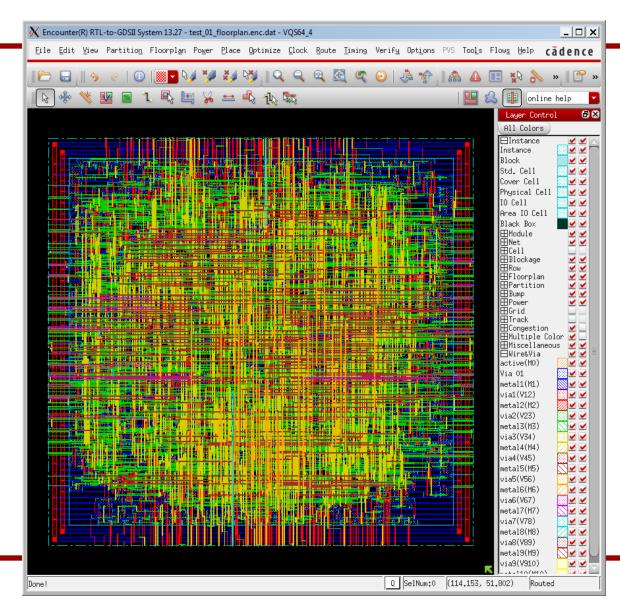
6. Post-CTS Optimization

- Although we already satisfied the timing without any further optimization after CTS, we will run post-CTS optimization.
 - encounter #> optDesign –postCTS

optDesign Fir	nal S	ummary								
Setup mode		all	reg2	2reg	in2reg	reg	2out	+ in2out	+	clkgate
WNS (r TNS (r Violating Pat All Pat	ns): ths:		0.6	121 900 9	0.101 0.000 0 256	N,	/A /A /A /A	N/A N/A N/A N/A		N/A N/A N/A N/A
DRVs -	Nr	nets(tem	Real ets(terms) Worst Vio			Nr n	Tota Tota ets(t	i		
max_cap max_tran max_fanout max_length		0 (0) 0 (0) 0 (0) 0 (0)		0	.000 .000 0	(0 (0) 0 (0) 0 (0) 0 (0)			
nsity: 65.532%				+	+			+		


6. Post-CTS Optimization

saveDesign test_06_postctsopt.enc


- Run the following command to check timing.
 - timeDesign –postCTS

timeDesi	ign Summary						
Setup mode	all	+ reg2	2reg	in2reg	reg2out	in2out	-+ clkgate
WNS (n TNS (n Violating Pat All Pat	ns): 0.000 ths: 0	0.6	121 900 9	0.101 0.000 0 256	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
DDVo		Real		<u>+</u> !	Tota	l	
DRVs +	Nr nets(ter	ms)	Wors	st Vio	Nr nets(t	erms)	
max_cap max_tran max_fanout max_length	0 (0) 0 (0) 0 (0) 0 (0)	0 (0) 0 (0)		0.000 0.000 0			
nsity: 65.532%				+		+	

- Click "Route" → "NanoRoute" → "Route...".
- Turn off "Fix Antenna" and click OK to run routing.

• Routing result.

- Routing result.
- Wirelength: 52,077um
- No DRC violations.

```
#Complete Detail Routing.
#Total number of nets with non-default rule or having extra spacing = 38
#Total wire length = 52077 um
#Total half perimeter of net bounding box = 48628 um.
#Total wire length on LAYER metal1 = 1604 um.
#Total wire length on LAYER metal2 = 15448 um.
#Total wire length on LAYER metal3 = 19261 um.
#Total wire length on LAYER metal4 = 9446 um.
#Total wire length on LAYER metal5 = 4644 um.
#Total wire length on LAYER metal6 = 1314 um.
#Total wire length on LAYER metal7 = 236 um.
#Total wire length on LAYER metal8 = 68 um.
#Total wire length on LAYER metal9 = 56 um.
#Total wire length on LAYER metal10 = 0 um.
#Total number of vias = 24082
#Up-Via Summary (total 24082):
   Metal 1
                  10605
   Metal 2
                  10028
   Metal 3
                   2748
   Metal 4
                    515
   Metal 5
                    147
   Metal 6
   Metal 7
   Metal 8
                  24082
#Total number of DRC violations = 0
```

saveDesign test_07_route.enc

- Run the following command to check timing.
 - timeDesign –postRoute

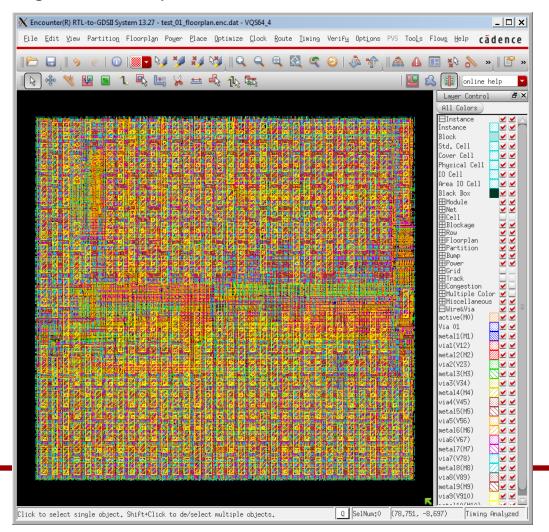
timeDes	ign Su	ummary								
+ Setup mode	·+	all	 reg2	reg	in2reg	-+ re	g2out	+ in2out	+	clkgate
+ WNS (r TNS (r Violating Pat All Pat	ns): 0.000 ths: 0		0.139 0.000 0 512		0.102 0.000 0			+		N/A N/A N/A N/A
+					+					,
l DRVs -	 		Real				Tota	l		
	Nr	nets(tem	ıs)	Wors	st Vio	Nr	nets(t	emns) ¦		
max_cap max_tran max_fanout max_length		0 (0) 0 (0) 0 (0) 0 (0)			.000 .000 0 0		0 (0) 0 (0) 0 (0) 0 (0)			
Density: 65.532%										

8. Post-Routing Optimization

- Although we already satisfied the timing without any further optimization after routing, we will run post-routing optimization.
 - encounter #> optDesign –postRoute

optDesign Fin	nal Non-SI 1	Timing Su	ımmary				
Setup mode	all	reg2	reg	in2reg	reg2out	in2out	clkgate
WNS (n TNS (n Violating Pat All Pat	s): 0.000 hs: 0) i 0.6) j	0.102 0.000 0 256	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A
DRVs +	Nr nets(t	Real	Worst	+- +- t Vio	Total	·i	
max_cap max_tran max_fanout	0 (0) 0 (0) 0 (0) 0 (0)		0.0	900 900 9	0 (0) 0 (0) 0 (0) 0 (0)		

8. Post-Routing Optimization


saveDesign test_08_postrouteopt.enc

9. Fill Insertion

- Click "Route" → "Metal Fill" → "Setup…".
- Click "Load" and choose "metalfill.cmd" to load the setting I made.
- Click OK.
- Click "Route" → "Metal Fill" → "Add".
- Click OK to insert metal fills.

9. Fill Insertion

The following shows my fill insertion result.

- Run the following command to analyze timing.
 - encounter #> timeDesign –postRoute

timeDesi	gn Sum	mary								
Setup mode		all	+ reg2	2reg	 in2reg	+ r	eg2out	+ in2out	:	clkgate
WNS (n TNS (n Violating Pat All Pat	ns): :hs:	0.102 0.000 0 768	0.6 0.6	139 000 0	0.102 0.000 0 256		N/A N/A N/A N/A	N/A N/A N/A N/A	į	N/A N/A N/A N/A
			Real			+ 	Tota	ı	+	
DRVs +	Nr n	ets(ten	ns)	s) Worst Vio		Nr nets(terms)				
max_cap max_tran max_fanout max_length		0 (0) 0 (0) 0 (0) 0 (0)			. 000 . 000 0		0 (0) 0 (0) 0 (0) 0 (0)	į		
nsity: 65.532%						+				

9. Fill Insertion

• saveDesign test_09_fill.enc